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Example 6.12 (i.i.d restricted normal distribution)

Suppose X1, Xo,..., X, are i.i.d. from N(u,1) With 0 < p# < oo. The log

likelihood is & statistical mode(ing =X+ X 2 sampling diskribdion="
Sfom the I(p) = —Zlog(2m) — 15" (Xi—p) Note. X ~N(W, %)
i LN 2 2 t
Yu.g) i Lo 20 o nloe(9) 1S (X XV n( )7 o
i = 2 og (2m) zzz'zl( i ) 2( D) - 4)

Hence thze MLE of p is

always fiﬂs in (0,) _(ﬂ/.bJL?) moment estimator
§ ,if XzO._@_r*{in(Ec)
it X <0 L reasowble?
Lp(@<st)=P(X<t) if £>0. 133

Suppose X1, Xo,..., X, are i.i.d. U(0,0), where § > 0. Then the likelihood

of 8 is r'X(n) ‘L%sﬁcal mOde(mg c&/.\momen‘::sh‘mabf
o i 0<X. <0 i=1 6 =2X (Ec)
o _g. 95(9) — 1 — i =7 t=4. 0 2 unbiased
— 0, otherwise = but 2X might
Q’Al‘em):;n,zx { 9—n7 if 6 Z maxij<;<n XZ = X(n) 2 0 be < XCM
reaspnable - : — -
estimators ? 0. otherwise e distrthekion= 2 L_ag;"gf
Because £() decreases when ¢ increases, the MLE of 0 is X, n:: Xy
@ E(%¢ ))(E)n,-i-l 8 <= biased @) a/wa.ys underesl:vmal:ez_ = (1+ - Xcn)

Example 6.14 (multinomial distribution, TBp. 272)

Suppose X1, Xso,...,X,, are counts in cells 1,2,...,m and follow a multi-
nomial distribution with total count n and cell probabilities pi,pa, ..., pm
(pp > 0fori=1,2,...,m, and p; +ps+ -+ + p, = 1). The joint pmf of
X1, Xo, .o, X 8 ;" —~
sfjs(l'a:a( f(x1, 2, xm|p1, P2y - s Pm) = HT_.:U'! pi', ber™

™3 Lo x; ~ binomial (1, P;), but Xr, -, Xm0k independent L 1i=1 0" iy space=m-\
where 1 + x5 + - - - + x,,, = n. For n given, the log likelihood is

l(p1,p2,. .., Dm) = logn! — ZlogXi! + ZXZ' log p;.

dimension
mme{:erog

MLE | = maximize I(p1,pa, ..., Pm) subject to Y " p; = 1.

Introduce a Lagrange multiplier A\, and maximize

{ i=1 i=1 ] i=1
T 2P, -, Pm) l * l
Settmg%:%+A:g,z‘:1,2,...,mgwes 0 =
X —_— W - =
ﬁj:_TJ7 j=1,2,...,m oA LEIP 0
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m m X
= Z Z 5 L= —g sanplrng distribution=?
=l =l —

Since

h A=—n H = X;/n,1=1,2,...,m.
we have n. nence, p /”‘3 , mj—reasonobie7

Example 6.15 (Hardy-Weinberg Equilibrium, TBp. 273)
Hardy-Weinberg law: if gene frequencies are in equilibrium,
the genotypes AA, Aa, and aa occur in a population with fre-

.

®
1
.

-
.
°

(4

°
.
°

quencies (1 — 6)* 20(1 — 6), and §*. < @ &(0.1) & (1-07+26(1-9)+6°=]
prob. of getting A Mother

100+ % (26078) A[l=0] ald]
pfj%}j&g:}{éfz» Father | A[1-60] | AA[(1-6?] //@ [A1-6)]

rle?=e a[0] |[Aa[&1-0] /" aa[6?]

If we sample n (a fixed number) persons from the popu-
lation, and let X, X5, and X3 (random variables) denote the counts
in the three cells (AA, Aa, aa), what is a suitable statistical model
(i.e., joint distribution) for (Xi, X5, X3)?7 lage popdation,

. without
Notice that n = X7 + X5 + X5. = with replement

Chs, p.25

statiskil . . — ]
modeling (X1, Xo, X3) Nmultmomlal(n,pl,pg,pg') P+R+R=|

"*X£~binonﬁal(n.lfj) /_/ T dm=2 XT
), 0

bqul,x:.Xy_lﬁlw 2 -
Log likelihood of 6 is l(l _ (9) ’ 20(1 — 0 I " genetics
3 : } knowledge
[(0) = logn!— ZlogX' < dim=1|%
From the -j !
log-likelihood + X log (1 — )% + X,y log [20(1 — 0)] + X3log 67
in LNp,23 3 -
= logn! — ZlogXi!
i=1
+(2X; + Xo)log (1 —0) + (2X5 + X5) logf + X5 log 2.
: d _ SQm,Plrn
el U _2X11 +0X2 n 2X3; X2 _ g dtsb-;bftmm?
? Qz-fl(le(l-ﬁb:e
yields the MLE of 8 (—_'—‘_ Tessonable? 2
2X3+ X, _ 2X3+ Xz X .:A
[“;tﬁf;.‘f‘,‘z: T X, 12X, 12X, o o PrzR
What is the difference between Ex. 6.14 and Ex. 6.15?———1

B»
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Chinese population data of Hong Kong in 1937: (M, N are erythro-
cyte antigens)

== Blood Type M  MN N  Total
wachery Egutcroom?l Frequency 342 500 187  [1029
m—i" (by Ex.6.14) 0.333 0.46 0.182 = =
| 34%/‘01? -

D MLE is § = 04247 = (1, 2, ps) = (0.331,0.489,0.180)" —{dim=1

2. Approximate the sampling distribution of 9 by bootstrap: (exact method
simulation mebhod'} ”%25.?:
e Generate 1000 random counts from multinomial with n = 1029
and cell probabilities 0.331, 0.489, and 0.180.

e From each of the 1000 experiments, a MLE value 9* was deter-
mined.

From the histogram of the 1000 estimates
(Figure 8.7 in Textbook), which should
approximate the sampling distribution of 6.

e [Looks like Normal.
e Standard deviation of the 1000 values
gives estimated standard error of 0:
s; = 0.011. 0.4247 * 2x(0.0n) = [0.4027,04467] -

@

Ch8, p.27
Example 6.16 (Muon Decay, TBp. 266 & 271)

° Let;@ be the angle at which electrons are emitted in muon decay.
o Let X = cos(©). It has a distribution with pdf

-|data

1
f(z|la) = 5(1+aw), —1<zr<1,-1<a<l,

s

e The mean of X is

T st moment ,u!oz 3= a = 3. B
e The moments estimator of a based on a sample X5, --- , X, is & = 3X.
e The log likelihood of « is [c.id. ~§(x|ec)|.j

n Vo
= log (1 +aX;) — nlog?2. e

i=ll

Setting the derivative equal to zero, the MLE of « satisfies the nonlinear
equation 'Casyml""’ﬁ‘ ’“‘H""‘d( Np39) P
i Dvhlguist 8
sampli ibtion=?| 0= —1 el
t M\S&wm do (@) = Z 1 4+ aX; Bjor%,k (1974
 simulation, method =L =
. Chapter 6
e The MLE of o has no easy close-form solution.
= can use an iterative method to numerically solve for MLE. J

= method of moments estimate could be used as a starting value.
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Example 6.17 (i.i.d. Gamma distribution, TBp. 270)

e Suppose X1, Xo,..., X, are i.i.d. I'(a, \). The joint pdf is
|,‘n‘f§¢’$ﬁ?‘i’l-/‘ flx1, @, ... xp|la, N) =1, ﬁ)\o‘xz‘_le_ma
e The log likelihood is
la,\) = Y0 [alog A+ (o —1)log X; — AX; —logT'(a)]

= nalogh+(a—1)> " logX; —A> " X; —nlogl'(a).

e Setting { 0 = g:(lx = nlog )+ Z;’L:l log X; — n?((j)) .
0l _ no n
0 = & = 5~ 2inXi
e The MLE then satisfies
nlog & — nlog X + Yoo log X; — n?é{?} — () -
e 2nd part is a nonlinear equation = no easy closed-form solution.

= can use iterative method to find (approximate) the solution

= method of moments estimates can be used as initial value.
= LNp.1Y

Chs, p.29

e Rainfall amount data (Ex 6.7-6.8, LNp.14-16):

1. Take the initial value as the method of moments estimates

Q:Which estimate
is closer to the

true values of
parameters 2

& =0.375. \=1.674. «—

By an iterative procedure, the MLE’s are computed:

[«

e s G =0.441, X =1.96=<
(LNp.#3)
L

= of little practical difference from the moment estimates.
% check histograms in LNp.16

2. Exactzampling distribution of the MLE is intractable = can use
simulation to approximate: *+ no close Sorm

— Generate many, say 1000, samples of size 227 from Gamma
with o = 0.441, A = 1.96.

— Form MLE of a, A for each sample.
— Construct histogram of the 1000 MLE’s.

3. From the histograms of the simulated MLEs:

— The histograms look like normal.
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A
X

& might ? The hlstograms are centered at W
be blased & = 0.471 and ) = 1.97. in LNp 16 )

— Estimated standard error of the MLE’s are
Lmomefesﬁmdbr

S2=00b,58 =0.34 | &5, 54 = 0.04, s; = 0.28.
(LNP.IG) F—é - AT
— Sampling distribution of MLE’s are less
?shwl“g: dispersed than those of the method of
m‘l(mam Toments estimates, 043 £ 2«(0.04)=[0341,0.51]
prefer 2 1.97 £2+(028)=[141,2.53]

)))))

Summary (advantages of MLE)

1. easy to interpret <—LNp.18 , definition !
2. widely applicable Why?
3. the range of the MLE coincides with the range of the pa-

rameter €—check Ex.6.12,6.13 (LNp.22) - -
4. invariance under reparameterizations < Thmé6.l (LNp.19)
5. nice theoretical properties <« eg. asjmpbob\c ProPerb\es

% Reading: textbook, 8.5, 8.5.1 ( Thmb> ~ , LNp ~
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fLarge sample (asymptotic) theory for method of moment estimator and MLE

:;':Z :inﬁ::i ;rm; o] Recall: 1. Law of Large Number for sum /average «—
less random | 2. Central Limit Theorem ] estimator

Definition 6.10 (consistent, TBp. 266)

Let 9 be an estimator of a parameter § based on a sample of size n. Then
0, is called consistent in probability if 0 converges in probability to 6 as
n tends to infinity,|i.e. for any € > 0,

94——7'9

E(\én——9|>e>->g as n — 00. @;g 0

“Ois a constant

> method of moment estimator

Theorem 6.2 (consistency of method of moment estimator, TBp. 266)

The weak 1aW of large numbers implies that EYI (U - M) 4
he 3i’s o
k —
i LNpQ Z X;" = iy — W in probability as n = oo.
W =L t-@-» E(Ye)=MUx By Thm 5.1, item 4,

If the function relating Hk and 0; are coptmuous, LN,Chi-6, p.89
method of moments estimators are con81stent&'

->N(0.1)
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Theorem 6.3 (justification for estimating standard errors, TBp. 266-267)

e Recall: In LNp.12, 09(é estimate rs{wdmi ervor (00 a fudion 95-6)

of samplmg distribution of 6
usually 63(8)>C
M n—>00__

estimated standard errore——

e Consider the standard error of the form:

A4

M Ex. 6.5 (LNp.11): o e f L °":,:°,,;,.ro(,,_y.) nrrﬂevané L)
¢éd ~ P(X
— Ex. 6.6 (LNp.13): o (u, 0) = =0, and 052(,0) ~ \/_a
[iif~N(u,e%) A |
o Let §y = true parameter, and o; = 04(6p) = \/1— *(6o)- s'l.-andard
. afixed value -— . A o error of- ‘“’"’P‘
e Listimate o5 by 4 vy 5y = \—/—ﬁa* (i,i) = A distribuction
e If (1) 0*(0) is continuous in #, and (2) 6 is consistent (6 4 90), then
By Tim 5.1, item 4,

LN,Chi-6,p.89 | °© 0" (0) — o"(0o), ie., QQ'»Mesémaeon

[asn — 00, %0 — 1 in probability (# Sg = op — O)

Why not not say Sg —>0’6”] 0“0 d —A
> MLE SO *on SAme wivergence rote  Ywhennis large

Note. the following discussion is mainly for (1) the case of i.i.d.
sample, and (2) one-dimensional parameter.

Definition 6.11 (score equation, score function)
e The log likelihood of an i.i.d. sample of size n from a pdf/pmf f(x|0)

1S n
score Suwtion of n obs. (Exercise) Check Hr previous
= Sum of score Junction @ - Z 1Og f(X.zJe) MLE examplea:twvd identify
of ith obs | 'j — ‘Hnscyr:es ion & score
e The MLE maximizes [(#) and is usually obtained by solving the

score equation

8 Scofe 0f ith
at ?MLE —

a on of-
%l(&) = 9 log f(X;|0) is called score functlon.—y mm)ég

Let X1,...,X, be a sample of size n with a joint pdf/pmf f. Define

This is a function| [canallow not :.I average (w.rt the
Ofuulmown to be (.(.d. l— param

0

parameter O L(‘-tfxl,...,xn(e) Ey [@ log f(X4, --
(weighted average of score>|

which is called the (Fisher) information of § contained in Xj,..., X,,.

- What information does Ix, ... x, (0) offer?
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