Ch8, p.17

• method of finding estimators II --- Maximum Likelihood Estimator (MLE)

• If assign a distribution on parameter space \Rightarrow Bayesian approach
• If not (i.e., θ fixed & unknown) \Rightarrow Ereguentist approach
• Toss a coin 10 times. Let $\underline{\theta}$ be the probability of getting a head. Sup-

- Toss a coin 10 times. Let $\underline{\theta}$ be the probability of getting a head. Suppose that we know $\theta \in \{0.1, 0.5, 0.9\}$. parameter space
- When we get $\frac{7 \text{ heads}}{6}$ out of the $\frac{10 \text{ tosses}}{6}$, which $\frac{\theta}{6}$ is more plausible to generate the $\frac{\text{output}}{6}$?

Definition 6.8 (likelihood, log likelihood, TBp. 267, 268)

Suppose random variables X_1, \ldots, X_n have a joint pdf or pmf fixed varying $f(x_1, \ldots, x_n | \Theta)$. Fixed proportional to prob. $f(x_1, \ldots, x_n | \Theta)$. Fixed proportional to prob.

Given the observed values $X_1 = x_1^*, \dots, X_n = x_n^*$, the likelihood function of $\underline{\Theta}$ is defined as $\underline{\mathcal{L}}(\underline{\Theta}) = f(\underline{x}_1^*, x_2^*, \dots, x_n^* | \underline{\Theta})$, varying

which is a function of Θ . The log likelihood function is defined as $\log \mathcal{L}(\Theta)$

Notes.

Ch8, p.18

likelihoo

- 1. We consider <u>likelihood</u> function as a <u>function of θ </u> while <u>joint pdf/pmf</u> as a <u>function of x_i 's.</u>
- For discrete case, likelihood function gives the probability of observing the data as a function of θ .

 The discrete case, likelihood function gives the probability of observing the data as a function of θ .

 The discrete case, likelihood function gives the probability of observing the data as a function of θ .

 The discrete case, likelihood function gives the probability of observing the data as a function of θ .

Definition 6.9 (maximum likelihood estimator, TBp. 267)

The <u>maximum likelihood estimator</u> (MLE) of $\underline{\theta}$ is the value of $\underline{\theta}$ that maximizes the likelihood. \rightarrow Is it an estimator? i.e., a function of X_1, \dots, X_n ?

Interpretation. MLE makes the observed data "most probable" or "most likely," i.e., MLE gives the most "plausible" model given the observed data.

Note.

1. For <u>i.i.d.</u> case, the <u>likelihood</u> function and the <u>log</u> likelihood function are, respectively,

marginal pdf/pmf
$$\mathcal{L}(\theta) = \prod_{i=1}^{n} f(x_{i}^{*}|\theta), \quad \text{and} \quad l(\theta) = \sum_{i=1}^{n} \log f(x_{i}^{*}|\theta). \equiv \log(\mathcal{L}(\theta))$$

2. Maximizing the likelihood function, $\underline{\mathcal{L}(\theta)}$, is equivalent to maximizing its natural logarithm, $l(\theta)$, since the logarithm is a monotonic function.

Theorem 6.1 (invariance property of MLE) eq., $Gamma(\alpha, \lambda)$, $g = (\alpha, \lambda)$, $\underline{C}(g) = \alpha/\lambda = \underline{mean}$

If $\hat{\theta}$ is the MLE of $\underline{\theta}$, then for any function of $\underline{\theta}$, denoted by $\tau(\underline{\theta})$ the MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Proof. MLE of $\tau(\theta)$ is a solution of the maximization problem

 $\begin{array}{c|c}
\text{max} & \rightarrow \theta_1 \\
\emptyset(\theta_1) \leftrightarrow \theta_1 & & \rightarrow \theta_2 \\
\end{array}$ $\max_{\mathbf{C}^*} \max_{\boldsymbol{\theta}: \mathbf{C}(\boldsymbol{\theta}) = \mathbf{C}^*} \underbrace{l(\boldsymbol{\theta})}_{\boldsymbol{\tau}(\boldsymbol{\theta})} = \max_{\underline{\tau}(\boldsymbol{\theta})} \underbrace{l(\boldsymbol{\theta})}_{\boldsymbol{\tau}(\boldsymbol{\theta})} \underbrace{l(\boldsymbol{\theta})}_{\boldsymbol{\tau}(\boldsymbol$ if 1-to-1 | if not 1-to-1

Since $\underline{\hat{\theta}}$ is the MLE of θ , the maximum is attained when $\underline{\theta} = \hat{\theta}$, which implies the MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

(FYI) profile likelihood $\mathcal{L}(\tau^*) = \sup_{\underline{\theta}: \ \tau(\theta) = \tau^*} \mathcal{L}(\underline{\theta})$

Example 6.10 (i.i.d Poisson distribution, TBp. 268)

Suppose X_1, X_2, \ldots, X_n are i.i.d. $P(\lambda)$. The log likelihood is

Statistical modeling
$$\underline{l(\lambda)} = \sum_{i=1}^{n} \underline{\log} \frac{e^{-\lambda} \lambda^{X_i}}{X_i!} = \underline{-n\lambda} + \underline{\log} \lambda \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log X_i!.$$
 Setting $\underline{l'(\lambda)} = 0$ gives
$$\underline{\frac{1}{\lambda} \sum_{i=1}^{n} X_i - n} = 0.$$

The MLE is then

 $\frac{\frac{1}{\lambda}\sum_{i=1}^{n}X_{i}-\underline{n}=0.}{\text{Same as the}}$ a function of data $\rightarrow \hat{\lambda} = \overline{X}$. (LNp 9)

in LNp.11

Ch8, p.20

Check that this is a maximum:

$$\underline{l''(\lambda)} = -\frac{n\overline{X}}{\lambda^2} < 0 \Rightarrow \underline{l(\underline{\lambda})} \text{ is concave.}$$

Example for Thm 6.1, LNp.19 \Rightarrow the MLE of $\frac{1}{\lambda}$ is $\frac{1}{\overline{\lambda}}$

Example 6.11 (i.i.d normal distribution, TBp. 269)

Suppose that X_1, X_2, \ldots, X_n are i.i.d. $N(\mu, \sigma^2)$ random variables. The joint density is

statistical modeling
$$f(\underline{x_1, x_2, \dots, x_n} | \mu, \sigma) = \prod_{i=1}^n \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x_i - \mu}{\sigma}\right)^2\right].$$

The log likelihood is

$$\overline{l(\underline{\mu},\underline{\sigma})} = \underline{\sum_{i=1}^n} \left[\underline{-\log\underline{\sigma}} - \frac{1}{2}\log\left(2\pi\right) - \underline{\frac{1}{2}}\big(\frac{X_i - \underline{\mu}}{\underline{\sigma}}\big)^2 \right].$$

Setting

$$\begin{cases} \underline{0} = \underline{\frac{\partial l}{\partial \mu}} = \sigma^{-2} \sum_{i=1}^{n} \underline{(X_i - \mu)} \\ \underline{0} = \underline{\frac{\partial l}{\partial \sigma}} = -n\underline{\sigma}^{-1} + \underline{\sigma}^{-3} \sum_{i=1}^{n} (X_i - \mu)^2 \end{cases}$$

Ch8, p.21

The $\underline{\text{MLE}}$ is then

Sampling distribution discussed in LNp.13
$$\frac{\hat{\mu}}{\hat{\sigma}} = \frac{\overline{X}}{\sqrt{\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})^2}}$$
 sample variance = $\hat{\sigma}^2$

which is the <u>same</u> as the method of <u>moments estimators</u>.

-LNp.13

 $\underline{\text{Check maximum}} \Rightarrow$

$$\begin{pmatrix} \frac{\partial^2 l}{\partial \mu^2} & \frac{\partial^2 l}{\partial \sigma \partial \mu} \\ \frac{\partial^2 l}{\partial \mu \partial \sigma} & \frac{\partial^2 l}{\partial \sigma^2} \end{pmatrix} = -\begin{pmatrix} \frac{n}{\sigma^2} & \frac{2}{\sigma^3} \sum_{i=1}^n (X_i - \mu) \\ \frac{2}{\sigma^3} \sum_{i=1}^n (X_i - \mu) & \frac{3}{\sigma^4} \sum_{i=1}^n (X_i - \mu)^2 - \frac{n}{\sigma^2} \end{pmatrix}$$

which is negative definite when $\mu = \hat{\mu}$ and $\sigma = \hat{\sigma}$ and $\Delta \to 0$ as (μ, σ) tends to boundary.

Let's global maximum.

- Example for Thm 6.1, LNp.19,
 - MLE of $\underline{\mu^2}$, the square of a normal mean, is \overline{X}^2
 - MLE of $\underline{\sigma}^2$, the variance, is $\frac{1}{n} \sum_{i=1}^n (X_i \overline{X})^2$

-same as the moment estimator

