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Hypothesis testing 

• What is hypothesis testing? 

Question 7.1 (What is a hypothesis testing question?)
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Definition 7.1 (null and alternative hypotheses, simple and composite hypotheses, TBp.331,332,334)

Question 7.3 (asymmetry between H0 and HA)

Question 7.2 
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Example 7.1 (some null and alternative hypotheses, TBp.329, 334)
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• Neyman-Pearson paradigm --- concept and procedure of hypothesis testing

Definition 7.2 (test, rejection region, acceptance region, test statistic, TBp. 331)

decisions

accept H0 reject H0

hypo-

theses

H0 is true

HA is true

Note. Two types of errors

may be incurred in applying 

this paradigm
Type I error

Type II error

hypothesesdecisions
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Definition 7.3 (type I error, significance level, type II error, power, TBp. 331)

Question 7.4 (dilemma between type I and type II errors)
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Example 7.2 (cont. Ex. 7.1 item 1 (LNp.3), TBp.330-331)

H0: 

p=0.5

HA: 

p=0.7

H0 HA
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Question 7.5
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Definition 7.4 (test statistic, null distribution, critical value, TBp. 331 & 334)

= t0

hypotheses

ΩΩ0 ΩAS
Q1: How to find a 

good test statistic?

Q2: How to find the 

critical value?

T
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Example 7.3 (cont. Ex. 7.2)

Question 7.6 (difficulty with level-α tests)

pdf of T under H0 (null distribution)
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Area = α

Area = α
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Definition 7.5 (p-value)

tp-value =

α =

Example 7.4 (cont. Ex. 7.2, LNp.8)
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Some guidelines. (TBp. 335-336)

Question 7.7 (how to determine H0 and HA)

 Reading: textbook, 9.1, 9.2, 9.2.1, 9.2.2; Further reading: Hogg et al., 5.5
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Question 7.8

• Neyman Pearson Lemma --- most powerful tests

Definition 7.6 (uniformly most powerful test, TBp. 336)

• most powerful test for simple vs. simple hypotheses

Definition 7.7 (likelihood ratio, TBp.329)
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Theorem 7.1 (Neyman-Pearson lemma, TBp. 332)
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Example 7.7 (cont. Ex. 7.2 (LNp.8), TBp. 329, 330)

Example 7.8 (TBp. 333)
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Question 7.9

• UMP examples for testing certain composite hypotheses
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Example 7.10 (cont. Ex. 7.9, TBp.336)

Example 7.9 (cont. Ex. 7.8 (LNp.18), TBp.336)
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Definition 7.7 (test function, nonrandomized test, randomized test)

Theorem 7.2 (significance level, power, and test function)
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Theorem 7.3 (UMP test for one-parameter exponential family, one-sided hypothesis)

• UMP tests for one-parameter exponential family
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Example 7.11 (UMP for i.i.d. Bernoulli)

Question 7.10
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• UMPU tests (for one-parameter exponential family)

 Reading: textbook, 9.1, 9.2, 9.2.3; Further reading: Roussas, 13.1, 13.2, 13.3

Question 7.11
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Definition 7.8 (unbiased test)

Theorem 7.4 (UMPU tests for one-parameter exponential family, two-sided hypothesis)

(1)
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Example 7.12 (UMPU test for normal mean)
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Example 7.13 (UMPU test for normal variance)
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Definition 7.9 (monotone likelihood ratio)
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Theorem 7.6

Theorem 7.5

 Further reading: Roussas, 13.4, 13.5

• (Generalized) likelihood ratio tests

Question 7.12
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Definition 7.10 (generalized likelihood ratio test, TBp. 339)
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Example 7.14 (GLR tests for normal mean with known variance, two-sided, TBp.339-340)
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Example 7.15 (GLR tests for normal mean with unknown variance, two-sided)
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Question 7.13
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Theorem 7.7 (large sample theory for null distribution of GLR statistics, TBp.341)

 Reading: textbook, 9.4; Further reading: Roussas, 13.7

• Application of GLR test I --- tests for multinomial distribution, goodness-of-fit tests

Example 7.16 (GLR test for multinomial distribution)
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Question 7.14 (examine distribution assumption in statistical modeling  goodness of fit)
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Example 7.17 (GLR tests for goodness-of-fit, TBp.341-342)

Ch9, p.40



Ch9, p.41

Question 7.15 

Example 7.18 (Pearson’s Chi-square test, TBp.342-343)
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Remarks.

Example 7.19 (Hardy-Weinberg Equilibrium, TBp.343-344, or Ex.6.15, LN, Ch8, p.24)
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Example 7.20 (Bacterial Clumps, TBp. 344-345)
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Example 7.21 (Fisher’s reexamination of Mendel’s data, TBp. 345-346)
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• Application of GLR test II --- Poisson dispersion test

Question 7.16 

 Reading: textbook, 9.5
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Example 7.22 (GLR test for Poisson dispersion, TBp. 347-348)
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Example 7.23 (Asbestos Fibers, Poisson dispersion test, TBp. 348)
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Example 7.24 (Bacterial Clumps, Poisson dispersion test, TBp. 348-349)

Question 7.17 

Ch9, p.52

 Reading: textbook, 9.6

• Some concerns about hypothesis testing

0 µ

．．
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Note: this is why we prefer not to say
“accept H0”, 

but rather 
“sample size is not large enough to reject H0”,

or
“fail to reject H0”
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• duality of confidence intervals and hypothesis tests

Example 7.25 (Normal mean, TBp. 337)
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Theorem 7.8 (TBp. 338)

T (test statistic)

θ

acceptance 

region of 

H
0
: θ=θ

0
vs. 

HA: θ≠θ
0

confidence interval

T
obs

θ0
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Note.

Theorem 7.9 (TBp. 338)
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Example 7.26 (Normal variance)

 Reading: textbook, 9.3
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• Test for normality

Question 7.18 

² Pearson’s chi-square (or GLR) test for goodness of fit. In order
for the limiting distribution to be chi-square, the parameters must be
estimated from the grouped data. (Chernoff and Lehmann, 1954).

² Departures from normality often takes the form of skewness or asymmetry.

² A goodness-of-fit test can be based on the coefficient of skewness for
the sample:

b1 =
1

n

�
n

i=1
(Xi ¡ X)3

s3

Reject the null hypothesis that X1, ¢¢¢, Xn is a sample from a Normal
distribution for large values of jb1j.

² Symmetric distributions can depart from normality by being heavy-tailed
or light-tailed or too peaked or too flat in the center. Thesis forms of
departures may be detected by coefficient of kurtosis for the sample:

“X1, . . . ,Xn are i.i.d. from N(µ, σ2)” is a very popular assumption in statis-
tical analysis. How can we test the goodness of fit to the normal distribution?
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• Some graphical methods for accessing goodness of fit

Recall: the 3rd step in the procedure of statistics --- Data Analysis 

• numerical methods 

 estimation (point estimation & interval estimation)

 hypothesis testing

 accurate conclusion

 but only based on one (or several) numbers

• graphical methods 

 offer intuitive perception and various information 

 (could bring) divergent conclusions

 Reading: textbook, 9.9

b2 =
1

n

�
n

i=1
(Xi ¡ X)4

s4
.

² Linearity of the normal probability plot can be measured by the correlation
coefficient r of the normal quantiles and the ordered observations. The
test rejects for small values of r.

² Sampling distributions of b1, b2, and r under normal model can be ap-
proximated by simulation.
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• Hanging rootograms

Definition 7.11 (hanging histogram, rootograms, chi-gram TBp. 349-352)

Plot differences between the histogram (i.e., observed counts, Oi) and ex-
pected counts Ei:

Figure (a): histogram – roughly bell shaped
To examine carefully, if the jth interval is [xj−1, xj], the probability
that an observation falls in it is p̂j = Φ((xj ¡ x̄)/σ̂) ¡ Φ((xj−1 ¡ x̄)σ̂)
under the normal model (µ, σ estimated by x̄ ,σ̂).
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Theorem 7.10 (variance stabilizing transformation, TBp.351)

Figure (b): hanging histogram of the differences:
nj (observed count) ¡ n̂j (expected count) , where n̂j = np̂j

V ar(nj ¡ n̂j)
.
= V ar(nj) (ignore variability from n̂j)

= npj(1 ¡ pj) = n

�
1

4
¡

�
pj ¡

1

2

�2#

¼ npj (when pj is small)

=) the cell variances are unequal

Let X be a random variable with mean µ and variance σ2 = σ2(µ). Let
Y = f(X), then

V ar(Y ) ¼ V ar(X)[f ′(µ)]2 = σ2(µ) ¢f ′(µ)2

If f is chosen so that σ2(µ)f ′(µ)2 is constant, the variance of Y will not
depend on µ. Such an f is called a variance stabilizing transformation.

Figure (c): hanging rootogram showing
p
nj ¡

�
n̂j.

Applying the variance stabilizing transformation to this case:
under H0 (i.e., the model is correct),
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E(nj) = npj = µ

V ar(nj) ¼ npj = σ
2(µ)

Then µ[f ′(µ)]2 is constant if f(x) =
p
x and

E(
p
nj) ¼

p
npj

V ar(
p
nj) ¼ 1/4 .

Note that in Figure (c), the deviations in the center were down weighted
and deviations in the tails were emphasized.

Figure (d): hanging chi-gram plot, a plot of the components of Pearsons
chi-square statistic: nj ¡ n̂j�

n̂j
since, neglecting the variability in n̂j , V ar(nj ¡ n̂j) ¼ npj = n̂j, so

V ar

�
nj ¡ n̂j�

n̂j

�

¼ 1.

 Reading: textbook, 9.7

Question : What more information can you obtain from the plots than a
goodness-of-fit test?
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• Probability Plots

Question 7.19 

Definition 7.12 (empirical cumulative distribution function, TBp. 378)

² x1, x2, . . . , xn : a batch of numbers ) a realization of random variables
X1, . . . , Xn that are i.i.d. with cdf F .

² empirical cumulative distribution function (ecdf) is

Fn(x) =
1

n
(#xi · x) ) an estimate of F (x) = P (X · x)

² Let x(1) · x(2) · ¢¢¢· x(n) be the ordered numbers of x1, . . . , xn, then

Fn(x) =






0, if x < x(1)
k

n
, if x(k) · x < x(k+1), where k = 1, 2, . . . , n ¡ 1

1, if x ¸ x(n)

or Fn(x) =
1

n

n�

i=1

I(−∞,x](xi)

where I is the indicator function:

I(−∞,x](Xi) =


1 if Xi · x
0 if Xi > x

² histogram , pdf/pmf ² ? , cdf

Ch9, p.66

Question 7.20 

² I(−∞,x](Xi), i = 1, 2, . . . , n are independent Bernoulli random variables.
Thus, nFn(x) is a B(n, F (x)) random variable.

E[Fn(x)] = F (x); V ar[Fn(x)] =
1

n
F (x)[1 ¡ F (x)]

Fn(x) unbiased, has maximum variance at the median of F .

How to examine by graph whether Fn(x) is similar to F (x)?
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Definition 7.13 (probability plot, TBp. 352-354)

² Suppose that it is hypothesized that X follows a certain distribution
F . Given an i.i.d. sample X1, . . . , Xn » F , plot

F (X(k)) versus
k

n+ 1
or equivalently

X(k) versus F−1
�

k

n+ 1

�
.

² Note that we are plotting the ordered observations (which may be
viewed as the observed or empirical quantiles) versus the quantiles of
the hypothetical distribution.

² a rationale of probability plot: IfX is a continuous random variable
with a strictly increasing c.d.f. F . Then Y = F (X) has a Uniform(0,1)
distribution

P (Y · y) = P (F (X) · y) = P (X · F−1(y)) = F
�
F−1(y)

�
= y,

for 0 < y < 1, and

E(Y(k)) = E(F (X(k))) =
k

n+ 1
.
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² probability plot for location-scale family. Suppose F is of the
form

Fµ,σ(x) = G

�
x ¡ µ

σ

�
,

where µ is the location parameter and σ is the scale parameter. Plot
X(k) ¡ µ

σ
against G−1

�
k

n+ 1

�

or plot
X(k) against G−1

�
k

n+ 1

�
.

If the model were correct, the result would be approximately a straight
line:

X(k) ¼ σG−1
�

k

n+ 1

�
+ µ.

A slight modification uses E(X(k)) instead of G−1
�

k

n+1

�
. But it can be

argued that

E(X(k)) ¼ F−1µ,σ

�
k

n+ 1

�
¼ σG−1

�
k

n + 1

�
+ µ

so this modification yields very similar results to the original procedure.
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 Reading: textbook, 9.8, 10.2.1

² probability plot for grouped data Suppose the grouping gives
t0,¢¢¢, tm for the bin boundaries of the histogram. In the interval
[ti−1, ti) there are Oi counts, i = 1, ¢¢¢, m. Denote the cumulative
frequencies by Nj =

�j

i=1Oi. We plot

tj versus G−1
� Nj
n + 1

�
, j = 1, ¢¢¢, m.

² Caution
— Probability plots are by nature monotone increasing. Some experi-

ence is necessary in gauging “straightness”

— Simulations are very useful in sharpening one’s judgment.


