Ch1~6, p.2-91

Theorem 5.2 (Continuity Theorem, TBp. 181)

Let $F_n(x)$ be a sequence of cdfs with the corresponding mgfs $M_n(t)$. Let F(x) be a <u>cdf</u> with the mgf M(t). If $M_n(t) \to M(t)$ as $n \to \infty$ for all \underline{t} in an open interval containing zero, then $F_n(x) \to F(x)$ at all continuity point of $F \to i.e.$, converge in distribution

Notes.

1. The reverse of the continuity theorem also holds.

The reason why Fn →F only at continuous points of 2. The continuity theorem still holds when the moment generating function is replaced by characteristics function (chf always exists). counter example (discrete): $X_n = \{ -V_n, P = 1/2 \} P_n \times \{ V_n, P = 1/2 \}$

Note lim Fn is not a cdf (for your information) F_n F_n

 $F_{n}, F : \underline{\mathrm{cdf}}; \quad f_{n}, f : \underline{\mathrm{pdf}}; \quad p_{n}, p : \underline{\mathrm{pmf}}; \quad \underbrace{\mathsf{But}}, P_{n}(x) \to \underbrace{\mathsf{Q}}, \quad \forall x \in \mathbb{R}$ $\square : \underbrace{F_{n} \to F} \text{ implies } \lim_{n \to \infty} f_{n}(x) = f(x)? \quad \underbrace{\mathsf{Continuous}, \mathsf{E_{c}}}_{F_{n} = x - \frac{\sin(2n\pi x)}{2n\pi}, o < x < 1}; F_{n} \to \mathsf{U}(0.1)$ $\square : \underbrace{\mathsf{Q}} \text{ or } \lim_{n \to \infty} p_{n}(x) = p(x)? \quad \underbrace{\mathsf{Q}} \text{ or } f_{n} = 1 - \cos(2n\pi x) \text{ have } \underline{\mathsf{no}} \text{ limit}$ $\square : \underbrace{\mathsf{Q}} \text{ Ans: In general, } \underbrace{\mathsf{NO}}. \quad \underbrace{\mathsf{Q}} \text{ or } \mathsf{M}(\mathsf{t}) + \mathsf{M}(\mathsf{t}), \quad \mathsf{t} \in (-a,a)$

Ans: In general, NO.

 $P_n \rightarrow P$ in dist. $F_n(x) \rightarrow F(x)$ at cont. pts

Ch1~6, p.2-92

Example 5.2 (Convergence of Poisson to Normal, TBp. 181-182)

Let $X_n \sim P(\lambda_n)$, n = 1, 2, ... with $\lambda_n \to \infty$. We know that $E(X_n) = Var(X_n) = \lambda_n$ and $M_{X_n}(t) = e^{\lambda_n(e^t - 1)}$. Let

$$\overline{E(Z_n)=0} \longrightarrow \underline{Z_n} = \underbrace{(X_n - \lambda_n)/\sqrt{\lambda_n}}_{\text{Tan}(Z_n)=1} Standardization$$

Then $\underline{M_{Z_n}(t)} = \underline{e^{-t\sqrt{\lambda_n}}}\underline{M_{X_n}}\left(\frac{t}{\sqrt{\lambda_n}}\right) = e^{-t\sqrt{\lambda_n}}e^{\lambda_n(e^{t/\sqrt{\lambda_n}}-1)}$. Because $\underline{\lim_{n\to\infty}} \underline{\log} \, \underline{M_{Z_n}(t)} = \lim_{n\to\infty} \underline{-t\sqrt{\lambda_n}} + \lambda_n (\underline{e^{t/\sqrt{\lambda_n}}} - 1) = \frac{t^2}{2},$

Note:
$$e^{\chi} = \sum_{k=0}^{\infty} \frac{\chi^k}{k!}$$

$$| + \frac{t}{\sqrt{\lambda n}} + \frac{t^2}{2\lambda n} + \frac{t^3}{6\lambda n \sqrt{\lambda n}} + \cdots$$

 $\underline{M_{Z_n}(t) \to e^{t^2/2}}$, which is the $\underline{\mathrm{mgf}}$ of N(0,1). By continuity the- $\underline{\text{orem}}, Z_n \xrightarrow{a} N(0,1)$, i.e., when $\underline{\lambda}$ is large, we can approximate the distribution of $P(\lambda)$ by $N(\lambda, \lambda)$.

i.e., $Z_n \xrightarrow{d} Z$, where $Z \sim N(0,1)$

compare the shape of their pmf & pdf (LNp.68 & 76)

• LLN and CLT \Leftarrow limit theorems for sum $(\frac{e}{E_1}X_i)$ or average $(\overline{X_n})$ of r.v.'s $\overline{X_i}$'s (\underline{data})

Ch1~6, p.2-93

Ch1~6, p.2-94

Theorem 5.3 (Weak Law of Large Numbers (WLLN), TBp. 178)

Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of independent random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$. Independent random identical distribution

Let
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
. Then $\overline{X}_n \stackrel{P}{\to} \mu$. "long-run average" in the explanation

Cauchy Note 6 LNp.83

 $E(\overline{X}_n) = \mu, \qquad \underline{Var}(\overline{X}_n) = \sigma^2/n$ of mean Proof:

(LNp.41) By Chebyshev's inequality, (LNp.43)

$$P(|\overline{X}_n - \mu| > \epsilon) \le \frac{Var(X_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \longrightarrow 0$$
 as $\underline{n} \to \infty$

Notes. Under the same assumptions, a strong law of large **numbers** (SLLN), which asserts that $\overline{X}_n \xrightarrow{\text{a.s.}} \mu$, can be proved.

Example 5.3 (Monte Carlo integration, TBp. 179)

To calculate $I(f) = \int_0^1 f(x) dx$, we can generate X_1, X_2, \dots, X_n i.i.d. $\sim U(0,1)$ and compute $\hat{I}(f) = \frac{1}{n} \sum_{i=1}^{n} \frac{f(X_i)}{f(X_i)}$. By the LLN, $\hat{I}(f)$ will be close to $E[f(X_i)] = \int_0^1 \frac{f(x)}{f(x)} \times \underline{1} \, dx = I(f)$ as \underline{n} is large. $E(Y_i) = \mathcal{U} = E[f(X_i)] \triangleleft$

Recall Example 5.4 (Repeated Measurements, TBp. 179-180) Thm4.1 in LNp.80

Let X_1, \ldots, X_n be i.i.d. with mean μ and variance σ^2 , then

Sample mean: an estimator of μ $\overline{X}_n \xrightarrow{P} \mu$. (by WLLN) $E(Y_i) = Var(X_i) + E(X_i)$ sample variance: $S_n^2 \equiv \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \left(\frac{1}{n} \sum_{i=1}^n X_i^2\right) - \overline{X}_n^2 + \overline{X}_n^2 - 2\overline{X}_n^2$ of o² (S_n²+so²)

Because $g(x) = x^2$ is continuous, $\overline{X}_n^2 \xrightarrow{P} \mu^2$. Next, the r.v.'s

 X_1^2, \dots, X_n^2 are i.i.d. with mean $\sigma^2 + \mu^2$. By WLLN $\frac{1}{N}\sum_{i=1}^n Y_i = \frac{1}{n}\sum_{i=1}^n X_i^2 \xrightarrow{P} \sigma^2 + \mu^2$.

Therefore, $S_n^2 \xrightarrow{P} (\sigma^2 + \mu^2) - \mu^2 = \underline{\sigma^2}$. [item 4, LNp.89]

(Note. $\frac{1}{n}$ in S_n^2 can be replaced by $\frac{1}{n-1}$.) or Thm 4.1, LNp.80

pdf graph LNp.78

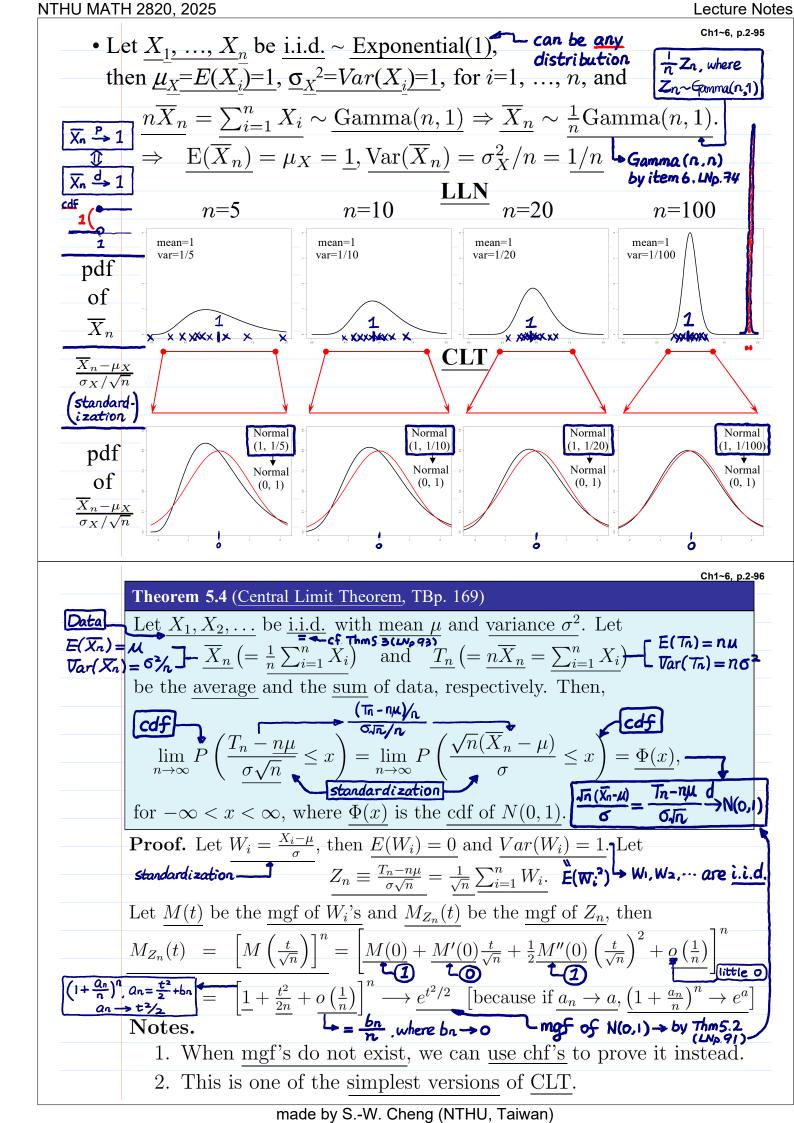
Example 5.5

If $X_n \sim t_n$, then $X_n \xrightarrow{d} N(0,1)$. $Z_{\sqrt{(\overline{U_i} + \cdots + \overline{U_n})/n}} \sim t_n$ $N(0,1)/\sqrt{2}$

Let Z~N(O,1), Ui, ..., Un ~ Xi

(Ec) If $X_n \sim F_{m,n}$, then $mX_n \stackrel{d}{\to} \chi_m^2$ as $n \to \infty$. Slutsky's Thm (LNp 90)

made by S.-W. Cheng (NTHU, Taiwan)



ary P

D Small

census

Ch1~6, p.2-98

Example 5.6 (Normal approximation to Binomial distribution, TBp.187)

Let X_1, X_2, \ldots, X_n be <u>i.i.d.</u> $\sim B(1, p)$, then $T_n \sim B(n, p)$. Note that $\overline{E(X_i)} = \overline{p}$, $Var(X_i) = \overline{p(1-p)}$ and $E(T_n) = np$, $Var(T_n) = np$ np(1-p) . By $\underline{\mathrm{CLT}}$, $\mathbf{B(n,p)}$

standardization of a B(n,p) random variable $\xrightarrow{T_n - \underline{np}} \xrightarrow{d} \underline{N(0,1)},$

i.e., when n is large enough, we can approximate the distribution of B(n, p) by N(np, np(1-p)).

Note: 1. how about those distributions that can be generated from a sum of some i.i.d. random variables? (example?) cf.

2. (cf.) Poisson in Def. 4.7 (LNp.66) and Example 5.2 (LNp.92)

Example 5.7 (measurement error (or called sampling error), TBp. 186)

- Suppose that you want to know the average income of families living in Taipei = population
- If you can ask every families their incomes, you will get the <u>exact value</u> of the <u>average</u>, denoted by $\underline{\mu}$.
- However, what if you only take a random sample of, say, sampling 1000 families? -> assume X1, ..., X1000 are i.i.d. (:1000 < population size) # of all samilies
 - The average income of the 1000 families, denoted by \overline{X}_{1000} , is a <u>random variable</u>. It has an <u>error</u> $\overline{X}_{1000} - \mu$, which is called measurement error or sampling error. Lunknown
 - By <u>CLT</u>, the <u>error</u> will be distributed normally, and we can approximate $P(|\overline{X}_{1000} - \mu| < c)$ using normal distribution what normal? see no matter what the distribution of incomes is. Ex.5.9(LNp.99)

Example 5.8 (experimental error)

- It is usually true that an experimental error ϵ is a function of a number of component errors $\epsilon_1, \ldots, \epsilon_n \rightarrow \mathcal{E} = f(\epsilon_1, \ldots, \epsilon_n)$
- for example, errors in the settings of experimental conditions, errors due to variation in raw materials, and so on.
- If each individual component error is fairly small, it is possible to approximate the overall error ϵ as a linear function of independently distributed component errors

 $\epsilon \approx a_1 \epsilon_1 + \ldots + a_n \epsilon_n$.

approximation

* Reading: textbook, chapter 5

Further reading: Roussas, chapter 8