Interval Estimation

 What is interval estimation?

Question 6.10

e Is it satisfactory to report only an estimated value of 67
e Note that

1. A point estimate, although it will represent our best guess for the
true value of the parameter, may be close to that true value but will
virtually never equal it.

2. Some measure of how close the point estimate is to the true value is
required. One way to do this is to report both the estimate and its
estimated standard error.

e The following questions arise naturally:

1. A point estimator only gives a value. Wound it be better that we can
give customer a range of possible values? This amounts to replacing
the point estimate, a single value, by an entire interval of plausible
values.

2. Is there an estimation method that can combine together the two types
of information, i.e., estimated value and estimated standard error?
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Definition 6.22 (interval estimator, coverage probability, interval estimate, confidence

interval, and confidence level, TBp. 217 & 279)

e For a random vector X = (Xy,...,X,), an interval estimator of a
parameter 6 with coverage probability 1 — «a is a random interval

(0(X), 0u (X)),

where
1. 0,(X), 0,(X) are functions of data,
2. 0,(X) < 0y(X), and,
3. P(Ae (0,X),00(X)=1-a

e If X = x is observed, the interval (1(x),0y(x)) is called an interval
estimate.

e The term “100 - (1 — a)% confidence interval” is used to denote ei-
ther an interval estimator with coverage probability 1 —« or an interval
estimate.

e The 100(1 — a)% is also referred to as confidence level.

e Note. The « is usually assigned a small value, e.g. 0.1, 0.05, or 0.01.
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number + Question 6.11
(1) —t +
ot e How to interpret the 100(1 — a)% in a
(4) ———— . : ~ A
) o — 100(1 — )% interval estimate (01(x), 0y(x))?
@ P S For example, for a 95% interval estimate, say
P4 G " (23.5, 47.8), can we say that
(1 ¢ —t -
Repeated construction of B(QE (23.5, 47.8)) = 0.957
95% confidence intervals

» methods for constructing interval estimators

Recall. methods for the estimation of standard error

(1) exact distribution  (2) asymptotic method  (3) bootstrap
The three methods can be applied to construct confidence intervals.

Definition 6.23 (pivotal quantity)
A function of data Xi,..., X, and parameter 6, denoted by

Q(§7 (9) = Q(Xla o000 7Xn7g)7
is called a pivotal quantity for 6 if the distribution of Q(X, 0) is irrelevant
to all parameters. (cf. ancillary statistics)
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Example 6.38 (some pivotal quantities, TBp. 279-281)
1. Let Xy,..., X, beiid. from Exponential distribution £()\), then

AZXi ~D(n,1).
=l

Because the pdf of I'(n,1) is irrelevant to A, AY ", X; is a pivotal

quantity.
2. Let Xy,...,X, beiid. from Uniform distribution U(0,#). Then, the
pdf of Xm)
1S LA
ng" !, 0<q¢<1.

>

q
Because the pdf is irrelevant to 6, X(,)/0 is a pivotal quantity.

3. Let X3,..., X, be iid. from Normal distribution N(x,0?), where p is
a parameter and the value of ¢ is known. Then,

\/ﬁ(X ‘- ﬂ) ~ N(O, 1>.

o

Because the pdf of N(0, 1) is irrelevant to u, @ is a pivotal quan-
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4. Let Xi,..., X, beiid. from Normal distribution N(u, c?), where both
@ and o are unknown. Then, —
iE-w

n—1,

where S? = Zy:l(xi_y)Q. Because the pdf of £,,_; is irrelevant to p and

n—1
a* —*@%—_—”L—) is a pivotal quantity for p.
5. Let X1,..., X, beiid. from Normal distribution N (u,c?), where both

1 and o are unknown. Then,

Because the pdf of x2_; is irrelevant to p and o, W‘JQSZ is a pivotal

quantity for o.

Theorem 6.21 (exact distribution method for constructing confidence intervals of &)
Let Q(X, 8) be a pivotal quantity, and A be a set such that

PRX,0)eA)=1-q,
where A does not depend on all parameters. Then, the set

10:Q(x,0) € A}

is a 100(1 — &)% confidence interval (or confidence set) of 6.
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Example 6.39 (cont. Ex. 6.38, exact confidence intervals, TBp. 279-281)
1. Let a and b satisfty P(I'(n,1) < a) = «/2 and P(I'(n,1) >

b) = a/2, respectively, and A = (a,b), then

4/ / n \ / 7\
\ l—@=0r a<)\E X; <b :P(ﬁ—__<>\<—9——__).
] —\ — nX nX

=l

Hence, (a/nX,b/nX) is a 100(1 — )% confident interval
of \.
2. Let a and b satisfy foa ng" ldg =%

a
spectively (whose solutions are a = ()
Let A = (a,b), then

- X(n)
1oz—Pa<9<b

A X X
/ :P<a 1 b>:P<ﬂ<9<ﬂ).
X(n) 6~ <> b a
) is

100(1 — )% confident interval

of 6.

' ‘ - Hence, (X(,)/b, X(n)/a
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3. Let z(«) denote the point beyond which the N(0,1) dis-

tribution has probability a. Note that z(a) = —z(1 — «).

Then, _
X _
PR P(—z(a/2) VX —p) z(a/2)>
—\— o
‘L P(X - z2(a/2)—= < p < X + 2(a/2)—
a2 0 = — 2\ = O y— .
— T T
Hence, Yiz(a/?)% forms a 100(1—a)% confident interval
of p.

4. Let t,(a) denote the point beyond which the ¢, distribution
has probability a. Note that ¢,(a) = —t,(1 — «). Then,

P PN V(X — p) N
A 1 E( tn—l( /2) < g <tn—1( /2)>

_ S = S
— /& <X:tn_.1(oz/2)% <p < Xitn—l(a/Q)%) :

Hence, X + tn_l(oz/Z)% forms a 100(1 — )% confident

interval of 12
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5. Let x;(a) denote the point beyond which the y; distribu-
tion has probability a. Then,

- p(ea-a) < P2DE <2 o)

B (n —1)5? 2 (n —1)5?
- <x%1(a/2) 7S x31<1—a/z>)'

n—1)52 n—1)52
Hence, (X(i_la/?)’ x%(_l(llzaﬂ)) forms a 100(1—«)% confident
interval of o2

_Eow to find a 100(1 — «)% confident interval of
o’

Note. The construction of confidence intervals based on exact
distribution requires detailed knowledge of the sampling distri-
bution as well as some cleverness.

- Are there other methods that can offer a more sys-
tematic general procedure for the construction of C.I1.7




Definition 6.24 (asymptotically pivotal quantity)
For data X = (X4,...,X,), a function of X and parameter 6, denoted by

Qn(X,0) = Q(Xy,..., Xy, 0),
is called asymptotically pivotal quantity if the limiting distribution of
Q. (X, 60) as n — oo, is irrelevant to all parameters.

Question 6.12

What theorems/properties you have learned can help us to identify an asymp-
totically pivotal quantity?

Theorem 6.22 (asymptotic method for constructing confidence intervals, TBp. 281)

The MLE 8 satisfies . D
n 1(00)(6 - 80) 2> N(0, 1),

where 6 is the true value of parameter. It can be further argued that

nI(8)(8 — 6y) — N(0,1).

nI(8)(8 — 60) = \/ (nI(9))/(n1(8)) - /2T (o) - (B — 60)
and (nI(0))/(nl(6y)) - 1.

because
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Therefore,

l—-a ~ P <—z(a/2) < A\/nI(0)(0 —6y) < z(a/2)> .

and an asymptotic 100(1 — a)% confidence interval for f; is

é_i_z(a/Q) !

nI(f)
= (estimate) + (critical value)x (estimated standard error)

Many confidence intervals have a form like the asymptotic confidence interval
of MLE, in which

e the center of confidence interval is the estimated value of 6,

e the length of confidence interval depends on:
1. confidence level 1 — «,

2. sample size n, and

3. a quantity that is related to the distribution assigned in the
statistical modeling step.

-: We prefer to have a C.I. with longer length or shorter length?
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Example 6.40 (cont. Ex. 6.19, asymptotic confidence interval for Poisson mean, TBp. 282)
e Let Xy,...,X, beiid. from Poisson distribution P()), then the MLE

of X is A = X and the Fisher information of P()\) is I(f) = +. Hence an

asymptotic 100(1 — )% confidence interval for A is

X & =(a/2) X/

since the sampling distribution of X is approximately Normal.
e Data: Asbestos fibers on filters.

A=24.9, 55 = \/A/n=1.04.

An asymptotic 95% confidence interval for A is (A£1.96s5) = (22.9,26.9).

Note. (TBp.283)

e For ii.d. case, the asymptotic variance of MLE 0 is

1/(n- I(60)) = 1/E[I(6s)]" = =1/E[L"(60)],

where 0 is the true value of parameter, and [ is the log-likelihood of
all data.
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e Fornon-i.i.d. case, such as the Multinomial(n, py,...,p,) r.v.s (X1,..., X,),
1
— the asymptotic variance of MLE is not of the form ———.
r ]X1 (90)

— However, under some regularity conditions,
it can be shown that for non-i.i.d. case,

x the MLE is asymptotically normal, and

x its asymptotic variance still equals

1 1
or

El@)? = El@)
where [ is the log-likelihood of all data.

Example 6.41 (cont. Ex. 6.15, asymptotic C.I. for Hardy-Weinberg Equilibrium, TBp. 283)
e Suppose (Xi,...,X,) ~ Multinomial(n, p1,...,p;). Note that the counts

X1,...,X, are not independent.

e Let us return to the example of Hardy-Weinberg equilibrium, in which
the data (X, Xs, X3) ~ Multinomial(n, p1, p2, p3), where

P1 = (1 — 9)2, P2 = 29(1 — 9)7 and p3 = 927

for 0 < 0 < 1.
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/ g
L6) = 1-0 0
l,, 0) — 2X1 == X2 2X5 == X2
( ) - ( . 9)2 o (92
( 2

1 =
s5= /- )

E[I"(9)] E

e Data: Chinese population of Hong Kong in 1937.

§ =0.4247, and s; = 0.011.
Hence an approximate 95% confidence interval for 6 is
0 +1.96 s5 = (0.403, 0.447).

Note that this estimated standard error of 6 agree with bootstrap esti-
mate in Ex. 6.15, LNp.26.

Definition 6.25 (confidence intervals constructed by bootstrap, TBp. 284)

e 0 : an estimator of a parameter 0 based on the sample X;,..., X,

° 00 the true, unknown value of 6
® 6 5 a/2 and 1 — a/2 quantiles of the distribution of A = 0 — 0y, ic.,

(9( b <J )—a/z and |Q

66, <5)=1-0a/2.

1haei 1~a:3(g§é_90§®:})(é~75§9_§é;§_>

and (9 SN - Q) is a 100(1 — )% confidence interval for 6.

e Problem: distribution of A is unknown. So,
1. Let us pretend that the estimate of 0, éo, is the true parameter:

6y (an unknown value) — i (a known value)
# (an unspecified r.v.) — 6*=4|,

5 (a specified r.v.)

0=0o

A =60 — 8 = 4§ ¢
b !
A =0 — by = 5,
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2. generate many (say, B) bootstrap samples X7, ..., X} from a distribu-

tion with parameter value being @

o8]

. construct for each sample,

an estimate of 0, say éj ,j=1,2,...,B
4. {9* fo, . - 9* éo} can be regarded as B samples generated from A*

5. dlstrlbutlon of A = 0 — 0 then is approximated by the B samples of
A* = 0% — 90

e Recall that in Ex. 6.15, LNp.26, 6, = 0.4247.

A

e Of 1000 bootstrap estimates 07, ... aéikoom the 25th largest is 0.403,

which is our estimate of the 0.025 quantile; the g75th largest is 0.446,
which is our estimate of the 0.975 quantile.

e Estimates of the 0.025 and 0.975 quantiles of the distribution 0 — 0 are
0" =0.403 — 0.4247 = —0.0217, 0" = 0.446 — 0.4247 = 0.0213.
e An approximate 95% C.I. for @ is

(éo — 5%, Gy — Q*) — (0.404, 0.447),
which is about the same as that in Ex. 6.41, LNp.87.

Example 6.43 (cont. Ex. 6.17, bootstrap C.I. for Gamma distribution, TBp. 285)
e Recall that in Ex. 6.17, LNp.29, 4o = 0.441, Ay = 1.96.

e Of 1000 bootstrap estimates, &7, ..., & pgg, the 50th largest is 0.419, which
is our estimate of the 0.05 quantile; the 950th largest is 0.538, which is
our estimate of the 0.95 quantile.

e Estimates of the 0.05 and 0.95 quantiles of the distribution & — a are
0" =0.419 — 0.441 = —0.022, §* = 0.538 — 0.441 = 0.097.

e An approximate 90% C.I. for « is (640 — &, &g — Q*) = (0.344,0.463).

e Similarly, an approximate 90% confidence interval for A is (1.462, 2.321).

Example 6.44 (sample size determination)

— Suppose that Xi,...,X,, are ii.d. from N(u,o0?), where W is the

average daily yield of a chemical (in tons).
— Suppose that we would like to estimate p and we wish the error of

estimation to be less than 5 tons with probability 0.95, i.e.

P(lp—pl <5)=095 <= P(ue (i—"57+5))=0.95.

— How many measurements should be

included in the sample (i.e., n=7) to reach the desired accuracy?
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e Suppose that o is known. The 100(1 — a)% exact confidence interval for
s

So,

52 ’
where 1 — a = 0.95, i.e., a = 0.05.

e Suppose that ¢ is unknown. The 100(1 — a)% exact confidence interval

for p is
: X —t (04/2)i X +t (04/2)i
n—1 \/ﬁ7_ n—1 \/ﬁ
So,
2 Q2
75,,7_1(04/2)i <5 = n> tn-1(/2)"5 :
no = 52

where 1 — a = 0.95 (i.e., @ = 0.05.), S must be obtained from a previous
sample. Note that t,_1 ~ N(0,1) when n is large.

% Reading: textbook, 7.3.3, 8.5.3; Further reading: Wackerly et al., 8.5, 8.6, 8.7, 8.8, 8.9




