NTHU MATH 2820, 2025 Lecture Notes

<:| Ch8, p.58

- Show that Multinomial distribution,®M ultmomzal(n D1y
np), is a regular (r —1)-parameter exponential family and find its sufﬁment
and complete statistics. [Hint: subsitute X, by n — X7 — Xo — -+ — X,

and&byl—}h—pz—“'—pr—ﬂ

I Check whether other distributions given in LN, Chl1-6, p.58-85,
belong to exponential family. % /-7-[

+ Reading: textbook, 8.8, 8.8.1; Further reading: Hogg et al., 7.2, 7.4, 7.5, 7.7, 7.8, 7.9

» criteria for evaluating estimators

Question 6.4 (choice among different estimators of the same parameter, TBp.298)

e In most statistical estimation problems, there are a variety of possible
parameter estimators. — under same statistical modeling

e Among these estimators, how to choose a better ones? criteria=2

e What properties, that we have defined and discussed for estimators,
can be used to evaluate estimators?

1. unbiased 2. consistency (large sample criterion)
Eo(8-0)=0 «<>E4(8)= ej f—é‘ P
Note that the two criteria not directly compare the dispersion of esti-
mator. Any other criteria?

Ch8, p.59
criteria related to dispersion of estimator: conceptually, perfer the estima-
tor whose sampling distribution is most concentrated around the true parameter
value. How to construct an operational definition, i.e., how to specify a quanti-
tative measure of the dispersion?

Definition 6.18 (mean square error, TBp.298)
The mean square error of an estimator 9 at 0 is defined as Z ;

~E(51+E(B)

Elv-godlV, L5 <y Sy (0) = Fyl(0= 0)2] < Fnckion <55
Note £—LN.CHI~6,p.l+2, item5 _L:E,Erm o5 © "‘éi‘"}‘s
1. MSEg(é) L Varg(0) + [Bias(0)]*, where Bias(0) = Eg(0) — 0. §

2. If 0 is unbiased, MSEy(0) = Varg(0) B

Definition 6.19 (relative efficiency, TBp.298)

.
.
>
.
U
-
D:

Suppose 6 and # are two estimators of parameter . The efficiency of 6 rela-

tive to 0 at 0 is defined as: 3 s | /V\
Q.fuM’HOﬂ« 05’ 6 —b @(Q,_&A) = Vgirg( )/Varg(ﬁ) - 2: — s

which is most meaningful when § and 6 are both unbiased. 4 \

Note that eff(d,0) = 1/eff(0,0). or both have same bias <J —
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Notes (interpretation of relative efficiency, TBp. 298)
1. Finite sample case. effg(ﬁ 0): accuracy of § relative to accuracy of 6.

= For 6 s.t. effy(0,6) > 1, 9 has|smaller variance than 0 on the 0
1T dispersion

2. Large sample case. When Var(d,) = cin”“(1 4+ o(1)) and Var(@~ ) =
con™P(1+ o(1)), where n is the sample size, then

%) For good estimators, usually : @ Var ~0(n~") _
_(e%., LN 40) ) (biasP~ o(0) | c/a, ifa=p,
asymptotic relative efficiency = lim effy(6, 6) = 0, if a < f3,
n—0o0 - -

3%|C:.Ca: Sunctions o§ . 00, if a > f.

3. Relative sample size. When Var(é&) = cin=(1 + o(1)) and Var(ém) =
com==(1+ o(1)), where n and m are the sample sizes. For n fixed, let m
be the smallest sample size such that Var(éﬁ) > Var(ém). Then

t i-e. the sample {& function o nj 1 - ) )= VZr( fznl)/(far(é‘,,]
size m s.t, lim — ~ lim effy(0,,60,) = _2. - Czn,"i
n— 00 n—oo 0
Var(en)zvar(é;n) i = C?.. = m

depends on. © ___T_ [Ty >

That is, effg(én, én) is approximately the ratio of sample sizes necessary

to obtain the same variance for 6,, and 0,,.
—

Example 6.29 (Muon Decay, TBp.299) cont Exb6.16. LNp 23)

Chs, p.61

e & = 3X: method of moments estimator o Does nokt mean &
e MLE & solves "™, X;/(1 +ax, ;) =0 <a—no close orm ;‘i‘”ﬁ‘:’?’
o Var(d) = 9Var(X) = (3 - o’)/n__ (7] Sor any observed
o Var(d) =~ [nl(a)]™! & check LNp.41, Note 1 L_d_“t_&_____f_.
: s, 2 ! 75 e
When | I(a) = E,|=—logf(Xl|a)| = dx
sample foJe! 1 (T4 ax)® 2
sizeis
:.rse‘. _ — [log R 2()4} ., —l<a<l a#0 |LNp60,
l o = 0 2‘ O(=B-.--|
37 Cz/c, =l
e The asymptotic relative efficiency is thus S M/~ Ve
, . . Var(&) 203 1+« -1
nh—>nolo el @l nh—{lgo Var(a) T 3-a? [log (1 - a) —204} , for a:# 0.
e The following table gives this efficiency for various values of «
bette 1 2 : 04  --- 0.9 0.95
| a L_;] 0_0 0 0.3 |
— lim,, ;o effo (@, &) |1 0997 0989 0.975 0953 --- 0.582 | 0.464
[@ The MLE is not much better than method of moments estimator for
a close to 0, but does increasingly better as a tends to 1. E
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Question 6.6 (TBp.300)
Is there a lower bound for the M SFE of any estimator? If such a lower bound

exists, what can it help us on the comparison and choice of estimators?

Ans: 1. It would function as a benchmark against which estimator could be com-

pared. on MSE J

2. For estimators achieve the lower bound, they cannot be “improved” jupon.

Theorem 6.15 (Cramer-Rao inequality, TBp.300)

Suppose Xi,..., X, are i.i.d. with pdf/pmf f(z]f), and T = T(X4,..., X,)
is an unbiased estimator of §. Then, under smooth assumptions on f(x|6),
I

¥ 1 lower bound of Ms
MSEQ(TY 2 Vary(7) | —— - fe—| 2o e Sotpeiors
— ! < w,e Cl-Rv mnd

n f X | 0 variance

re function
Tvannt] 2= > sy los f(XI0) - Z“X,g- I@) | ME)

not a statistic =1 — -
Then E¢(Z) = 0, Varyg(Z) = nlx,(0). By the Cauchy-Schwarz inequality,

Proof : Let (er, aSymPtD'bicJ

%:eb o] Covy (T, Z) < Varg(T) Vary(Z) = | 0 ©3 _ _Covi(12) <
But | S, T2~ GADWd2)

COV@ T, Z) EQ(TZ) Ee(T)Eg(Z) Chs, p.63

(2il0) | |
T P S ]
—_ //T .’1’,‘17,1'27... ZL’n) a9]:[]0 IZ|9:| dl’ldﬂfg d

—21

C:[ f(x.le)]:)‘-(me)t xf(xule)+ §oule) [ 5(xa|0)] »-» §txalo) +---
- 89/ / CIIVITERIRY Y {fozw} AT AT
9 9

Tisun le . X

ggE0(0) L 55 0 =1 = 1< Var(T)Vary(Z) = Var(T) 2 s = ——5

and we have completed the proof.

( 1:) An unbiased estimator whose variance achieves this lower bound will

have the smallest MSE among all unbiased estimators.

It's called OMVUE MSE = VnIZI‘-}

2. Theorem 6.15 does not preclude the possibility that there is a biased
estimator of 6 that has a smaller M SE than the unbiased estimator-

that achieve the lower bound. T Note MSE =Tai(8)+ bias™
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