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Lecture Notes

Ch8, p.64
Definition 6.20 (efficiency, efficient, asymptotically efficient, TBp.302)
@ The efficiency of an unbiased estimator 9 of 0 is 2 wnsistent(8.2>6)
T =>a5ymptotcca“y
&F) [reuative afunch‘on I/nlx, (0) 1 unbiased (E(6:)>
' e‘%? o (0) Varg(8)  nlx, (0)Varg(d) | * imenthestiini)
0 X 0 tas® ~ of !
g‘le?fe(’w li #{ o< ef?ew“l — ' mrea
An unbiased estimator whose variance achleves the = MSE Svar
lower bound is called efficient. {tm effe(aeﬂ W’"Z no “unbiosed”
e If the asymptotic variance of an estimator equalb the lower bound =t
the estimator is said to be asymptotically efficient.«{lim effy(8,)= 1[

Notes (TBp.302)

1. MLE is asymptotically efficient. ( ;asymp{:ah‘c variance qj: MLE =

i
: : ) H ﬂIx&G))
. For a finite sample size, MLE may not be efficient [hmé.b(Ap39)

2

3. MLEs are not the only asymptotically efficient estimators. ({shrinkage

4. There may exist biased and super efficient estimators. For example, if
X1, ..., X, is an iid sample ~ Normal(p, 1). Let i = X I(|X| > n~'/%).

Ulnem e X=X % i Riva
i 4o | Note. By CLT, |£ . D, l , b n }
o muchfater | F(R-whNon] VIR —p) — Lo lf IXI nVe
than na m o p—— e

where o?(p) = 1 if u # 0 and az(g) — ().<— ﬂmu(HLC)aI.u-j

i Example 6.31 (generalized negative binomial, TBp.302-305)

S - k - |
MEKY £, —-/ \ Fk+x)/ m \ T = |
E%nmﬁuslf(w!ﬁ>_\m+k/ 2Tk \m+k ) 2=01,.. K(1-p)

Ch8, p.65
Example 6.30 (Poisson distribution, TBp.302)

For the Poisson distribution, I, (A) = 1/A. For any unbiased estimator T of A,
based on a sample i);fF.i.d. Poisson variables X1, Xo,..., X}, stabistioal

LNp#2, Ex.b-19 Vara(T) > A/n_ C-Rbowd 7%
MLE of \is X = S/n and S= iX..“-Pocssotl("lJ\)‘-'}E(X)=—n-=1<-uw1bfat5€!d
LN».19,Ex.6-10 Vara(X) = M1, eff, (R)=1 = Xisefficient VA

Hence X attains the Cramer-Rao lower bound: (Note. There may exist a
biased estimator of A that has a smaller MSE than X.)

Theorem 6.16 (generalization of Cramer-Rao inequality)

Suppose X1, ..., X, are i.i.d. with pdf/pmf f(z|0), and T = T'(Xy,...,X,,) is
an unbiased estimator of 7(6). Then, under Smooth assumptions on f(x|0),

LEy(TN=T(6) Voro(T) > 7'(6)? = <« | Tim 67868, |
B(k.p) in LN,CHI~&,p.63 — nlx, (0 i ( r’m*) INp 41~42

Bl rxh-k

Note that its mean is y = and its variance is 02 = m + m?/k o p*
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<:I Ch8, p.66
' draw with replacement ~ €ailure,O0
(] I Of bAck baﬂs} => X = # of black ball"that will be drawn before
k : # of white balls | [Success,2] the kth*white ball is drawn -»[prob ofge’d:'f
e Generalized negative binomial model arises in several cases. white: p= m,,,(

1. If k£ is an integer, then the number of failures up to the kth success

thbook| in a sequence of Bernoulli trails with probability of success
HU',
lem32| P = k/(m + k) follows a generalized negative binomial distribution.

T—2) Hierarchical model: If A ~ Gamma(k, k/m), and X|A = \ ~ Poisson()\),

then X ~ generalized negative binomial <-marginal distribution

3. Biological model (Solomon, 1983): If N, the number of clusters/colonies,
follows a Poisson(A) distribution and X;, ¢ = 1,..., N, the numbers
of individuals in each colonies, follows a logarithmic series distribu-

tion with success probability p x.an nividuag

_ o)t
X-XHXz* "’XN P(X;=t)= 1 L p),t:1,2-~-.
[ LJ Og( ) L aclister D8

Assume that the X,’s are independent. Then the distribution of

the total number of individuals is generalized negative binomial W1th
}:f:s k= ——/\/log p)and p=m/(m + k). OFnJaMalmg}oj-_l_@USelawoj-thﬂ
birth, death rate = constant; immigration rate = constant s.nd-i-heztﬁgsx

Eet*=EE [e¥IN]

-

Population size ~ generalized negative binomial

=
<:| Ch8, p.67

e Estimation of m and k (Note. both m & k >0) 9)":"‘5""‘71‘ "‘id‘“s v
method 1: method of moments estimators "’ X GNB(

o —

lreasondble }—» 1 = X, k= AX—— g‘:mwm—} {;:nj’i‘sg—
method 2: [ie.,# of Xe=0]
statistic — ng = = number of zeros|out of a sample of size 77—9-—- P(X‘,—o)
phrameter—s Py = (m’ik)k — probability of zero count [—ﬁo-vB(n p.,)

If m is estimated by X, then k can be estimated by solving the

Compared| equation NN i s

to method R) g ( k_) _ <1+§)_ . =:.a.sym,m‘:ola‘c numericad
k

3 (MLE) =7 \itx variance | oo

Ei}i method 3: MLE is difficult to compute. MLE of m is the sample mean
t X, but MLE of k is the solution of a nonlinear equation

n

100

Asymptotic relative efficiencies of 40

estimators (Figure 8.11 in textbook oy« ftt+—— =T ot
— Method 2 is quite efficient [method 1 é WA Tt : \
Emsomue?l when p, close to 1 or 0. |¢s good oI B o
— 5.8 A — N T R s
M.()dl beC().meS more me%d 2 ﬁl 0-2 0-4 1 2 4 10 20 40 100 200 400
efficient as k increases. |is good emoa 1] both ana. bad

Method 2 - ————-

N
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¢| Ch8, p.68

e Insect counts data, Bliss and Fisher (1953)
— 25 leaves from each of 6 apple trees in an sprayed orchard
—— number of adult female red mites on each of the leaves

Xe's number per leaf observed count Poisson fit Negative Binomial fit
— —> —

A ( r
: 0 Plx:=0)= ,‘%’- 47.7 69.5
X,,---,Xzs,dust'

X~PQA)|| 54.6 x~N3(m,)<)l 37.6
Xab,---,xsoﬁ

17 S 20.1
histogramled 10 | ~ | 120 10.7
= 9 P(x=_s_]>~)H 34 (P=sIRR)E 57 <
. ‘ﬂjﬂh
Xy2p,--, Yo o
b

informion 3 0.75 3.0
57 2 X=AsufF+ | 015 1.6
1 ‘]’ (omplete | 0.03 0.85

=~ O Ut i W B

\_0 L 0.00 L 0.95

— Recursive algorithm for pmf of generalized negative binomial:

my —k kE+n-—1 m
e = (1 ) gy = (G st

:

N

might be different on different trees and at different locations on the
same tree. (For the Poisson fit, polling the last 3 cells: x? = 82.4 ,
( df=5, extremely small p-value; For the Negative Binomial fit, pooling
last 2 cells: x? = 2.48, df=5, p-value=0.22)

+ Reading: textbook, 8.7; Further reading: Hogg et al., 6.2

Chs, p.69

* method of finding estimator III --- UMVUE (or MVUE)

Question 6.7 (“best” unbiased estimator)

Among all unbiased estimators, how to find the “best” estimator, i.e., the one
that has the smallest MSE7,

(Recall. [1]. MSEy(0) = Varg(f) for any unbiased estimator é,
@ Cramer-Rao bound j& LNp 62 ( &Eﬂ:icien{:)-

> An, unbiased estimator whose variance reaches the C.-R. bound is a OMVUE G—-J
Definition 6.21 (UMVUE)
An estimator T of 7(0) is called a (uniformly) minimum variance unbi-
ased estimator (UMVUE or MVUE) of 7(4) i\

1. T* is unbiased for 7(6), and

2. for any unbiased estimator T of 7(0), Varg(T™*) < Varg(T') for all 6 € .

Example 6.32 (cont. Ex. 6.30, UMVUE of Poisson mean, TBp.302)
e The Cramer-Rao bound for 7(8) = 0 is /n.

e On the other hand, E(X) = 6§ and Var(X) = 0/n.
e Hence, X is a UMVUE of 0. L-MLE and unbiased
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Chs, p.70
[ See B35 (U 73)
A UMVUE may not achievedthe Cramer-Rao lower bound. Are there other
systematic procedures that can be used to derive/identify a UMVUE among
a large number of unbiased estimators?

Theorem 6.17 (Rao-Blackwell theorem, TBp.310)
Suppose X1, ..., X, have a joint pdf or pmf f(x1,...,x,;0), and

k (1) EQ(T*)iE9<T) for any (9, function of S

S =(51,...,5%) 6 What 7§ T data space
is sufficient for 6. If T is any O S= (%, Xn)? S=s
Z ator of (0) with B(T? @ S s minimal !
estimator of 7(6) with E(77) < oo, suSkicient ? |
let the value of S might not be
™ 4g (T|5) O a funckion o5 § (directly ueed to estimate 6 (Bt i
= - = = =F @'Hmvd;resof-j'*
- come from the Il_unbiased estimat
Then, |.€.,T%:'£:have i o all unbiased estimators
(__(¢F value o5S) unbiased estimators and

T* is a function of S alone and does not involve 6, i.e., T is a statistics,

(3). Eo(T*—7(0))> < Eo(T —7(0))?, i.e., MSEy(T*) < MSEy(T), for every
0 and the equality is strict unless 7' = T".

@

Why T* better? Yo T") <Tar(T)
(I Why ) L
Proof.,—& S by the law of total expectation
1. E(I") = E[E(T|5)] = E(T) (LN, CHI~6,p.51)
2. § is sufficient for § = distribution of Xj,..., X, | S not involve 6
= conditional distribution 7'|S does not involve ¢ By variance
= T* = E(T|S) is a function of S only decomposttion
3. Var(T) = Var[E(T|S)] + E[Var(T|S)] e (LN, CHI~b,
> Var[E(T]S)] = Var(T™) P52)

with equality if and only if E[Var(T|S)] = 0, ie. Var(T|S) = 0 with
probability 1, which is the case only if T" is a function of S, which would
imply 7' = T* = E(TIS) L Rorall X st.s(x)=s, T(X) is a.anstant:

Question 6.9 (uniqueness)

Suppose that two estimates 7} and T are unbiased (or have same bias). Which
of E(T1]S) and E(T15|S), where S is sufficient, has smaller variance? Is it possible
that there exists only one unique function of S that is unbiased (or has same
bias)?

Theorem 6.18

If the distribution of S is complete and E[ui(S5)] = 7(0), Eluz(S)] = 7(0) for
all 0, then E[u,(S) — u2(S)] = Ojfor all #, which implies that ui(S) = ua(S5)
with probability 1 for any 6. Wi(S)-U2(S)=0, V'S (almost sure)
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Q - Why can sufficient + complete do the work ? {Check graph in LNp. 70 Chs, p.72

Theorem 6.19 (Lehmann-Scheffe theorem)
Suppose that Xy, Xo,..., X,, have joint pdf/pmf f(x1,x2,...,2,;0) and S is a

s complete and sufficient statistic for 6. If 7" = T*(S5) is a function of S and

unbiased for 7(#). Then T* is the unique UMVUE of 7'(9) W

Proof. Suppose T is any other statistic with E(T) = 7'(9) for all 6.

E(TS) is also unbiased for 7(6) and a function of S. Completeness implies that
any statistic that is a function of S and unbiased for 7(0) must be equal to T*
with probability 1. Hence, 1™ = E(T'|S) with probability 1 and

Var(E(TIS) = Var(T™) < Var(T) for all 0. || can be any unbiased
Therefore T* is the unique UMVUE of 7(6). estimator

Summary (methods of finding UMVUE)

(D If E(T) = 7(0) for all § and Var(T') achieves the Cramer-Rao lower bound.

Edb32| Then T is a UMVUE of 7(6). (Note. A UMVUE may not attain Cramer-

27 J Rao lower bound.)

2. If S is a complete sufficient statistic, and u(.S) satisfies E[u(S)] = 7(6) for
all #. Then u(S) is a UMVUE of 7(6).

3. If T is an unbiased estimator for 7(#) and S is a complete sufficient statistic

for §. Then E(T|S) is a UMVUE of 7(6).
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