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e Consider a single observation Y ~ Binomial(n, #). The pmf of Y is
X1, -, Xn —» non-invertible tmsgmmnzey&ﬁ —y :
g:f‘xed f(y] >_(U) ( - ) ) OI'Z./G{O, 7"'7n}‘ check
The second derative of log likelihood is ﬁit
. istic
: ndom, 0 log f(yl0) /970 = —y/0" — (n — y)/(1 = 0)°. | aEbl
(%.--,Xn) ) © The Fisher information of Y, is INp 48
& Y=ZXi Y n—Y ng n-—nb n
Iy(0) = —Fy|—= — — = — = :
caame|  010) = ~Ea| 5 =g 92*(1—9)2 o0
imjormaction P Note that Iy (0) is the same as Ix, ... x, (). reasonable? «—
—

Recall con E(Def 610) &
Theorem 6.5 (consistency of MLE, TBp. 275) m;l:e::tes: lsrt(e;h,,c,(, 2in ZNp 31

Under approprlate smoothness conditions of f, the MLE from an i.i.d. sample
18 &HS}St__Lm_rb Qm.s LN B,& more 3¢n¢ral than LLN X, - ¥a 24 §ix]8o)
Proof (sketch, for pdf case): Denote the true value of § by y.[The MLE

maximizes l(9 ~ Tll, Zz log f( l|9) J@%}'Y What is the difference between
-~ Ya

] 1 O f(z|6o)dz and
The weak law of large numbers implies weic.d ﬂ@i ;ij 9))]]§(€LQJ‘£)> d;c ;n

RO eﬁ@p

— Eg, [log f(X]H)] |log f(x]0)] f(x]60) dz  as n — oo.
varble—¥ 2 Sixed B

For large n, the ¢ value that maximizes Qf%ould be close to the § value Value
hat maximizes Ego log f(X6)]. To maximize Eg,[log f(X|0)], consider 6."'

d ) =1 (= \9>
gyl S (X10)] = 55 [ oz 1(a16)] 5 (s160) = [ Bl da

If § = §, then rﬁa&% Whenn i brge. Lz(g x) == Ea,[lg5(x18)] |
EOo[bﬁﬁxm’]

©
9 By llo f(X|0) / x\@)dm‘ /f ' _ 9,0
T =0, 00 =6, 09 0=0, 00—

(A)in LNp 35 —
Thus 0 is a stationary point and hopefully a maximizer., Fo[%logf-(xlg)]=0

Theorem 6.6 (asymptotic normality of MLE for one-dimensional parameter, TBp. 277)
Under some regularity conditions on f, the probability distribution of [ more

eral
check [zm“ asympbt.g Jdn (eMLE 90) ‘.l- %
LNp.4I Sampling Jrot. nIx, (60) (Bwe — 0o)= TG GecLT c,q_-r
tends to a standard Normal distribution as n tends to infinity, where

')<—-|

Oy is MLE and b is the true value of 0. = g,,,_E_, N(6Go. [n]‘_x.(eo)]
Proof (sketch): Denote Orice by 0. By Taylor expansion, " L»converge t 0.
1N /_ N " much smaller &
Score =1'(0) = I'(6h) + (8 — o)l (Hg)cgﬁerggahgma%
egu.wl:aon
——”ﬂg ” &y 903 /f.__> N(o, Ix.(eo))},N(
—O : l"( >/n______e IX ‘eo) I.«eo
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@ 5 Chs, p.40
Consider the numerator, score =
— i by (&) in LNp.35
Check the |2y 1 7(60) } ZE 9 1og F(X |e)
Jorm oS- Boo | % % | 5g 'O )| = rczvo
Score ——— 351 =X Var(Yc)
Sunckion b . 2 = 3 [E(vA)-E(v)
. — Varyg, [ [_]. ZEgo [ log f(X; |90)} = nlx,(0y) .
ization | [Defpl, LNp. 33l Ye(3Y. Yaareiid)® ZYL 95 Novmal

LAnd, since I'(6y) £ >or & log f(X i|6o),|Central Limit Theorem implies that

I'(6p)/+/nlx,(0y) converges in distribution to a standard Normal random
variable. For the denominator, F by WLLN

l//(@()) 82 p 62 ]
———l = 1 |0 E 1 il0o)| = —1Ix,(6p) .
- __Flﬁqiogf< 160) = Ea |5 08 S X10)] = =6
Hence v Zi (21 Zn iid) by Slustsky's Thm .
','TFﬂZL Vnly, (90)(9 0o) _> N(O 1). ‘J—LN CHI~Z p.90

_Also, - L . T
When s Ey, {\/5(9 - 90)} ~ 0, Standard f‘e"“‘t‘m' Varg, (0 — 0y) ~ ———.
n is ~0O(n"¥2) nlx, (6o)
large Lo da - bias — 0 = bias = o(n%) 'f‘a‘('%_,) —

Thus, MLE () is asymptotically unbiased and its asymptotic variance is

- = " —‘LN ;
0 <L (114 (00)] " = s, (00)] " 2 [~ Eay(1"(00)] " re e

=

@ Chs, p.41
Notes (TBp. 277)

1. Theorem 6.6 (LNp.39) says the large sample distribution of an MLE is
approximately normal with T Recall. asymptotic method in LNp.12
[pﬁsm"] e mean fy and (= asymptotically unbiased)
*_—@ variance 1/(nlx,(0y)). (= 1/(nlx,(0y)) referred to as asymp-
totic variance) R— C-R bound (LNp.62)
2. Regularity conditions for Theorem 6.6 (LNp.39):  P*™" A2
(a) True value 6§ is an interior point of the set of all parameter values

(e.g., the theorem would not be expected to apply in Ex 6.16,

(b) Support of f(x|f), i.e., the set of z’s for which f(x|f) > 0, does
Recall_ not depend on 6 (e.g., the theorem would not be expected to apply

Thmé.1| to estimating 6 from a sample that are uniformly distributed on
ENp.19] the interval [0,6] (Ex 6.13, LNp.22).)

Under the reparameterization 7(6), the (Fisher) information of 7(6) is
‘ check 'H'LQ« a 2 >y %ﬁma‘l‘?

{T\":"’BZ" b= IXl (T(9)> EE 57‘(6’) log f(Xllg) - 7_ 2 I(Gm.a) 't(g
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. Proof: 9 2 9 o Chs, p42
FIn0) = B|ghrion )] |55 Sos f06)
Fisher information of L) Cyﬁ 7(9)
n iid observations | 1\’ 0 1 Par 2 Iy, (0)  [Var(T@))
= _@ Ix,(T(Q)) o <7./(9)> [ 0g f( 1’ )] ':]_7(_9'")2“ z[t'(a)]zx%r(é‘)

Theorem 6.8 (asymptotic normality of MLE under reparameterization)

Under the reparameterization 7(6), the MLE of 7(6), 7(0), is asymptotically

Normal with mean 7(0) and variance (EHEE 8] T ¢oreTe@
A 2 & method TP
s N(e. 7mm) SR Y O vy

C-R. bouncl(LNp.bS)j nlx, (7(0)) [n Ix(0) cpﬁé;?' < —ul> §

Let X1,..., X, be iid ~ P()A). The MLE of A is A= The information

of Poisson distribution is: é-_swsam] model: nq LLNpl‘? =

[0 ? 0 e\ 12 (B Y
Ix,(\) = E 8)\logf(X|)\)} :E[a)\log< 1 )] =L-|=0

smallerl L - 2 2
Slager IO | — B |- (Xlog A — A— logX!)] :E<£—1)
$ more information | OA

{ Smallz\? uariancel Var (% -1)=Tar () T‘Var(x)"’f

-—’HQ———
|>~1 =

=

@ Chg, p.43

Or, 02 X 1
o= 1) = [8)\2 logf(XM)} - E[/\_zl Y

Hence, by theorem 6.6, the asymptotic distribution of X is Normal with

mean \ and variance \/ n.<._CLECL.T‘ for Poisson (Note 1, LN, CHI-8, LNp 9T)
— Norma/ a,ppmxima:hbn to Pbisson (LN.CHI-&_p_‘fa)

_ Suppose that we are interested in the parameter 7 = 1/ )\’,_"éfna%f%:

what is the (Fisher) information of 77 (Ans: 772) “_by Thm 6.7 @l
what is the MLE of 77 (Ans: 7y = 1/X) Y 7D

what is the asymptotic distribution of the MLE?
what is its asymptotic variance?

b~y

use Thm 6.8 (LNp.42)

FYI

= Theorem 6.9 (multidimensional parameters, information and asymptotic normality of MLE, TBp.279)

Suppose © = (01,02,...,0;), a k-dimensional vector. Then, the asymptotic
joint distribution of the MLE © = (64, 0,,...,0;) is multivariate normal with
mean vector O and covariance matrix =1=2(0g) where I(0) is the k x k matrix

with ij-th component Fisher information matrix of n i.i.d.observations = n I(®)

2
Bo | - 108 /(X1/6) ;Z, logfoclr@)} Eo [80 o e )

Here, 1(O) is called the (Fisher) information matrix for ©.<-0ne observation
+ Reading: textbook, 8.5.2; Further reading: Hogg et al., 6.1, 6.2
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Chs, p.44

» Data reduction --- the concepts of sufficiency, minimal sufficiency, and completeness

Question 6.1 (information and data reduction)

(numerical or graphical) transformations of data appear all the time in statis-

tics for offering a summary of information contained in data. For example,
Q: What information

.. order statistics contaned in data?l | INp.5
raw (original) data X(l) X@) o X( ) -Sysbnaﬁ‘c(ﬁji) Al et
X1, X, ..., X, )2 o om (R e

dim=n ol

histogram

sample variance l'l:ransfoﬂmhon
o sample mean (dimension
5 i (X = Xn)? X, : reduction)
dim=1 dim=1 2 %@( )

To present or extract concrete information, the data reduction through use-
ful transformations is required. However®non-invertible transformations can
cause the loss of information. (-) The lost information can be

important or worthless to the objective of studying the data. R l‘]
T ——to understand the (urknown) s ,
How to examine whether the important information lost in transforma-

tion? Furthermore, what is tmportant information? N

@ Chg, p.45

Summary (formulation of information and data reduction problem, TBp. 305)

o Let X1, Xs,..., X, be asample with joint pdf/pmf f(x|©),
where © is unknown parameter. t— gtatistical moddm@r%mnb‘bduce (4]

( unknown
T X1, X,, ..., X, contains two types of information: Pfi::‘ff;g
mformabion | x _information related to © <e—"important” (usefuld Mformation
" | * information irrelevant to © «— useless infprmation
— For example, toss a coin n times, ie., X, X5,..., X, are i.i.d.
stmo~1 from Bernoulli B(0), @ (Afhat is important infdrmation?
i x* X, or T =5 " X, contains information about 0 3fas
x When 7' is known, say T = ¢, the information that at which
place!_mdsmtoat t out of n.positiong
(:seless . trials the ¢ head’s occur is 1rrelevant to QJ' A OFI _‘Pg
* n=0o, consider the followmg possible results: [-r X1, XalT
xs]T_u)>(01111)T 4;(1,0,1,1, 1), T = 4;
/5<-\rre\evo.nt (17 1,0, 1, 1) = 4; (1, 1, 1, 0, 1), v _c_zl_lmfomabbn
(% XSIT=') (17 17 17 17 Q)a = 4 T ] {
V5= imsart . (1,0,0,0,0), T = 1; (0, 1,0,0,0), T = 1; | ~oromal(5.Q)
e 0 T S
,"‘,xlj' T g Ny g A ) — .
' Q\__ C“f‘ N




