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Ch8, p.17

* method of finding estimators II --- Maximum Likelihood Estimator (MLE)
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e Toss a coin 10 times. Let 6 be the probability of getting a head. Sup-

ose that we know y—
P 6 € {0.1,0.5,0.9} .« paameter space

e When we get 7 heads out of the 10 tosses, which 6 is more plausible to
generate the output?

®: Why sum = 1?
?Hint. P(7 heads|f = 0.1) =2]0.000,| | Hit. total
X =% of heads P(7 heads|@ = 0.5) ~{0.117,| | _prbabiity = 1

X ~B(10,9) P(7 heads|f = 0.9) ~{0.057.
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Suppose random variables X, ..., X,, have a joint pdf or pmf fixed
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Definition 6.8 (likelihood, log likelihood, TBp. 267, 268)

pnumzinonalto prob.
Given the observed values X; = z7,...,X,, = 2, the likelihood function

f © is defined Je.
FORIY  20)= fui,..mij0). T 4(e)

—7 r—-—-——)
which is a function of ©. The log likelihood function is deﬁned as log L(0).

Chs, p.18
Notes.
1. We consider likelihood function as a function of 6 while joint pdf/pmf
as a function of x;’s.

2. For discrete case, likelihood function gives the probability of observing
How atout :
woe| the data as a function of . X % ;
contraus T 1) % 1 = (gfx1208  ((Fixed ] RS

Definition 6.9 (maximum likelihood estimator, TBp. 267)
The maximum likelihood estimator (MLE) of 6 is the value of § that
maximizes the likelihood. = 15 it an estimator 7 i-e.,a function of X, ,-+-, X ?

Interpretation. MLE makes the observed data “most probable” or “most

likely,” i.e., MLE gives the most “plausible” model given the observed data.
| S in terms of ;;n:luzl>llffj/

1. For i.i.d. case, the likelihood function and the log likelihood function
are, respectively, ,
margina) v !
oas/oms: | L) = [] f(z116), and Zlogf )= =log(L®)
I fﬂn =
2. Maximizing the likelihood function, £(0), is equivalent to maximizing
its natural logarithm, [(6), since the logarithm is a monotonic function.
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Theorem 6.1 (invariance property of MLE) KBTI CHN- I B T(Q) =%/ =mean

If 6 is the MLE of 6, then for any function of #, denoted by 7(0),

the MLE of 7(60) is 7'(9) Likelibwd @ o, ¢

Proof. MLE of 7(0) is a solution of the max o @A\
maximization problem Q(e)esFo, 0% R I3
¢ 5:9§ X X 'C:
m 8)= ke
M ol o) 2 Wo) iF 1-to-1 |if not I-to-1
Since Q is the MLE of #, the maximum is attained FvI) P’oﬁ’e likelihood

when § = 6, which implies the MLE of 7(6) is 7(f). ,C('C*)—QS‘{:{;) -L-*L(Q)

Example 6.10 (i.i.d Poisson distribution, TBp. 268)

Suppose X1, Xo, ..., X, are i.i.d. P()). The log likelihood is
< ‘é“ j —A)\X w w
n ;:;J Zlog = -—n)\+log)\ZXi ———ZlogXZ-!.
] i=1 /
Setting I'(\) = 0 glves 1 2?21 X;—n=0. i
The MLE is then o mﬁn@rﬁﬂ&?
a function of data  \ = X .¢—| (L 9) in LNpl_| |
<:I Ch8, p.20
Check that this is a maximum: — .
< Bihed .
I"(\) = 0 = [()A) is concave. Sinsghel
A2 = — X
e Example for Thm 6.1, LNp.19 = the MLE Of% is %

Example 6.11 (i.i.d normal distribution, TBp. 269)

Suppose that X, X, ..., X, are i.i.d. N(u,c?) random variables. The joint

density is
Si \ECQ‘ . a 1 _1 Ty — [\2
"Wdeli’ﬁ f(x17$27"'7xnluﬁo-) —‘Z];Ilo_ o exp [ 2( o ) :

The log likelihood is
note: not Ga'ﬁ n 1 1. X
i — fh\2
TREE F=Ly).

logg — §10g (27T) — 5

=1

Setting

{Q = ﬁ = U—szzl(Xi"N)

0= 5 = —no '+ Y0, (Xi—p)
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The MLE is then

sampling distribution
discussed in LNp.13

— X e—sample mean,
- \/;1; >oicy (Xi = X)? - sample variance =G

which is the same as the method of moments estimators.

_(Np3

o |

Check maximum =

821 921 w

( op?  dodu ) _ ( g% > i (X — p) )
2 2 - n n n
aiala % % Zi:l(Xi — 1) % zi:1(Xi - M)2 — 52

which is negative definite when p = fi and 0 = 6 andL— 0 as (i, o) tends

to boundary. > local maximum
> It's 3lobo.| maximum .

Qw| 3

e Example for Thm 6.1, LNp.19,

— MLE of p*, the square of a normal mean, isz2

— MLE of ¢?, the variance, is + > 7 (X; — X)?

T_same as the
moment estimator

Example 6.12 (i.i.d restricted normal distribution)

Suppose X, Xo,..., X, are i.i.d. from N(u,1) with 0 < p < oo. The log

likelihood is ®— sttistical modeling X R, sarpling disbribdion="

& Y4

fb(,s) in N> 20 " . N 5 L - -
1 = ) log (271—) — 3 i=1 (Xl — X) — E(X — /.L) .—.- - )

Hence thze MLE of p is S’a(ways Falls in (0.00) (Why?) moment esEmator
. : X, if X>0 ,_@_r-*L;;,=y (Ec)

if X <0 L reasouable?
Lp(@<st)=P(X<t) if £>0. 133

Suppose X1, Xo,..., X, are i.i.d. U(0,6), where § > 0. Then the likelihood

of 0 is X _ statistical Made(mg X momen(::sh‘mabr
€ o, if 0<X;<0,i=1 6= 2x (Ec)
ol £ eﬁ(e) = { - tF 1R AR = unbiased
— | 0, otherwise = but 2X might
Q:Amn,axb(r)’zx { 9“", if 6 > maxij<i<n Xz = X(n) >0 be < Xy
easo! e — : == -
estimators ? 0. otherise (g distribuon=2 L_%g‘:nnﬁ,vre

Because £(f) decreases when @ increases, the MLE of 6 is X,). n:: X

@ E(Xm)=——0 <= biased &) always underesbimate <J | = (1+-L) X0

(Eq)n+)
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