NTHU MATH 2820 - Statistics (undergraduate level)

清華大學 學系 統計學 (大學部課程)

Feb 2020 ~ Jun 2020


Notes

 (Jun 27) 作業總成績、期末考成績、學期總成績,已公布於本課程之iLMS網站。成績之分布,請見成績統計
 (Jun 27) 期末考解答
 (Jun 09) 期末考考古題及其解答
 (Jun 09) 期末考資訊及注意事項
 (Jun 03) [廣告] 中央研究院統計科學所將於9/3-9/4為大學生舉辦2020統計科學營,歡迎各位報名參加
 (May 24) 期中考解答成績統計。期中考成績已公布於本課程之iLMS網站。欲取回考卷者, 請親自至授課老師辦公室(綜合三館818室)領取。
 (May 19) 因新冠肺炎疫情趨緩,將自六月起(第一堂課為6/2, 周二),恢復於實體教室授課。影音檔將於上完課後,才會放置於課程網站上。作業繳交方式則將維持原樣,可繳交紙本或上傳電子檔。
 (May 04) 期中考考古題:考題1解答1考題2解答2),劃紅色刪除線的題目,屬於期中考不考的範圍
 (May 04) 期中考資訊及注意事項
 (Apr 27) 有關助教及其office hour的資訊,略有更改,請見Syllabus (紅字部分)。
 (Apr 22) [補課結束] 自下周四(4/30)起,補課結束。每周四的上課時間,調回原本的一小時(11:00AM-12:00PM)
 (Mar 30) 本周四上課日(4/2),適逢民族掃墓節暨兒童節補假,停課一次。
 (Mar 25) 為了因應清大疫情狀況,自即日起,本課程將暫時改為非同步遠距教學。遠距教學之施行方法如下
 (Mar 03) 有關助教及其office hour的資訊,請見Syllabus
 (Mar 03) [補課資訊] 在期中考(時間未定)之前,每周四12:00-1:00PM將在綜合三館203室(上課教室)補課一小時。期末考後則不再上課。補課之影音檔,課後即會放置於課程網站。

 

Lecture Notes

Lecture Notes with Hand-Written Notices

Video

01

 Introduction - what is statistics?

Mar 03


(4421 views)

(1876 views)
02

 Probability

Mar 05


(2307 views)

(1459 views)
Mar 10

(1421 views)

(914 views)
Mar 12

(1101 views)

(847 views)
Mar 17

(981 views)

(856 views)
Mar 19

(1077 views)

(958 views)
Mar 24

(1143 views)

(657 views)
03

 Point Estimation

Mar 24

(1605 views)
Mar 26

(1368 views)

(1049 views)
Mar 31

(1090 views)

(993 views)
Apr 07

(1103 views)

(910 views)
Apr 09

(927 views)

(747 views)
Apr 14

(969 views)

(818 views)
Apr 16

(829 views)

(679 views)
Apr 21

(745 views)

(640 views)
04

 Interval Estimation

Apr 23

(833 views)

(627 views)
Apr 28

(633 views)
05

 Hypotheses Testing

Apr 28

(1035 views)
Apr 30

(884 views)
May 05

(919 views)

(803 views)
May 07

(798 views)
May 12

(812 views)

(665 views)
May 14

(730 views)
May 21

(615 views)
May 26

(533 views)

(459 views)
May 28

(462 views)
06

 Decision Theory and Bayesian Inference

Jun 02

(777 views)

(494 views)
Jun 04

(557 views)
Jun 09

(518 views)

(408 views)
Jun 11

(449 views)
Jun 16

(514 views)

(548 views)
Homework Question Due Day Solution Grader
1

Ch 1. #2, #59, #65, #68, #78(a)(b)

Ch 2. #33, #40

Ch 3. #7(also examine whether X, Y are independent random variables and explain why), #8, #21, #25.

Mar 19 sol 沈子翔, 曹詠勛
2

Ch 3. #44, #64 [Hint: the pdf of exponential distribution with parameter λ is λexp(-λx), for x≥0 and 0, otherwise.], #70, #77,

Ch 4. #13, #36, #49, #50, #54, #60.

Mar 26 sol 珮雅, 劉必翔
3

Ch 2. #21 (Note. This is called memoryless property), #30 [Hint: First of all, try to find k0 such that p(k)/p(k+1)1 for any kk0 and p(k)/p(k+1)<1 for any k<k0, where p(·) is the pmf of Poisson.]

Ch 3. #22 [Hint: You can first show that: If X1~Poisson1), X2~Poisson(λ2), and X1, X2 are independent, then the conditional distribution of X1 given that X1+X2=n is binomial distribution B(n, λ1/(λ1+λ2)).], #26 [Hint: use beta function in LNp.75],

Ch 4. #61, #75 (For practice purpose, you must use the law of total expectation and variance decomposition to find the mean and variance, respectively. Other answers are NOT acceptable.), #77, #80, #92 [Hint. Use the law of total expectation (check LNp.67 and LNp.73 for the mgfs of Poisson and gamma, respectively) to find the mgf of α+X, and compare it with the mgf of negative binomial distribution given in LNp.63], #100 [Hint. Apply the δ-method to find the approximate mean and variance.]

Apr 07 sol 周右林, 陳信諺
4

Ch 2. #61,

Ch 4. #20 [Hint: try sum-to-one method], #89 (For practice purpose, you must use moment generating function to show it and to find its mean and variance. Other solutions are not acceptable.)

Ch 5. #1 [Hint: use Chebyshev's inequality and imitate the proof in LNp.96], #5 [Hint: use the theorem: if an→a, then (1+an/n)n→ea. The mgfs of binomial and Poisson distributions are given in LNp.60 and LNp.67, respectively.], #16, #17 [Hint: use CLT], #28

Ch 6. #8 [Hint: You can use mgf to relate the distributions of 2X and 2Y to the chi-square distribution], #11

Apr 14

sol

(corrected)

沈子翔, 曹詠勛
5

Ch 8. #7(a)(b) [Hint: the 1st moment of geometric distribution is given in LN, ch1-6, p.62], #9 [Hint: check the diagram in LNp.12], #16(a)(b) [Hint: The 1st moment is zero, and you can use gamma pdf and gamma function given in LN, ch1-6, p.73&74, to find the 2nd moment], #19(a)(b), #21(a)(b) [Hint: For (a), let Y=X-θ, then Y~exponential(1), i.e., 1=E(Y)=E(X-θ). For (b), note that xi ≥ θ for i=1,...,n, i.e., x(1) ≥ θ.], #26 [Hint: Try to use the hypergeometric distribution given in LN, ch1-6, p.68, to model the data.], #50(a)(b) [Hint: Try to use gamma pdf and gamma function given in LN, ch1-6, p.73&74, to find the 1st moment.], #51 [Hint: In this case, median is the (m+1)th smallest observation, i.e., X(m+1). You can first show that if X(m+2)θX(m) , then Σ|Xi-θ|=|X(m+1)-θ|+(X(m+2)-X(m))+(X(m+3)-X(m-1))+...+(X(2m+1)-X(1)). Then, try to generalize the result to obtain a general statement.], #60(a)(b)(c)(d) [Hint: For (b) and (d), use the results given in LN, ch1-6, p.73&74]

Apr 21 sol 珮雅, 劉必翔
6

Ch 8. #7(c), also, obtain the Fisher information of X and identify the asymptotic sampling distribution of the MLE [Hint: the mean of geometric distribution is given in LN, ch1-6, p.62], #16(c), also, obtain the Fisher information of the i.i.d. sample and identify the asymptotic sampling distribution of the MLE [Hint: you can use gamma pdf and gamma function given in LN, ch1-6, p.73&74, to find E|Xi| or E(Xi2).], #18(d), also show that the pdfs form an exponential family and find a sufficient and complete statistic, #21(c), also show that X(1) is complete by definition and answer whether the pdfs form an exponential family, #47(a)(b)(c), also, obtain the Fisher information of the i.i.d. sample and identify the asymptotic sampling distribution of the MLE, #49, #50(c), also, obtain the Fisher information of the i.i.d. sample and identify the asymptotic sampling distribution of the MLE [Hint: Try to use gamma function and gamma pdf given in LN, ch1-6, p.73&74, to find E(Xi2).], #58(a)(b), also, identify the asymptotic sampling distribution of the MLE [Hint: the log-likelihood function is given in LN, CH8, p.24-25 and notice that the marginal distributions are X1~B(n, (1-θ)2)X2~B(n, 2θ(1-θ))X3~B(n, θ2).], #69, #71, also show the pdfs form an exponential family and find a sufficient and complete statistic, #72, also show that the gamma distribution form a 2-parameter exponential family and show that ΠXi and ΣXi are sufficient and complete.

Apr 28 sol 陳信諺, 廖芳翊
7

Homework 7 problem

May 05 sol 沈子翔, 曹詠勛
8

Homework 8 problem

May 14

sol

(corrected)

珮雅, 劉必翔
9

Ch 9. #1, #2, #3, #4(a)(b) [Hint: apply Neyman-Pearson lemma.], #5, also if false, please explain why, #7 [Hint: apply Neyman-Pearson lemma.], #19(b)(c)(d) [Hint: apply Neyman-Pearson lemma.], #29, #30.

May 26

sol

陳信諺, 廖芳翊
10

Homework 10 problem

Jun 02

sol

沈子翔, 曹詠勛
11

Ch 9. #12, #13(a)(b)(c), #24

 ,

#26, also if false, please explain why. #37 [Hint: you may model the numbers of deaths as independent random variables, each distributed as Poisson P(λi), i=1,..., 12, and examine whether λi's are equal], #40 [Hint: p1+p2=1 and X1+X2=n], #43 [Hint: you can use GLR test for goodness-of-fit or Pearson's Chi-square test, and compare your answer with the solution given in textbook, page A40], #44 [Hint: Let O1, O2, and O3 be the numbers of AA, Aa, and aa, respectively. Then, (O1, O2, O3)~Multinomial(n,  (1-θ)2, 2θ(1-θ), θ2). The MLE of θ, where 0<θ<1, is (2X3+X2)/(2n) (see LN, CH8, p.25). Use O1, O2, O3 to derive the likelihood ratio test statistic. By the way, you may compare this question and the Example 7.19 given in LN, CH9, p.43. Try to find the differences on their H0 and HA (or the differences on their Ω0 and Ω).].

Jun 09

sol

珮雅, 劉必翔

12

textbook (2nd ed.) Ch 15. (Problem statements)

(turn-in questions)

Ch 15. #1, #11, #13, #15, #23, #24, #28, #29.

 

(no-need-to-turn-in question)

Ch 15. #8, #9.

Jun 16

sol

(corrected)

陳信諺, 廖芳翊