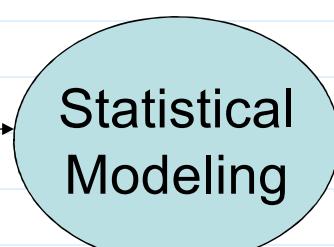


Question

What is Statistics?


哈利波特	Real Life
占卜學	Statistics
崔老妮	Statisticians
水晶球	Data
未來的資訊	Information

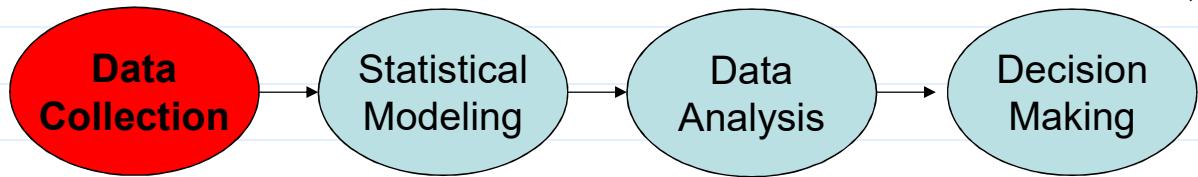
aim of statistics: provide insight by means of data

Basic Procedures of Statistics

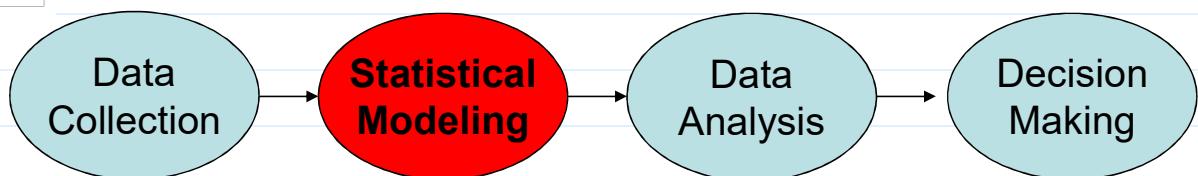
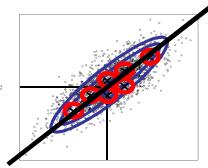
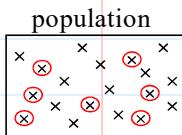
- Statistics divides the study of data into four steps:

Data: X_1, \dots, X_n (random variables)

➤ **Q:** What is a statistical model?

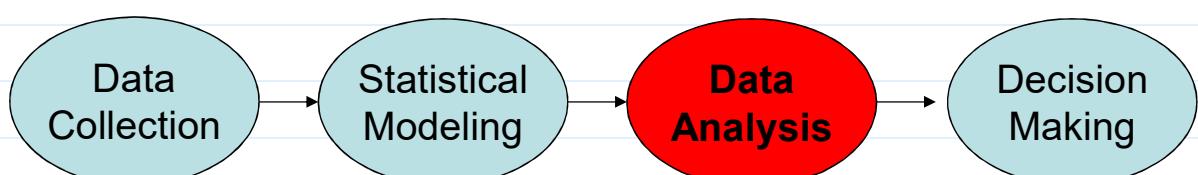

➤ $X_1, \dots, X_n \sim$ joint cdf F_X /pdf f_X /pmf p_X with unknown parameters Θ

Transformations
 $g_1(X_1, \dots, X_n),$
 $\dots,$
 $g_k(X_1, \dots, X_n)$

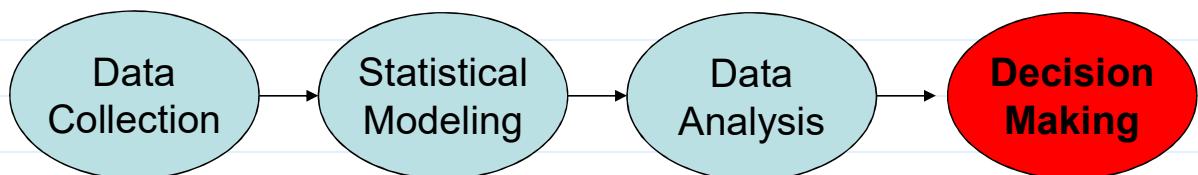




Extract
Information

Decision
Making


1. Data collection: producing representative data for drawing correct information

2. Statistical modeling: using the information that we possess to develop a representation of the underlying system, which also accounts for uncertainty in data


- a statistical model is a description of the joint distribution of data

NTHU MATH 2820, 2026, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

3. Data analysis: mining information from data

- graphical methods
- numerical methods
 - estimation
 - hypothesis testing

4. Decision making: drawing conclusions & answering questions based on results obtained in 3.

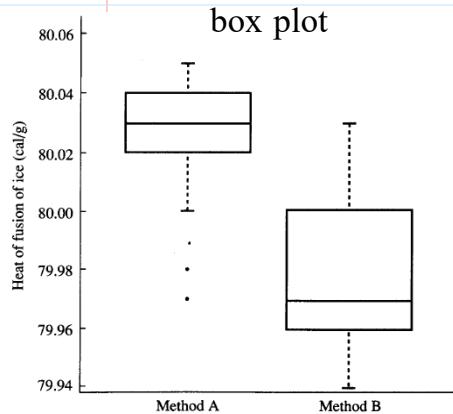
Data collection

Example (heat of fusion of ice, TBp. 423)

(Natrella, 1996) Two methods, A and B, were used in a determination of the latent heat of fusion of ice. The following table gives the change in total heat from ice at -72°C to water 0°C in calories per gram of mass:

Method A	79.98	80.04	80.02	80.04	80.03	80.03	80.04	79.97
	80.05	80.03	80.02	80.00	80.02			
Method B	80.02	79.94	79.98	79.97	79.97	80.03	79.95	79.97

The investigators wished to find out:


how much the two methods “differ”?

- **Q:** Why not all the values from Method A/B are identical?
- **Q:** Beyond the uncertainty existing in the data, are there some “certain” information?

NTHU MATH 2820, 2026, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

Introduction, p.1-6

Data analysis - graphical method

Q: From the plot, the two methods are different? or not different? and why?

Question

How to model the data and the question, i.e., state them in a mathematical/statistical language?

Statistical modeling

- Let X_1, \dots, X_n be the n observations from method A
- Let Y_1, \dots, Y_m be the m observations from method B
- To account for the uncertainty in data, regard X_1, \dots, X_n and Y_1, \dots, Y_m as random variables.
- Assign distribution to random variables

method A: $X_1, \dots, X_n \sim \text{i.i.d. Normal}(\mu_X, \sigma^2)$

method B: $Y_1, \dots, Y_m \sim \text{i.i.d. Normal}(\mu_Y, \sigma^2)$

$\mu_X = \mu_Y?$

Data analysis - numerical methods

- Estimation: what are the values of μ_X , μ_Y , σ^2 ?
- Hypothesis testing: $\mu_X = \mu_Y$? true or false? how confident?
 - $\hat{\mu}_X = 80.02$, $\hat{\mu}_Y = 79.98$, $\hat{\sigma}^2 = 0.0007178$
 - $p\text{-value} < 0.01$, $H_0: \mu_X = \mu_Y$ is rejected under significance level 0.99.

- Compare the graphical and numerical methods
 - graphical methods: intuitive perception, vague conclusion
 - numerical methods: lack of intuition, accurate conclusion

Decision making

- There is a (statistically significant) difference between the means of the 2 methods: $\mu_X > \mu_Y$
- level of evidence?

NTHU MATH 2820, 2026, Lecture Notes
made by S.-W. Cheng (NTHU, Taiwan)

Introduction, p.1-8

- Some other examples of statistical applications
 - Election: survey on voting
 - Lung cancer \longleftrightarrow Smoking
 - Moneyball (魔球)
 - Thinking, fast and slow (快思慢想)
 - The signal and the noise
 - (精準預測)
 - Big data
 - Data-based AI
 - ...
- Materials to be covered in this course
 - Probability – A Review: Chapters 1~6
 - Estimation: Chapter 8
 - Hypothesis Testing: Chapter 9
 - Decision Theory: Chapter 15 (Rice, 1995, 2nd Edition)
 - Applications:
 - Survey Sampling: Chapter 7
 - Two-Sample Comparison: Chapter 11
 - Analysis of Variance: Chapter 12
 - Some Graphical Methods from Chapter 10

Website of my mathematical statistics course
<http://www.stat.nthu.edu.tw/~swcheng/Teaching/stat3875/index.php>

❖ Further reading:

- Lewis (2004), Moneyball (中譯：魔球).
- Kahneman (2011), Thinking, Fast and Slow (中譯：快思慢想).
- Silver (2012), The Signal and the Noise (中譯：精準預測).
- Stigler (2016), The Seven Pillars of Statistical Wisdom.