
NTHU MATH 2820 Midterm Solution April 22, 2025

(A1, B1) (14pts, 2pts for each)

Exam A.
(a) False (b) True (c) False (d) True
(e) False (f) True (g) False

Exam B.
(a) True (b) False (c) False (d) False
(e) False (f) True (g) True

(A2, B2) (15pts, 5pts for each)

Exam A.

(a) Z1, . . . , Zk are i.i.d. random variables
from binomial(n, q) distribution, where
q = 1 − (1 − p)20 − 20p(1 − p)19, and
p is an unknown parameter.

(b) Z1, . . . , Zk are i.i.d. random vari-
ables from exponential(λ) distribution
(or gamma(1, λ) distribution), where λ
is an unknown parameter.

(c) Z1, . . . , Zk are i.i.d. random variables
from hyper-geometric(15, 20, N−20) dis-
tribution, where N is an unknown pa-
rameter.

(Note: If “independence” is not stated, your
answer only addresses the marginal distribu-
tions of Z1, . . . , Zk. Since marginal distribu-
tions alone are not sufficient to uniquely deter-
mine the joint distribution of Z1, . . . , Zk, some
point will be deducted.)

Exam B.

(a) Z1, . . . , Zk are i.i.d. random vari-
ables from exponential(λ) distribution
(or gamma(1, λ) distribution), where λ
is an unknown parameter.

(b) Z1, . . . , Zk are i.i.d. random variables
from hyper-geometric(10, 30, N−30) dis-
tribution, where N is an unknown pa-
rameter.

(c) Z1, . . . , Zk are i.i.d. random variables
from binomial(n, q) distribution, where
q = 1 − (1 − p)10 − 10p(1 − p)9, and p
is an unknown parameter.

(Note: If “independence” is not stated, your
answer only addresses the marginal distribu-
tions of Z1, . . . , Zk. Since marginal distribu-
tions alone are not sufficient to uniquely deter-
mine the joint distribution of Z1, . . . , Zk, some
point will be deducted.)

(A3, B6) (16pts)

(a) (8pts) The cdf of Yn is

FYn(y) = P (Yn ≤ y) = P (X1 ≤ y, . . . , Xn ≤ y)

=
n∏

i=1

P (Xi ≤ y) =
(y
θ

)n
for 0 ≤ y ≤ θ. So, for small enough ϵ, say ϵ ∈ (0, θ),

P (|Yn − θ| < ϵ) = P (θ − ϵ < Yn < θ + ϵ) = P (θ − ϵ < Yn < θ) = 1− P (Yn ≤ θ − ϵ)

= 1− FYn(θ − ϵ) = 1−
(
θ − ϵ

θ

)n

= 1−
(
1− ϵ

θ

)n
−→ 1, as n → ∞.

(Note. Compare the result with the consistent property of MLE.)
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(b) (8pts) Because 0 < Zn < nθ, the cdf of Zn is

FZn(z) = P (Zn ≤ z) = P (n(θ − Yn) ≤ z) = P
(
θ − z

n
≤ Yn

)
= 1− P

(
Yn < θ − ϵ

n

)
= 1− FYn

(
θ − z

n

)
= 1−

(
θ − z/n

θ

)n

= 1−
(
1 +

(−z/θ)

n

)n

for 0 < z < nθ. Because

FZn(z) = 1−
(
1 +

(−z/θ)

n

)n

−→ 1− e−z/θ, as n → ∞,

for any z ∈ (0,∞), and 1 − e−z/θ is the cdf of the exponential(1/θ) distribution, it is
proved that Zn converge in distribution to Z.
(Note. Compare the result with the asymptotic normality property of MLE.
Can you see the difference between them?)

(A4, B5) (20pts)

(a) (2pts) The pdf can be written as

f(x|θ) = exp
[
log
(
(θ + 1)xθ

)]
= exp [θ log(x) + log(θ + 1)] ,

for x ∈ [0, 1], where the support [0, 1] does not dependent on θ. This is a one-parameter
exponential with c(θ) = θ, T (X) = log(X), and d(θ) = log(θ + 1). Notice that∑n

i=1 log(Xi) is a sufficient and complete statistic.

(b) (5pts) Because

µ1 = Eθ(X1) =

∫ 1

0

x (θ + 1)xθ dx =
θ + 1

θ + 2
xθ+2

∣∣1
0
=

θ + 1

θ + 2
⇒ θ =

2µ1 − 1

1− µ1

,

the moment estimator of θ is

θ̃ =
2X − 1

1−X
.

(c) (6pts) Because the joint pdf is:

f(x1, . . . , xn|θ) =
n∏

i=1

[
(θ + 1)xθ

i

]
= (θ + 1)n

(
n∏

i=1

xi

)θ

,

the log-likelihhod function is:

l(θ;x1, . . . , xn) = log f(x1, . . . , xn|θ) = n log(θ + 1) + θ
n∑

i=1

log(xi).

By setting

l′(θ;x1, . . . , xn) =
n

θ + 1
+

n∑
i=1

log(xi) = 0,
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we can get the solution is

θ̂ = − n∑n
i=1 log(xi)

− 1.

Because
l′′(θ;x1, . . . , xn) = −n(θ + 1)−2 < 0, for any θ,

θ̂ is the MLE. Notice that the MLE θ̂ is a function of the sufficient and complete statistic∑n
i=1 log(Xi).

(d) (4pts) The Fisher information contained in X1, . . . , Xn is

IX1,··· ,Xn(θ) = Eθ[−l′′(θ;X1, . . . , Xn)] = Eθ

[
n

(θ + 1)2

]
=

n

(θ + 1)2
.

Similar calculation can be used to show that the Fisher information contained in a single
observation Xi is

IX1(θ) =
1

(θ + 1)2
.

Notice that IX1,··· ,Xn(θ) = n IX1(θ). An alternative method to get IX1(θ) is as follows.
Let Y = − log(X1) (⇒ X1 = exp(−Y )). Then, the pdf of Y is

fY (y) = fX1(e
−y)

∣∣∣∣dx1

dy

∣∣∣∣ = (θ + 1)e−θy
∣∣−e−y

∣∣ = (θ + 1)e−(θ+1)y,

for 0 < y < ∞. Because Y follows a gamma(1, θ+1), i.e., exponential(θ+1), distribution,
we have

Eθ(Y ) =
1

θ + 1
and Varθ(Y ) =

1

(θ + 1)2
.

So,

IX1(θ) = Eθ[(l
′(θ;X1))

2] = Eθ

[(
1

θ + 1
+ log(X1)

)2
]

= Eθ

[(
1

θ + 1
− Y1

)2
]
= Eθ

[
(E(Y1)− Y1)

2] = Varθ(Y1) =
1

(θ + 1)2
,

which is identical to the result given above. Actually, from the above calculation, it can
also be shown that

∑n
i=1 − log(Xi) follows a gamma(n, θ + 1) distribution.

(e) (3pts) The asymptotic variance of the MLE θ̂ is

1

Eθ[−l′′(θ;X1, . . . , Xn)]
=

1

n IX1(θ)
=

(θ + 1)2

n
,

and the asymptotic distribution of the MLE is Normal distribution with mean θ and
variance (θ + 1)2/n.
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(A5, B4) (20pts)

(a) (2pts) For i = 1, . . . , n, let Ii = I(Xi = 0), where I is an indicator function. Then I1, . . . , In
are i.i.d. random variables from Bernoulli(p0), and Y =

∑n
i=1 Ii. So, Y ∼ binomial(n, p0).

(b) (6pts) Let g(y) = − log(y/n). Then, we have g′(y) = −y−1, and g′′(y) = y−2. Because
Y ∼ binomial(n, p0), we have E(Y ) = np0, and Var(Y ) = np0(1− p0). By the δ-method,
we can get

E(λ̃) = E[g(Y )] ≈ g(E(Y )) +
1

2
g′′(E(Y ))Var(Y )

= g(np0) +
1

2
g′′(np0)np0(1− p0)

= − log(p0) +
1

2

1

(np0)2
np0(1− p0)

= λ+
1− p0
2np0

= λ+
1− e−λ

2ne−λ
,

and

Var(λ̃) = Var(g(Y )) ≈ [g′(E(Y ))]2Var(Y )

= [g′(np0)]
2 np0(1− p0) =

(
−1

np0

)2

np0(1− p0) =
1− p0
np0

=
1− e−λ

ne−λ
.

The approximate bias is E(λ̃) − λ ≈ 1−p0
2np0

= 1−e−λ

2ne−λ , which has a rate of convergence

O(n−1).

(c) (4pts) The mean and variance of the MLE λ̂ are λ (i.e., λ̂ is unbiased) and λ/n, respectively.
By the results of (b), the relative efficiency of λ̃ to λ̂ is

eff(λ̃, λ̂) =
Var(λ̂)

Var(λ̃)
=

λ/n

(1− p0)/(np0)
≈ λ

n
× ne−λ

1− e−λ
=

λe−λ

1− e−λ
.

(d) (3pts) Because 1− e−λ − λe−λ = P (X1 ≥ 2) > 0, for any λ > 0, we have

1− e−λ > λe−λ ⇒ eff(λ̃, λ̂) =
λe−λ

1− e−λ
< 1, for any λ > 0.

It shows that λ̃ has a large variance than λ̂, i.e., λ̂ is a better estimator than λ̃ in terms
of variance.

(e) (5pts) For mean square error (MSE) of an estimator θ̂, notice that

MSE(θ̂) = Var(θ̂) + [bias(θ̂)]2.

For the MLE λ̂, its bias is zero so that MSE(λ̂)=Var(λ̂). For the estimators λ̃, by the

results of (b), its bias2 (= (1−e−λ)2

4n2e−2λ ) is O(n−2) and its variance (=1−e−λ

ne−λ ) is O(n−1) when

the sample size n is large, so that we can ignore the bias2 term and only consider Var(λ̃).
By the result of (d), Var(λ̂) < Var(λ̃) for any λ > 0 when n is large. We can therefore
conclude that when n is large, the MLE λ̂ is a better estimator than λ̃ in terms of MSE.
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(A6, B3) (15pts)

(a) (4pts) Because X(1), . . . , X(n) are the order statistics of X1, . . . , Xn, we have θ < X(1) <
· · · < X(n) < 2θ (⇒ X(n)/2 < θ < X(1)). We can write the joint pdf of X1, . . . , Xn as:

f(x1, . . . , xn|θ) =
n∏

i=1

1

θ
I(θ, 2θ)(xi) =

1

θn
I(x(n)/2, x(1))(θ), (I)

where I is the indicator function. Because the joint pdf can be written as a function of
X(1), X(n), and θ, by the factorization theorem,

(
X(1), X(n)

)
is sufficient.

(b) (4pts) Notice that by (I), we can express X(1) and X(n) using the likelihood, which treats
(I) as a function of θ with x(1) and x(n) being fixed, as follows:

x(1) = sup{θ : f(x1, . . . , xn|θ) > 0}, (II)

and
x(n) = 2× inf{θ : f(x1, . . . , xn|θ) > 0}. (III)

For a sufficient statistics T , by factorization theorem, there exist functions g and h such
that

f(x1, . . . , xn|θ) = g(t, θ)h(x1, . . . , xn),

where h(x1, . . . , xn) > 0. Therefore, by (II) and (III), we can express X(1) and X(n) as
functions of T as follows:

x(1) = sup{θ : g(t, θ) > 0},

and
x(n) = 2× inf{θ : g(t, θ) > 0}.

It shows that the sufficient statistics
(
X(1), X(n)

)
can be expressed as a function of T for

any sufficient statistics T , i.e.,
(
X(1), X(n)

)
is minimal sufficient.

(c) (4pts) Let Zi = Xi/θ, i = 1, . . . , n. Then, Z1, . . . , Zn are i.i.d. random variables from the
uniform(1, 2) distribution. Because the joint distribution of Z1, . . . , Zn is irrelevant to
the parameter θ, the distributions of any transformations of Z1, . . . , Zn, including the
distribution of Z(n)/Z(1) and the joint distribution of (Z(1), Z(n)), are irrelevant to θ. Be-
cause X(n)/X(1) = (θZ(n))/(θZ(1)) = Z(n)/Z(1), the statistic X(n)/X(1) has a distribution
irrelevant to θ, which shows X(n)/X(1) is an ancillary statistic. Notice that Z(1) and Z(n)

are random variables but not statistics (they are functions of data and parameter), while
X(1) and X(n) are statistics.

(d) (3pts) Because we can find a non-constant function (i.e., X(n)/X(1)) of X(1) and X(n)

such that the distribution of the function is irrelevant to θ,
(
X(1), X(n)

)
is not complete.

[Note. A way to prove it by following the definition of completeness is as follows. Let
µ = Eθ(X(n)/X(1)). Then, µ is a constant over θ becauseX(n)/X(1) is an ancillary statistic.
That is, we can find a non-constant statistic X(n)/X(1) −µ from X(1) and X(n) such that
Eθ(X(n)/X(1) − µ) = 0, for any θ.]
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