

Lecture Notes

Ch9, p.42

Ch9, p.43

Under H_0 , the X^2 statistic is asymptotically equivalent (note: $n \to \infty$) to the LR test statistic given in LNp.40 because:

the LR test statistic given in LNp.40 because:
$$\underline{-2 \log \Lambda} = 2 \underline{n} \sum_{i=1}^{m} \frac{\hat{p}_i}{1} \log \left(\frac{\underline{\hat{p}_i}}{n_i(\hat{\theta})} \right)$$
under Ho

$$\begin{array}{c|c} & 0 + \sum_{i=1}^{m} \frac{\left(\underline{\underline{n}}\,p_{i} - \underline{\underline{n}}\,p_{i}(\theta)\right)}{\underline{\underline{n}}\,p_{i}(\hat{\theta})} & + \cdots \\ & & \underline{0} + \underline{X^{2}} & & \underline{\mathbf{1}} = \mathbf{E}\mathbf{\hat{c}} & \\ \end{array}$$

by Taylor expansion of $x \log (x/x_0)$ about x_0

$$f(x) = x \log(x/x_0) = \underline{0} + \underline{(x - x_0)} + \frac{1}{2} \frac{1}{\underline{x_0}} \underline{(x - x_0)^2} + \cdots$$

- and, the fact that when $\underline{H_0}$ is true and \underline{n} is large, $\hat{p}_i \approx p_i(\theta)$.
- Note: Pearson's chi-square test is more commonly used than the LR test, since it is easier to calculate.

Remarks.

- 1. There is a distinction between O_1, \ldots, O_m and X_1, \ldots, X_n (especially for continuous case) empirical cdf (textbook, sec. 10.2)

If Xi, ..., Xn are i.i.d., order statistics X(1). ... X(n) are sufficient for any

 $\underbrace{X_1,\ldots,X_n}_{\text{discrete (possible)}} \Rightarrow \underbrace{X_{(1)},\ldots,X_{(n)}}_{\text{order statist}} \Rightarrow \underbrace{O_1,\ldots,O_m}_{\text{if i.i.d.}}$ $\underbrace{O_1,\ldots,O_m}_{\text{continuous}} \Rightarrow \underbrace{X_{(1)},\ldots,X_{(n)}}_{\text{if not i.i.d.}} \Rightarrow \underbrace{X_1,\ldots,X_n}_{\text{if not i.i.d.}}$

- X₁,..., X_n:

 <u>discrete</u> r.v.'s 2. The MLE of θ based on O_1, \ldots, O_m can be different from the $\overline{\text{MLE}}$ of θ based on X_1, \ldots, X_n .
- 3. Different choices of $(t_{i-1}, t_i], i = 1, \ldots, m,$ can

cause different results. (Note. The choice should not depend heavily on observed data.)

Note In Ex.7.17, ti's are not functions of data, i.e., ti's are not statistics, not r.v.'s, tilx

4. It is recommended that O_i , $E_i \geq 5$. \blacktriangleleft a result guaranteed by large n asymptotic property

Example 7.19 (Hardy-Weinberg Equilibrium, TBp.343-344, or Ex.6.15, LN, Ch8, p.24)

• $\underline{n = 1029}$, the <u>cell probabilities</u> are $\underline{(1-\theta)^2}$, $\underline{2\theta(1-\theta)}$, $\underline{\theta^2}$ under the <u>Hardy-</u> Weinberg Equilibrium model and the MLE of θ is $\theta = 0.4247$.