Hypothesis testing

» What is hypothesis testing?

Question 7.1 (What is a hypothesis testing question?)

1. observed data. zy,...,2,
2. statistical modeling. Regard z1,...,x, as a realization of random
variables Xy,..., X, and assign X1,...,X,, a joint distribution:

a joint cdf F(:|©), or a joint pdf f(-|®), or a joint pmf p(-|©),

where © = (61,...,0;) € Q, and 6;s are fixed constants, but their
values are unknown.

3. point estimation. What is the value of ©7 Find a function of

A~

X1,...,X,, ©, to estimate © or a function of ©.
4. hypothesis testing. Separate {2 into two disjoint sets {2y and €24, i.e.,

QomQAZQ) and QOUQA:Q

Use the data Xi,...,X, to answer the question: which of the two
hypotheses,

Hy:©€Qy versus Hy:0 €y
is more favorable.
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Question 7.2

(;an we obtain an estimate of © and accept Hj if O e Qo and reject Hy if
© e Oy?
Hint. Consider the case: X ~ Binomial(n, p),

Hy:p=0.5 v.s. Hy:p#0.5,
What if n = 10° and p = 0.500017

Definition 7.1 (null and alternative hypotheses, simple and composite hypotheses, TBp.331,332,334)

e [ is called null hypothesis.

e H, (sometimes denoted as Hy) is called alternative hypothesis.

e An hypothesis is said to be a simple hypothesis if that hypothesis
uniquely specifies the distribution.

e Any hypothesis that is not a simple hypothesis is called a composite
hypothesis.

Question 7.3 (asymmetry between H, and H,)

Is there a difference between the roles of Hy and H47? Can we arbitrary
exchange the two hypotheses?




Example 7.1 (some null and alternative hypotheses, TBp.329, 334)

1. Two coins experiment
e Data and problem

— Suppose that I have two coins

— Coin 0 has probability of heads equal to 0.5, and coin 1 has
probability of heads equal to 0.7.

— I choose one of the coins, toss it 10 times, and tell you the
number of heads X

— On the basis of observed X, your task is to decide which coin
it was.

e Statistical modeling.
— X ~ Binomial(10, p)
— Q = {Binomial(10, 0.5), Binomial(10,0.7)}
e Problem formulation
— Hy: coin 0 = @ = {Binomial(10,0.5)}
— Hyu: coin 1 = Q4 = {Binomial(10,0.7)}
— Both hypotheses are simple.
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2. Testing for ESP
e Data and problem

— A subject is asked to identify, without looking, the suits of 20
cards drawn randomly with replacement from a 52 card deck.

— Let 7' be the number of correct identifications.

— We would like to know whether the person is purely guessing
or has extrasensory ability.

e statistical modeling
— T ~ Binomial(20, p).
— Note that p = 0.25 means that the subject is mearly guessing
and has no extrasensory ability.
—Q={p:pe0251]tor Q={p:pec0,1]}
e Problem formulation
— Q =1[0.25,1]

Hy:p=025 vs. Hy:p>025

* Then, Qy = {0.25} and Q4 = (0.25, 1].
* The Hy is simple and H 4 is composite. Furhermore, H4

is called a one-sided hypothesis.
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= Q= 0,71
— Hy:p=025 vs. Hy:p#0.25

* Then, Qy = {0.25} and Q4 = [0,0.25) U (0.25, 1].

* The Hy is simple and H4 is composite. Furhermore, H,y
is called a two-sided hypothesis.

3. goodness-of-fit test (for Poisson distribution)

e Data and problem
— Observe an i.i.d. data X;,...,X,,.
— Suppose that we only know that X;’s are discrete data.

— We would like to know whether the observations came from a
Poisson distribution.

e Statistical modeling:
— Xi1,...,X, are ii.d. from a discrete distribution with cdf F'.
— Q ={F : F is a discrete cdf}
e Problem formulation
— Hy : Data came from some Poisson => Qg = {F": F is a P()) cdf}
— H, : Data not from Poisson = Q4 = Q \ (.

— Both hypotheses are composite.
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* Neyman-Pearson paradigm --- concept and procedure of hypothesis testing

Definition 7.2 (test, rejection region, acceptance region, test statistic, TBp. 331)

e A test is a rule defined on sample space of data (denoted as .S) that specifies:

1. for which sample values x € S, the decision is made to accept Hy

2. for which sample values x € S, reject Hg in favor of H 4

e The subset of the sample space for which Hy will be rejected is called the
rejection region, denoted as RR.

e The complement of the rejection region is called the acceptance region,

denoted as AR =S\ RR = RR°.

decisions hypotheses
AR
s[4 | (e

decisions

Note. Two types of errors
may be incurred in applying
this paradigm

accept H, reject H,

hypo- | Hy is true §  Binzo!

H , is true | Type II error
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Definition 7.3 (type I error, significance level, type Il error, power, TBp. 331)
Let ©y denote the true value of parameters.

e Type I error: reject Hy when Hj is ture, i.e., X € RR when Oy € ().

— ag, = probability of Type I error = P(RR|Oy), where ©g € €.

— Significance level a: the maximum (or the least upper bound)
of the Type I error probability, i.e., a = maxecqo, e Or a =
SUPeecq, X0 -

e Type Il error: accept Hy when H 4 is ture, i.e., x € AR when ©¢ € ()4
— e, = probability of Type II error = P(AR|©y), where O € {24
— For ©y € Qyu, powerg, = 1 — g, = P(RR|Q,) = probability of

rejecting Hy when H 4 is ture

Question 7.4 (dilemma between type I and type II errors)
An ideal test would have ag = 0, for © € Qg and e = 0, for © € Q 4; but this

can be achieved only in trivial cases. (-)

In general, when « decreases, [ increases, and vice versa.

smaller o, f f larger «,
larger [ 5| AR A%R 5 AR/ RR smaller 3

A solution to the dilemma
The Neyman-Pearson approach imposes an asymmetry between Hg and H 4:

1. the significance level « is fixed in advance, usually at a rather small number
(e.g. 0.1, 0.05, and 0.01 are commonly used), and

2. then try to construct a test yielding a small value of g for © € Q4.

Example 7.2 (cont. Ex. 7.1 item 1 (LNp.3), TBp.330-331)

e Testing the value of the parameter p of a Bernoulli distribution with

10 trials. Let X be the number of successes, then X ~ B(10,p).

Hy:p=05 vs. Hy:p=0.7 " o
, —0—0—0—0-0-00—0-00 /I
e Different observations of X >

give different support on H 4 TGS SUHPIL O Hia

more extreme
X =T(Xy,...,X0) Hy
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— In this case, larger observations of X give more support on H4.

— Rejection region should consist of large values of X.

— The observations that give more support on H4 are called “more
extreme’ observations

e If the rejection region is {7,8,9,10}, then
a=P(X €{7,89,10}|p=05)=1—P(X <6|p=05) = 0.18.

e Set the significance level as 0.18.

— The probability of Type II error (i.e., §) is
P(X ¢{7,8,9,10} |p=0.7) = P(X < 6|p=0.7) = 0.35,
— and the power (i.e., 1 — ) is
P(X €{7,8,9,10}|p=0.7)=1—- P(X <6|p=0.7) = 0.65.

e Suppose that we are interested in testing

Hy:p=05 vs. Hy:p>0.5

and the rejection region is still set to be {7, 8, 9, 10}:
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— Note that 3, is a function of p:
Bp=P(X ¢1{7,8,9,10} | p ).
— power function = 1 — ,.
=l f,2lagp > Landl 0, >aap >0
- 1-8,=0asp—0.
*
—
1. Which hypothesis get more protection? What kind of protection?

2. Can the protection make P(Type I error) always smaller than
P(Type 11 error), i.e., a < fg for any © € Q47
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Definition 7.4 (test statistic, null distribution, critical value, TBp. 331 & 334)

e The test statistic is a function of data, denoted as
T(Xyq,...,X,),

upon which the statistical decision will be based, i.e., the rejection
region and acceptance region are defined based on the values of 7T'.

e The distribution of a test statistic under the null hypothesis is called
null distribution.

e If the rejection region is of the form {7" > o} or {1 < ¢y}, the number
to is called critical value, which separate the rejection region and
‘acceptance region.

T=T(Xy,...,Xn) hypotheses
Q1: How to find a
good test statistic? S Q
Q2: How to find the S T= éQ
s s s

critical value? >
AR “—___ based on a function of data, T'
RR T = test statistic

s 7577
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Example 7.3 (cont. Ex. 7.2)
In Ex. 7.2, LNp. 8, the original data Xi,..., X9 are i.i.d. from Bernoulli

B(p), the test statistics is X = Xj + - - - + Xy, and the null distribution is
Binomial(10, 0.5). The critical value can be set to be 6.5.

Question 7.6 (difficulty with level-a tests)

Different persons have different criteria of significance levels, and could come
up with opposite conclusions even based on the same observed data.

Example. test statistic: 7', and rejection region is of the type: T' < ¢,

= smaller values of T' give more support on H 4, i.e., cast more doubt on Hy

= on the other hand, larger values of 7' cast more doubt on Hy

= smaller values of T" are more “extreme” (Note. More “extreme” values
cast more doubts on Hy.)

pdf of T'under H, (null distribution)

p-value = the probability that a value of T°
that is as “extreme” or more “extreme”
than the observed value of T" would oc-
cur by chance if the null hypothesis was
true.

Area=p-valu

<« r—observed value of T'

Togs
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Note. If p-value is very small (i.e., Ty is a very extreme value), then either

Hy holds and an extremely rare event has occurred, or Hj is false.

relationship between p-value and a=P(Type I error)

a=20.1

Area = Q

o0 Toms

Tops < oo < p-value < 0.2 Tops > to1 < p-value > 0.1

Decision rule: Ty, € rejection region < p-value < o

Note 1. The rejection region depends on the value of «, while the p-value
depends on the observed value of T’

Note 2. It makes more sense to report a p-value than merely report whether
the null hypothesis was rejected or not.

- . Is p-value a statistic?

cho, p.14

4= Ao p-value = the smallest value of o for which
:é the null hypothesis will be rejected.

Cm———
-0.885 )

tp-value = TOBS
IR \Vhat if
Hy is composite, i.e.,
% contains more o
than one distribution? Aé/[\

Definition 7.5 (p-value)

-0.885
-0.885

Report the testing result in terms of the “observed significance level”:
p-value = sup, P(reject Hy on observing X = x or more conclusive|©).

Example 7.4 (cont. Ex. 7.2, LNp.8)
If we observed X = k, then the p-value is

PX > k[p=05).
— If we observe 9 successes then the p-value is 0.0107. (_,—
— If we observe 8 successes then the p-value is 0.0547.
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Question 7.7 (how to determine H, and H ;)

Note that there is an asymmetry between Hy and H4. How to determined

which of the two hypotheses should be placed in Hy?

Some guidelines. (TBp. 335-336)

1. It is conventional to choose the simpler of two hypotheses as the null

hypothesis, e.g. Poisson goodness of fit.

2. The consequences of incorrectly rejecting one hypothesis may be graver
than those of incorrectly rejecting the other. In this case, the former
should be chosen as the null hypothesis. e.g. screening new drugs.

3. The null hypothesis is often a simple explanation that must be discred-
ited in order to demonstrate the presence of some physical phenomenon

or effect. e.g. ESP : Hy : p = 0.25 must be conclusively disproved in order

to convince a skeptic that there is any ESP effect.
¢ Reading: textbook, 9.1, 9.2, 9.2.1, 9.2.2; Further reading: Hogg et al., 5.5
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* Neyman Pearson Lemma --- most powerful tests

Question 7.8

Among all tests with significance level a, what is the “best” test?

Definition 7.6 (uniformly most powerful test, TBp. 336)

For testing
Hy:©€Qy vs. Hy:0 €y,
a test is called uniformly most powerful (UMP) test

with significance level «, if V © € 24 the power of the

test is larger than (i.e., B is smaller) or equal to the

power of any other tests with significance level a.

» most powerful test for simple vs. simple hypotheses

Definition 7.7 (likelihood ratio, TBp.329)
e let X = (Xj,...,X,) have a joint pmf/pdf f, where f € Q = {fo, fa}.
e null and alternative hypotheses: Hy:fo vs. Ha:fa
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e likelihood ratio: fo(x)

a)
- We should reject Hy when fy(x)/fa(x) is large or small? Why?

Theorem 7.1 (Neyman-Pearson lemma, TBp. 332)

Suppose that the likelihood ratio test that rejects Hy when
fo(x)/fa(x) <c

has significance level o. Then any other test which has significance level o < «

has power less than or equal to the power of the likelihood ratio test.

Proof. (for continuous case) Let R' be the rejection region of the likelihood
ratio test, and 12 be the rejection region of any other test with significance
level a* < . Then,

fRTfO dx—QéZQé_:fE@(x)dx

and hence the difference of the powers is

Jui Ja@) do = [ fa@)de = [y g fa(@) do — [o g Sale) da
= fmé@(gj ) d — fR\RT cfol@)dz
R = ¢ Jp fo(@)dz — 3§ [ fo(x)dz 2 0.

S | Rt
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Example 7.7 (cont. Ex. 7.2 (LNp.8), TBp. 329, 330)
If X ~ Binomial(10, p) and consider testing

Hy:p=05 wvs. Hy:p=07
The likelihood ratios are
T 0 1 2 3 4 o 6 7 8 9 10
E(SE) .001 010 .044 .117 .205 .246 .205 .117 .044 .010 .001
f_A(iL’) .0000 .0001 .001 .009 .037 .103 .200 .267 .234 .121 .028
fo(@)/fa(x) | 1654 709 304 13.0 558 2.39 1.03 .44 .19 03 .03

and the likelihood ratio test rejects Hy for small values of fy(x)/fa(x) which
corresponding to large values of X.

Example 7.8 (TBp. 333)
o Let X1, X5,..., X, be iid. from N(u,0?) with ¢° known.

Ho:p=po vs. Ha:p=pa,

where g, 4 are given constants.

e Suppose the significance level is prescribed as .
e The likelihood ratio is

fox) e[ — g i (X — )]

o exp [2n X (po — pa)+npd—nug) -

fa®)  exp [ = 5 X (X — pa)?]
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e Suppose g — pta < 0 (s > o). Likelihood ratio is small < X is large.

e Thus, the most powerful test rejects Hy for

X > xg for some x.

e The Ty 18 chosen so that the test has the desired level a

Y—Mo xo—Mo)

=

o/vn_— _o/vn

Q:£(7>$01H0):P(X>950|N:Mo):P<

e Hence, solve To — Lo

o/

for xp, where z(a) is the 1 — o quantile of the N(0, 1) distribution.

o -: What if pig > pra (ie., pa < po )?

= z(«)

Why not just reject Hy when fo(x)/fa(x) <17

* UMP examples for testing certain composite hypotheses

Example 7.9 (cont. Ex. 7.8 (LNp.18), TBp.336)
o Let X1, Xo,..., X, beiid. from N(u,o?), o2 known.

H(()2) D= g VS. Hf) D> o

e In Ex. 7.8, for any particular simple alternative Ha: pu = pua (> po), the
UMP test rejects Hy for

X > Zo,
where z¢o does not depend on the value of 4.
e Thus, this test is also UMP for Hf): > [o.

Example 7.10 (cont. Ex. 7.9, TBp.336)

o Let X1,Xo,..., X, beiid. from N(u,o?), 02 known. Consider testing

H(()S) < pg VS Hﬁf’) D> -
e Claim: The test ¢*(x) which rejects Hy when

X >z

n
Uy

where z¢ is determined by:

a=P(X >wzo|p= po)

is an level-aa UMP test for Hé3) VS. Hf).
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e This follows from
L. ¢" is a level-ar test because for p < po,

X % Lo — K

P(X>wm|p) = P<g/f )

B B 0— M 0— Ko
- ‘I)(o/f> (ww)

2. ¢* is UMP because if there is another level-a test ¢(x) for testing

Hé).,ug,uov.s. HA D> o,

then Q is also a level-ar test for

Hé{z) D= Ug V.S. HS) D> o,

and ¢ is always less powerful than ¢*.

Plot of Hél) P = Ho VS. HS) 1= [A
P(RR|0)
- Eﬂ_(@ H((,Q) D= g VS. g . > [
against 0

H(()?’) s < o VS. HE’) D> o
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Definition 7.7 (test function, nonrandomized test, randomized test)
e For a (nonrandomized) test, its test function ¢(x) is

— a function defined on sample space S and
— taking values in [0, 1] such that

b = 1, if x € rejection region
=1 0, if x € acceptance region
e A randomized test function ¢(x):

— It has a form of:

1, if x € rejection region
#(x) =< 7, if x € boundry of rejection and acceptance regions
ﬁ, if x € acceptance region
where 0 < v < 1.
— When ¢(x) = 7, a coin, whose probability of falling head is 7, is
tossed and Hj is rejected or accepted when head or mppe_ars,
respectively.

Theorem 7.2 (significance level, power, and test function)




» UMP tests for one-parameter exponential family Chd, p23

Recall. A one-parameter exponential family has the joint pmf/pdf of the form
f(x|0) = exp{C(8) T(x) + d(0) + S(x) } La(x),
where the set A is independent of 6.

Theorem 7.3 (UMP test for one-parameter exponential family, one-sided hypothesis)
e Suppose X = (Xy,---,X,,) have a joint pdf/pmf f(x|f) which has the

form of the one-parameter exponential family.
e Suppose that C'(0) is a strictly monotone

increasing function of .
e Then the level-a UMP test for testing

Hy: 0 <6, (OI'H()IQ:H()) vs. Hy:0 >0,

e The c and v are determined by
Ey,(¢) = P(T(X)>c|f=6) +7P(T(X) =cll=6) =a

Proof. The proof follows the same argument as in Examples 7.8 to 7.10.
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Question 7.10
What if we are interested in Hy : 0 > 0y vs. Hy : 0 < 6,7
0" = =0 Hy: 0" < —0gvs. Hy: 0" > —0, | C*(0°) 1, as 6" 1

Q**(Q_*) = =C(=0") 1, f T*X)>cr e TX)< =
) = 1) | yx)- { 7 i TX) =¢ «TX) =-c
0, if T"(X)<c*&T(X)>—c

o Let X = (X4, - ,X,) beiid. from B(1,0), 0 € (0,1). Then, the joint

pmf is

e Here, C(0) = log (ﬁ) is a strictly increasing function of 6. =

e The level-a« UMP test for m ™
d Xi=c—1 D o Xi=c+1
Hy:0<0, vs. Ha:0>6 i=1 =1

is given by 1, i X > /
L . %_1 1 = G AR
(b(X) = Y if Zi:l XZ =G, S RR
7 7

0, if Zi:l X; <ec.
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e The c and v are determined by
Eg,(¢) = P (ZL X; > L] 0 = 90)+1P (ZL T = L‘ 0 = 90) =0,
where )" | X; ~ Binomial(n, ).

+ Reading: textbook, 9.1, 9.2, 9.2.3; Further reading: Roussas, 13.1, 13.2, 13.3

« UMPU tests (for one-parameter exponential family)

Question 7.11
Does a UMP test exist for two-sided alternative hypothesis?

———— ¢:a “good” test for Hy:0 =0y vs. Hy:0# 0o
-: How should the power function of ¢ look like?
— ¢1: UMP for Hy:0 =0, (or 0 > 06y) vs. Hy:0 <0y

¢o: UMP for Hy: 0 =0 (or 0 < 0y) vs. Hy:0>0
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Definition 7.8 (unbiased test)

A level-a test function ¢ for Hy : © € Qq versus Hy : © € ()4 is said to be
unbiased if Fg(¢) satisfies

E@(gb) <aif® €y and E@(gb) > aif © € Q4.

>

an)

Theorem 7.4 (UMPU tests for one-parameter exponential family, two-sided hypothesis)
e Suppose X = (Xy,---,X,) have a joint pdf/pmf f(x|0) which has the

form of the one-parameter exponential family.

e Suppose that C(f) is a strictly monotone increasing function of 6.

e Null and alternative hypotheses:
Hy: 60, <0<60y vs. Hy:60<6b;0r0 >0,
e The level-a uniformly most powerful unbiased test is given by
1, if T(X) < ¢ or >y
dX)=¢ 7 fTX)=¢, i=12 @
0, fa<TX <o

e The ¢y, co and 7y, 2 are determined by

Eg, [¢(X)] = Ep, [¢(X)] = a.

B@)
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e Note. When 6; = 65,
— Null and alternative hypotheses:

Hy: 60 =0, against Hy : 0 # 6,
— The form of the UMP unbiased test is the same as (1) in LNp.26.

— The constants ¢y, co and 7q, 7, are now determined by

and
Ey, [9(X)T(X)] = Ep, [¢(X)] Ep, [T(X)] = a By, [T(X)].

Example 7.12 (UMPU test for normal mean)

o Let X = (Xy, -+, Xy) beiid. from N(u,0?), where ¢ is known.

e The joint pdf is np _ 2nu? o T
— f(x|p) = exp { g —25—012 —nlog(\/27r)}.

which belongs to one-parameter exponential family.
e In this case, C(n) = np/o?, which is an increasing function of p.

e Null and alternative hypotheses:

Hy:p=po vs. Ha: p# o
where pg is a given value.
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e The level-a UMP unbiased test is given by
- 1, if X< cLor > ¢y,
M N 0, if < X < Ca.

e The ¢y, cy are determined by
E,[o(X)] =a, E,[¢(X)X]

e Further derivation:
— The ¢(X) can be expressed as

4(X) 1, ifwg_”—(ﬁ<c_’10r > cy,
— o if <l
where ¢} = v/n(c; — puo)/0.
— Because the pdf of N(0,1) is symmetry about 0, ¢; = —d.
— Therefore, we have
{ 0

a by, (Y)

/
<£2.

) 2] L i [E=w)/e/m)] >e

0, otherwise.
— The constant c is determined by P(x3 > ¢) = a since under Hy,

(X w)/e/VD)] ~ X




Ch9, p.29
Example 7.13 (UMPU test for normal variance)

o Let X = (X3, -+, X,,) be iid. from N(u,c?), where p is known and o
is unknown. .

e The joint pdfis f(x|o) = exp {__ Z(% — )2 — nlog \/2#}.

202 4
e ]

which belongs to one-parameter exponential family.

e Here, C(0) = —1/(20?) is an increasing function of o.

e Null and alternative hypotheses:

Hy: 0=09 vs. Hjy: 0 # oy

e The level-a UMP unbiased test is given by
1, £ T=>70 (Xi—wu)3?/og <cior > e,
- .

0, otherwise.
e The ¢, ¢y are determined by
EO'O 1 _ fccl2 Ll -4

and
Eq [(1_ fccl2yfn )dy = 00(1_¢) Ea_o(z):ﬁ(l_a)7
where f,(y) is the pdf of the x; distribution.
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e Further derivation:

— It is convenient to use the identity y fu(y) = n fri2(y) - | Exercise. |
— Rewrite the second condition as
Sl fare(y)dy =1—a.

— Unless n is very small, or gy is very close to 0 or oo, the equal-tails
test given by

is a good approximation to the UMPU test.

+ This follows from the fact that x; distribution
tends to Normal distribution for large n by CLT.

Definition 7.9 (monotone likelihood ratio)

We say that the likelihood function £(#,x) has monotone likelihood ratio
(MLR) in the statistic 7'(x), if for any 6; < 65, the ratio

£(01,%)

L(02,%)

is a descreasing function of 7T'(x).
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Theorems 7.3 and 7.4 still hold when we replace the one-parameter exponential
family by a family of pdfs/pmfs that has MLR property in a statistic 7.

Theorem 7.6

Let X = (X4, ..., X,,) have a joint pdf/pmf from the one-parameter exponential

family:

f(x]0) = exp{C(0) T(x) + d(8) + S(x) } La(x).
Suppose C(0) is increasing. The likelihood function £(6,x) has MLR property
in T'(x). Suppose C(6) is decreasing. The £ has MLR property in —7T'(x).

¢ Further reading: Roussas, 13.4, 13.5

* (Generalized) likelihood ratio tests

Question 7.12
UMP/UMPU tests may not exist, and even though exist, may be difficult to

derive. Any other procedure for finding a good/reasonable test?
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Definition 7.10 (generalized likelihood ratio test, TBp. 339)
e Suppose X = (Xq,..., X,,) have a joint pdf/pmf f(x|0), where 6 € Q.

e Consider testing the hypotheses
Hy:0€Qy vs. Hy:0€ey

where 5, Q24 C Q, Qo Ny =@, and 2 = Oy U 4.
e The (generalized) likelihood ratio (GLR or LR) is given by

maxyco, £(6,X)

M) =

maXpeq , £<07X) 7

where L£(6,x) is the likelihood function.
e Small values of A* tend to discredit Hy.
e For technical reasons, it is preferable to use

maxycq, £(6,x)

(note: A = min(A* 1)).

il =

mas,o £(6,%)

e Small values of A tend to discredit Hy.

e The rejection region of a GLR test consists of observations of X that
correspond to small values of A.




Example 7.14 (GLR tests for normal mean with known variance, two-sided, TBp.339-340)

e Suppose that Xi,..., X, are i.i.d. from N(u,0?), where o° is known.
e Consider the hypotheses Hy:p=po vs. Ha:p# po.
Then Qo = {po} , Qa = {p: p# po} , @ ={—00 < p < oo}
e The LR statistic is
A = (V2mo) " exp [_# Z?:l (z: — ﬁQ)Q]
T MAX 0| (V210) M exp |50 DL, (7 — p)?]]
_ (V2m0) " exp [~ 5pm Doy (%0 — pio)?]
(V2ro) " exp [~k S0y (71 — T)7)
1 - 2 < —\2
= €Xp (‘5(;2' |E($i—uo) ”;(%*fﬁ) ])
n
= exp [—27‘—2(5 — NO)Q]
e Thus the LR test rejects Hy for small values of A, i.e., large values of
(Z — po)*
=2 g LA = e
“2log(d) = — n
Ch9, p.34
e Under Hy, X ~ N(pg,0?/n) and —2log A ~ xi. ‘L
e Thus, the LR test rejects when 0 X
7 B 9 -X— . af2 /
—(——;-2—/—':—192— > x3(a) or equivalently ]——;7\/—%9—| > z(a/2).

Example 7.15 (GLR tests for normal mean with unknown variance, two-sided)

o Let Xy,..., X, be iid. from N(u,c?), where y and o are unknown.

e Consider the hypotheses Ho:p=po vs. Ha:p o

Then o = {(po,2) : 0> 0}, Qa = {(p, @) - pp # o, 7 > 0},
Q={(y,0): —00 < u<o0, g>0}
e The LR statistic is
maXyo<oo (V2ma) " exp [_% 2?21 (8 = @)2]
MAX_ o< oo, 0<o<os [(V2TE) T €XP [~ 557 D iy (% — p)?]

V2m60)=" exp(=n/2) —n/2
V276,)=" exp(—n/2)

VoY e

= (ab/at) =

where 63 = > ¢ (X — @)2/H and (Af_% =i (Xi = X)*/n.
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e Now,

A= {l 4 (X — N0)2/6%] -

e Thus the LR test rejects Hy for small values of A, i.e., large values of

_ 2
X — fig
5 :
e Under Hy, \/n—1(X — po)/61 ~ tp_1.
e Thus, the level-a LR test rejects Hy when

vaX :—’“—@ >t 1(a)2), ., ;
Vo X=X/ =V — A v N

~tapn 0t

where t,_1(a/2) is the (1 — a/2)-quantile of the ¢, _; distribution.

Question 7.13

In point estimation, the asymptotic distribution of MLE tends to Normal when

sample size is large enough. The property is useful when the exact distribution
of MLE is difficult to find.

Q: Similar result exist for the null distribution of GLR statistic?

Theorem 7.7 (large sample theory for null distribution of GLR statistics, TBp.341)

Under smoothness conditions on the density function, the null distribution of
—2 log(A)
tends to a X2m distribution, with degree of freedom
m = dim (Q) — dim (Q),

as the sample size tends to infinity.

(Note. dim(Q2) and dim(€)y) are the dimensions of free parameters under
Q and €, respectively. For example, in Ex. 7.14, LNp.33, dim () = 1,
dim (Q) =0,m=1-0=1.)

Proof. The proof is based on a second-order Taylor expansion of —2log A.

+ Reading: textbook, 9.4; Further reading: Roussas, 13.7

 Application of GLR test I --- tests for multinomial distribution, goodness-of-fit tests

Example 7.16 (GLR test for multinomial distribution)
e Data: (Xi,...,X,).
Consider an experiment which may result in m possible different out-

comes. In n independent repetitions of the experiment, let X; be the

number of trials which result in the 7th outcome.
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e Statistical Modeling.

— (X1,..., Xm) ~ multinomial(n, p1,...,p,), where > " p; =1,
and the pmf is:

n!
E(X1 = L1y, Xy :$m) = —',——,le—l"'pmma
L1t T —

where > 70| x5 = n.

— The parameter space is
Q:{E: (p177pm) - Pi 2077':17277m7 Z:n:lpz: 1}
e Problem.
We suspect that the p has certain specified values py = (P10 - - - Pmo),
where pig, ..., Pmo are given values.

e Problem formulation.
We can formulate this as a test with null and alternative hypotheses:

ﬂ:gé%:{(plo,...,pmo)} VS. ﬂZBEQ\QO
e [ikelihood Ratio Test.

— _nl i, .. a5 n! T Tm
A= 2ot 210 Pmo™ _ Ziteamt P10 Pmo
- ! ~ Tl A ap 9

n! S N— ce m

where p; = x;/n is the MLE in Q.

Ch9, p.38

Therefore,
A=TI", (%)i and —2logA =2>"" x;log ( R%O ) :
— H, is rejected if

—2log A(Xy,..., Xn) > c.
— The constant ¢ can be determined by the fact
that under Hy,

—2log A 2, o,

(i.e., —2log A is asymptotically x? , distributed when n — oo)

dim(Q?) — dim(Qp) =(m—-1)—0=m — 1.

because

Question 7.14 (examine distribution assumption in statistical modeling = goodness of fit)
e In statistical modeling, we often see the statement:

Xi,...,X, areiid. from a distribution with cdf F(:|©).

e Suppose that the independent and identical assumptions are true, can
we examine (using data) whether the distribution assupmtion (i.e.,

F(:|©)) is reasonable?




b

2so E [ ch9, p.39

Lo Criat= ~ alue
0 is true 0 is albe

e Observe data Xi,...,X,.
o Let O;,i=1,...,m, be the number of Xy,..., X, that fall in (¢,_1,].
e Then, O,

..., Op ~ Multinomial(n, py, . . ., Dm),

where p; is the “red area” in the graph when {Jq is true.

Example 7.17 (GLR tests for goodness-of-fit, TBp.341-342)

e (2: the vector of cell probabilities p = (p1,...,pn) that are free except

for the constraints that p; >0, > " p; = 1.
— Note that dim(Q)) = m — 1.

o [y () CQ,
% ={p©) : p(©) = (po(©), ..., Pm(O))}

is the vector of cell probabilities from F'(-|©), where © is a k-dimensional

unknown parameter, i.e., p;(0) = F(£]|0©) — F(t;_1]0).
— Note that dim(€) = k.

Ch9, p.40

e Goodness-of-fit tests judge plausibility of the models in Hj relative to
Hy: Q\Qp using data Oy, ..., On.
e Likelihood ratio test
— The LR statistic is

m

maXPGQO [#‘O'rn' p1(®)0_1 c D ( —i| ﬁ(

A=
-

m_aXpeQ (01!O2v O, ! pl—' : 'pm— 1=1

\_/

where

* @_ is the MLE of ©, and
* P1,P2, - .., Pm are the unrestricted MLE, i.e.,

pi=oi/n,i=12,...,m

— Then, since O; = np;,
= np; - O;
—2logA =2 n,-log(—A)—Q Oi10g<_>7

where
* O; = np; is the observed counts, and
* I = np;(©) is the expected counts.

— Hj is rejected if —2log A > c.
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— To decide the constant c, since
dim(Q2) — dim(Q) =m —k — 1,
under Hy, the large sample (i.e., n is large) distribution of —21log A
is X2 . g e, c=x2_, 4(a).

Question 7.15

Compare e the )y and 2 in item 3, LNp.5, and

e the {)y and 2 in Ex.7.17, LNp.39.

Are they different? What and Why different?

Example 7.18 (Pearson’s Chi-square test, TBp.342-343)
e For the same HO VS. HA and data Oq,...,0,, in Ex.7.17, LNp.39,

Pearson’s chi-square test for goodness of ﬁt

— Hy is rejected if X2 > c.

— Under Hy, X? N Y

ch9, p.42

e Under Hy, the X? statistic is asymptotically equivalent (I » — «)
to the LR test statistic given in LNp.40 because:

—2logA = 2”2}% log< A)>

:0+Z ) +oo

~ Q+X_2

— by Taylor expansion of zlog (x/x) about xg

f(x) =xlog(x/xg) =0+ (x — x) + %xio(aj_%)gl

— and, the fact that when Hj is true and n is large, p; ~ pz(é)

e Note: Pearson’s chi-square test is more commonly used than the LR

test, since it is easier to calculate.
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1. There is a distinction between Oy, ...,0,, and X1, ..., X, (especially
for continuous case)

® Xl,...,XnéX(l),...,X(n) :>01,...,Om

® Ol,...,Om:>X(1),...,X(n)le,...,Xn

2. The MLE of 6 based on Oy, ..., 0O, can be different
from the MLE of 8 based on Xi,...,X,.

3. Different choices of (t;_1,%;],i=1,...,m, can

cause different results. (Note. The choice
should not depend heavily on observed data.)

4. It is recommended that O;, E; > 5.

Example 7.19 (Hardy-Weinberg Equilibrium, TBp.343-344, or Ex.6.15, LN, Ch8, p.24)
e n = 1029, the cell probabilities are (1 — 0)?, 20(1 — 0), 82 under the Hardy-

Weinberg Equilibrium model and the MLE of 6 is 6 = 0.4247.

Ch9, p.
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Blood Type
M MN N
i 342 500 187
340.6 502.8 185.6

IS

e Consider the test:
Hy: (p1(8),p2(0),p3(0)) are specified by the Hardy-Weihberg model

Ha: (p1,p2,p3) do not have that specified form

e Pearson’s chi-square test:

1. Pearson’s chi-square test statistic is
(0;i—E)*> b &

X? = E e i under Hy.

1 —_—

M

2

2. Set o = 0.05. Thus, reject Hy if the value of X? statistic exceeds
3.84, the 95%-quantile of the X_% distribution.

3. Since

42 — 340.6)2 — 502.8)2 187 — 185.6)2
X2:(3 340.6) +(500 502.8) +(87 85.6) - 0.0319,

T 340.6 502.8 185.6
Hj is not rejected.
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2. Why a = 0.057 Will conclusion be different if we choose other a7
The p-value is more useful:

p-value = Py, (X* > 0.0319) = P(x7 > 0.0319) = 0.86.

If the null model were correct, deviations this large or larger would
occur 86% of the time. Thus, the data give us no reason to doubt
the null model.

e [ikelihood ratio statistic is f E

—2logA =252 0;log (%) — 0.032 (=~ 0.0319 = X?).
The two tests leads to the same conclusion.

Note: A = exp(0.032/(=2)) = 0.98 =1 (0 < A <1). Hardy-Weinberg
model is almost as likely as the most general possible model.

Example 7.20 (Bacterial Clumps, TBp. 344-345)

e In testing milk for bacterial contamination, 0.01mL of milk is spread over
an area of lem?. 400 counts of bacterial clumps:
number per lcm2| o 1 2 -.- 910 19
Frequency |56 104 80 --- 3 2 1

e Hy: The data are from Poisson P())

Ch9, p.46

e MLE for the A of Poisson model (Hy) is

. 1x104+---+1 1
A:Qx@#—_xi%— —|~_9><_:2.44,
400
giving the expected frequencies £; in the following table.
number per lem? | 0 1 2 - 6 >7
O; (Obs. freq.) 56 | 104 80  --- 9 20
E; (Exp. freq.) |[34.9] 8.1 103.8 --- 10.2 | 5.0
Component of x? [|12.8] 42 55 --- 0.14 |45.0

e The chi-square statistic is X? = 75.6 > 18.55 = x§(0.005). So, p-value
< 0.005 and the goodness of fit test rejects the Poisson model (Hj).
e 1. bacteria held by surface tension on
lower surface of the drop may adhere

to the glass slide on contact.
2. film not of uniform thickness.

Example 7.21 (Fisher’s reexamination of Mendel’s data, TBp. 345-346)

e Mendel crossed 556 smooth, yellow male peas with wrinkled, green female

peas.
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Type Observed Count | Expected Count Probability
Smooth yellow 315 312.75 9/16
Smooth green 108 104.25 3/16

Wrinkled yellow 102 104.25 3/16
Wrinkled green 31 34.75 1/16

e For the data,

—9lAag A — OT‘fl.
ALUE’DIL— A'Z__Jz 1

i = @ (=S ) =
less than 0.9. (Peason’s statistic is X2 = 0.604.)
e Fisher pooled the results of all of Mendel’s experiments:

(O./E.)
\Ha/ )

og
3, the p—value is slightly

— N R1R
= U.010,

C>|c>

— Two independent experiments give chi-square statistic 11, 15

with p and r degrees of freedom under Hy.
— Under Hy, T7 + 15 ~ X}%—{-r'

— Adding all the chi-square statistics for all the

independent experiments gives p-value=0.99996!

e The best explanation is perhaps that Mendel continued experimenting

until the results looked good. The statistical analysis here assume n is

fixed before data are collected.

Ch9, p.
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e Dorfman (1978) studied the goodness of fit of the intelligence scores of

fathers and sons to a normal distribution (Hy) using Pearson’s chi-square

test. The p-values were greater than 1 — 10~7 and 1 — 1076, respectively.

+ Reading: textbook, 9.5

 Application of GLR test II --- Poisson dispersion test

Question 7.16

e Recall the insect counts example (Ex. 6.31, LN, Ch8, p.68), the Poisson
model did not fit well. 0> A3 He—S——>
o P oisson model assumptions: \XT\XT\X/Z C .. \XTN iid. P())
1. The rate is constant. 4 4 4 4 N
2. Counts in one interval A& & & + * « & P()\)
are independent of counts in disjoint intervals.
e For counts of insects on leaves, some assumptions may be violated, e.g.,
— Leaves are of different sizes and occur at various
locations on different plants. Hence, 1. may fail.
— If the insects hatched from eggs that were deposited
in groups, there may be clustering of the insects. Then, 2. may fail.
e How to examine whether the rate is a constant for the insect data?
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Example 7.22 (GLR test for Poisson dispersion, TBp. 347-348)

e statistical modeling for solving the question:
- X~ P(N),i=1,...,n.
Q={(A,..., ) : N >0,i=1,...,n} = dim(Q2) = n.
— Null hypothesis Hy: the comu'e Poisson with common parameter A.
Qg = 10 ooy ))& S =000 =y = A = dim(£) = 1.
— Alternative hypothesis H4: the counts are Poisson with different rates
ALy A2,y Ap, 16, 24 = Q\ Q.
e Under {2y, MLE of A is A=X.
e Under {2, MLE of \;’s are X;’s, denoted by F YD SR
e Thus the likelihood ratio is

T 5 e
A= H?ZIA < j/ll?z' :ﬁ<§_>x_%efb‘i“57

Diae el =\
—2logA = 22[&@ <%> + (zi —f)] =2 sz log (%’)
=1 =5 i—1
~ izizl (zi — )" = =

Ch9, p.
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— 62/T: measure of clustering

— Null Poisson model: variance=mean.

— Alternative Poisson model: variance>mean.

— (asymptotic) null distribution: Xz_—g_

e Poisson dispersion test (for goodness-of-fit)

— has high power against alternative that are
overdispersed relative to Poisson,

— often used when there is not enough data
to be accumulated into several cells.

Example 7.23 (Asbestos Fibers, Poisson dispersion test, TBp. 348)

e For the data in Ex. 6.4, LN, ChS8, p.9,

mom = o 0 (e — ) = 2688 —2legi =27 mslleg (2 = 211
o dim(Q2) — dim(Qy) =23 —-1=22

e p-value for 27.11 is 0.21. So there is not enough

evidence against the null hypothesis.

e Note. Sample size 23 is small and the test may have low power.




Example 7.24 (Bacterial Clumps, Poisson dispersion test, TBp. 348-349)
e For the data in Ex.7.20, LNp.45,

: 52 400 x 4.59
T=244,  52—=459 = 2 _ZTTXZ07 597
z 2.44

e The p-value is:

né2 8 399  752.7 — 399
value = P| — >752.71Hy | =P | =X >
L (X ———0) («/2><39 = \/2><399)
~ 1-®(125)~0 (normal approximation to x2,_sqe)

e Thus, there is almost no doubt that the
Poisson distribution fails to fit the data.

Question 7.17

e Compare Ex. 7.20 and Ex. 7.24. They test the same null hypothesis
Hy. Why are the test statistics in the two examples different?

— In Ex. 7.20,

Q7_ﬁ = {X, can be any discrete r.v.’s} 27 20
Ches $27.24
Qro1={Xi ~ P(N),i=1,...,n.} >
cho, p.52

e Is it appropriate to use the test statistic in Ex. 7.20 to test the Hy and
H, in Ex. 7.247 How is the opposite?

e For same data set, which of the tests in the two example would be
expected to have smaller p-value? Why?

Note. If one has a specific alternative hypothesis in mind, better power can
be obtained by developing a test against that alternative rather than against
a more general alternative.

+» Reading: textbook, 9.6

* Some concerns about hypothesis testing

° -: Suppose modeling is correct. For

H()I 9:90 VS. HAZ 97&90
when Hj is not rejected, does it mean we accept € = 6y?

o -
=

e.g: Yi,...,Y, ~ N(u,0?), o known,

il

1 =~ 0, but not zero, reject Hy if
;;\—/% oy ‘7‘ > c % = ¢4/ Var(Y).
Consider the two cases:

(i) n=10, and (ii) n=10000.
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Note: this is why we prefer not to say
“accept H,)”,
“sample size is not large enough to reject H,”,

“fail to reject H,”

but rather

or

e When sample size n is large enough, it is very possible that almost every

tests are significant (i.e., Hy rejected).

p1 = 28°C,
average temperature today: 2 = 28.001°C,

M1 — ,LLQ = 0 001° C
Test Ho : pip —p2 =0 vs. Hy : p1 —pa #0. The null gy = pp will be

example: average temperature yesterday:

easily rejected if n is very large.

e Statistical significance may be inconsistent with practical /physical signif-

icance. (example?)

- .: what causes the inconsistency? To claim significance,

different
statistical standard < > physical standard

— for datasets with large n, easy to get statistically significant results

for 0;’s (e.g., every Hy :6; = 0 rejected). But, the magnitudes of

some 6;’s may be small (i.e., 0; ~ 0) = not physically important.

Ch9, p.54

* duality of confidence intervals and hypothesis tests

Example 7.25 (Normal mean, TBp. 337)

o Let Xy,..., X, be iid. from N(u,0?), where yu: unknown, o*: known.

e Null and alternative hypotheses:
Hy:p=po vs. Ha:p# o
e Test statistic and rejection region: rejects H for
Y _ ;|

—_— N e
|/). l,l/ol — L)

The xy is determined by

P(|X—u0}>x01@):g = I = ? z(a/2).

/n

e Thus, the test accepts Hy : u = pp when

X — o < % 2(a)2).

& P(AR|Hp) =1-a.

= P(Y——% (a/2)<@<7+—%z(a/2)

u:uo) =1 —a.
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e On the other hand, a (1 — ) x 100% con-
fidence interval for s

T (test statistic)

A

1 confidence interval |

X — %z(aﬂ), X—i—%z(a/Q)]

-7
\
\
\
o
@ 1
[l

e Thus, g lies in the (1 — ) x 100% confi- \\
dence interval if and only if the level-ar test acceptance
ts Hy : 0 = wo. region of
accepts Ho : pu = pio e
In general, H.: 020,

6 : parameter of a family of distributions
Q : the set of all possible values of f (parameter space)

Theorem 7.8 (TBp. 338)
Suppose for every 6y in 2, there is a level-a test of the hypothesis

H()IQZQO VS. HAIQ#HO
Denote the acceptance region of the test by AR(6y). Then the set

cx) ={t|xcarp}

is a (1 — a) x 100% confidence region for 6.

Proof. First note that Cho, p.56
P(X € AR@®)|0=0,) =1-a

This implies that
P(%GC(QQIHZHO) =P(;(_6AR(90)| 9:90) =1—a.

Theorem 7.9 (TBp. 338)
Suppose C(X)isa (1 — a)x100% confidence region for §. Then an acceptance

region for a level-« test of Hy : 0 = 6 is

AR(6o) = {_)_(__ ‘90 e O(X) }

M’P(XeAR(eg)l_e_i_@)=P(9060(X)|9=90>=1—O"

Note.
e Theorem 7.8 says that a (1 — a) x 100% confidence region for € con-

sists of all the values of 0, for which Hy : 6 = 6y will not be rejected at
level a.

e Theorem 7.9 says that the nlll hypothesis Hj : 6 = 6 is accepted if

0y lies in the confidence region.
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Example 7.26 (Normal variance)

o Let Xy, -+, X, be an ii.d. sample from N(u,c?), where y is known
and ¢ is unknown.

e The acceptance region of the level-a UMP unbiased test for

Hy:0=09 vs. Hp:0 # 0y

< 2?21(?_M)2 SXEL(OK_/Q)

is approximately

Xn(l — a/2)

e [t is equivalent to
> i (X — 1) < 42 > i (X — p)?

C2) RS TEi-ap)

e Therefore, a (1 — a) x 100% confidence interval for o2 is
Do (X —p)® 2L (X — )
xala/2) ' (A —a/2)

e a good test < a good confidence interval (region)

e UMPU test & UMA (Uniformally Most Accurate) confidence interval
+ Reading: textbook, 9.3

ch9, p.58
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 Test for normality

Question 7.18

“X1,...,X, are i.i.d. from N(u,0?)” is a very popular assumption in statis-
tical analysis. How can we test the goodness of fit to the normal distribution?

2 Pearson’s chi-square (or GLR) test for goodness of fit. In order
for the limiting distribution to be chi-square, the parameters must be
estimated from the grouped data. (Chernoff and Lehmann, 1954).

Departures from normality often takes the form of skewness or asymmetry.

A goodness-of-fit test can be based on the coefficient of skewness for

the sample:
n N No(w\aQ
NETNETE N
1 —

83

Reject the null hypothesis that X, ¢¢¢, X,, is a sample from a Normal
distribution for large values of jb,j.

Symmetric distributions can depart from normality by being heavy-tailed
or light-tailed or too peaked or too flat in the center. Thesis forms of
departures may be detected by coefficient of kurtosis for the sample:
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= Dy (X X)* .

4

S

2 Linearity of the normal probability plot can be measured by the correlation
coefficient r of the normal quantiles and the ordered observations. The
test rejects for small values of r.

2 Sampling distributions of b, by, and r under normal model can be ap-
proximated by simulation.

+ Reading: textbook, 9.9

» Some graphical methods for accessing goodness of fit

Recall: the 3" step in the procedure of statistics --- Data Analysis
 numerical methods
» estimation (point estimation & interval estimation)
» hypothesis testing
= accurate conclusion
= but only based on one (or several) numbers
* graphical methods
» offer intuitive perception and various information
» (could bring) divergent conclusions

. ch9, p.62
* Hanging rootograms

Definition 7.11 (hanging histogram, rootograms, chi-gram TBp. 349-352)

Plot differences between the histogram (i.e., observed counts, O;) and ex-
pected counts E;:

Histogram Hanging histogram

20 pdf o 4
L z B
15 N(X, 8D 2
10 (1]
5 -1
0 -2
()
Hanging rootogram Hanging chi-gram
[ 5
1.0 g-
[ 2
0.0 1
R 0
-1
10t L

(© (d)
Figure (a): histogram — roughly bell shaped
To examine carefully, if the jth interval is [z,;_1,z;], the probability
that an observation falls in it is p; = ® ((z; i 2)/6)i ®((zj—1i T)0)
under the normal model (u, o estimated by Z ,5).




Ch9, p.63

Figure (b): hanging histogram of the differences:
n; (observed count) j n; (expected count) , where n; = np;

Var(n;i n;) = Var(n;) (ignore variability from 7;)
0 1 = 0 1 2
= npi(Li p)=n| i i 5
Ya np; (when p; is small)

=) the cell variances are unequal

Theorem 7.10 (variance stabilizing transformation, TBp.351)

Let X be a random variable with mean p and variance o = o%(u). Let
Y = f(X), then

Var(Y) % Var(X)[f (W)]* = o™(n) ¢f'(1)”
If f is chosen so that o?(u)f’(u)? is constant, the variance of Y will not

depend on p. Such an f is called a variance stabilizing transformation.
P

A

Figure (c): hanging rootogram showing = n;j +/7;.

Applying the variance stabilizing transformation to this case:
under H, (i.e., the model is correct),

Ch9, p.64

E(n;) = np; = p

Var(n;) Yanp; = o*(p

Then p[f'(1)]? is constant if f(x) = 2 o
B m) %P g
Va/r’(p n;) Yal/d.

and

Note that in Figure (c), the deviations in the center were down weighted
and deviations in the tails were emphasized.

Figure (d): hanging chi-gram plot, a plot of the components of Pearsons
chi-square statistic: i 1y

n.
j
since, neglecting the variability in n;, Var(n; | n;) Yanp; = nj, so

Var (nj : Anj> Val.
"

: What more information can you obtain from the plots than a
goodness-of-fit test?

% Reading: textbook, 9.7
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* Probability Plots
Question 7.19
pdf/pmf 27

2 histogram , . cdf

Definition 7.12 (empirical cumulative distribution function, TBp. 378)

x1,xa2,...,T, : a batch of numbers ) a realization of random variables
Xi,...,X, that are i.i.d. with cdf F'.

empirical cumulative distribution function (ecdf) is

F.(x) = %(#wz cx) ) an estimate of F'(z) = P(X - «x)

2 Let (1) w2 © ¢¢¢- x(,) be the ordered numbers of z1, ..., z,, then
0, if x < Z(1)
F.(x) = %, if 2y © © < T@qr), wherek =1,2,...,nj 1
{ 1, ifx, Z(n) tor p—
1 n 8 F.(X) —-—-—
or Fn(l’) = E Z I(_oo,x](xz) Al :_____—
i=1 :

Cumulative frequency

4r -

where [ is the indicator function:
1 if X, =z N -
I(_oo"”](Xi) - { 0 if X, >«x = I

0 ——1__I—L.—I_WJ—L—L—L
62.8 63.2 63.6 64.0 64.4
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2 I(—o02)(Xi), 9 =1,2,...,n are independent Bernoulli random variables.
Thus, nF,(x) is a B(n, F(z)) random variable.
1
E[F,(z)] = F(z); Var[Fu(z)] = ~F(z)[1i F(z)]
F,(z) unbiased, has maximum variance at the median of F.
Question 7.20

How to examine by graph whether F),(z) is similar to F(x)?

1.0 - 1100 |
4_

1000 [

Cumulative frequency




Definition 7.13 (probability plot, TBp. 352-354)

2 Suppose that it is hypothesized that X follows a certain distribution
F'. Given an i.i.d. sample X;i,..., X, » F, plot

k
F(X
(X)) versus ——)
or equivalently 1
X)) Vversus F! ( ) .
n+1

2 Note that we are plotting the ordered observations (which may be
viewed as the observed or empirical quantiles) versus the quantiles of
the hypothetical distribution.

2 arationale of probability plot: If X is a continuous random variable
with a strictly increasing c.d.f. F'. Then Y = F(X) has a Uniform(0,1)
distribution

PY -  y)=PF(X) y)=PX - F(y)=FF )=y

for 0 <y < 1, and .

n+1

E(Yw) = E(F(Xw)) =

Ch9, p.68

2 probability plot for location-scale family. Suppose F' is of the
f .
orm FN,J(ZE) e <£U| /L) ,

o
where p is the location parameter and o is the scale parameter. Plot

Xk i k
M against G_]‘
o n—+1

or plot

, _ k
Xk against G ! (n+ 1) :

If the model were correct, the result would be approximately a straight
line: 3
X(k) % O'G_l <n—+1) + M-

A slight modification uses E(X)) instead of G™* (niﬂ) But it can be
argued that

k k
E(X(k)) %FM_,; (?) YaoG™! (n——|—1> +

n

so this modification yields very similar results to the original procedure.
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2 probability plot for grouped data Suppose the grouping gives
to, ¢¢¢, t,, for the bin boundaries of the histogram. In the interval
ti—1,t;) there are O; counts, ¢ = 1,¢¢¢, m. Denote the cumulative

frequencies by N; = >7_ O;. We plot
N ﬂﬂ]:_
t; versus G! (—‘7), j=1,¢¢¢, m.

n-+1 'I ’ H:j
2 Caution

— Probability plots are by nature monotone increasing. Some experi-
ence is necessary in gauging “straightness”

— Simulations are very useful in sharpening one’s judgment.

% Reading: textbook, 9.8, 10.2.1




