Point Estimation

» What is point estimation?

Example 6.1 (current across muscle cell membrane, TBp. 257-258)

e Bevan, Kullberg, and Rice (1979) studied random fluctuations of cur-
rent across a muscle cell membrane. The cell membrane contained a
large number of channels, which opened and closed at random and were
assumed to operate independently. The net current resulted from ions
flowing through open channels.

e They obtained 49,152 observations of the net current, x1, ..., T 9159.

e The net current was the sum of a large number of roughly independent
small currents.

e It seems appropriate to model the net current data, Xq,..., X49150 as
i.i.d. N(u,0?), where p and o represent the mean and variance of net

current. Note that the values of 1 and o2 are unknown.
® - how to use the observed data, xq, ..., 49152 to gain knowl-

edge about the values of ;1 and 27
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Example 6.2 (emission of alpha particles, TBp. 255-256)
e Berkson (1966) conducted an experiment about emission of alpha par-

ticles from radioactive sources. The number of emissions per unit of
time is not constant but fluctuates in a random fashion.

e The experimenter recorded 10,220 times between successive emissions.
The numbers of emissions, x;, ¢ = 1,...,1027, observed in 1207 time

intervals, each of length 10 sec, are summarized in the following table:

JTZE{O,].,Q} a:zzi 1'224
18 28 56

e.g., in 28 of the 1207 intervals, there were 3 counts, etc.

O POOOIEC—H—>

e Assume (1) the underlying rate of emission is constant over the pe-
riod of observation (2) the particles come from a very large number of
independent sources

e It seems appropriate to model the numbers of emissions Xi, ..., Xig27
as ii.d. P()), where A represents the underlying rate of emission. Note
that the value of X\ is unknown.

° - how to use the observed data, x1,...,Z1297, to gain knowl-
edge about the value of \7
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Example 6.3 (rainfall amount, TBp. 258-259)

e Le Cam and Neyman (1967) studied rainfall amounts from storms.

e They obtained rainfall amount data, see the graphs for the histogram
of the data. Let us denote x1, ..., Z997 as the 227 rainfall amounts.

e The family of I'(«, A), where a > 0, A > 0, provides a flexible set of pdfs

for non-negative random variable. We may model the rainfall amount
data, Xi,..., X997 as i.i.d. ~ I'(c, A). Note that the values of a and A

are unknown.

— ‘ e q S L

o IR (oW to use Ty,..., %o to find a particular Gamma distri-
bution I'(ag, Ag) that can “best” fit the observed data, i.e., which pdf
of Gamma is “mostly similar” to the histogram?
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Summary (procedure of fitting a particular distribution to data, i.e. point estimation)

1. observed data. zy,..., 2,

e Ex 6.1: 49152 net currents; Ex 6.2: 1027 numbers of emissions;
Ex 6.3: 227 rainfall amounts

2. statistical modeling. Regard zi,...,x, as a realization of random
variables X;,...,X,,, and assign X;,..., X, a joint distribution:
a joint cdf F(-|©),
or a joint pdf f(-|©),
or a joint pmf p(-|©),

where © = (0y,...,0;), and 0;s are fixed constants, but their values
are unknown.

e Ex 6.1: i.i.d. Normal, © = (y,0?)
o Ex 6.2: i.i.d. Poisson. ©® = )\

e Ex 6.3: i.i.d. Gamma, © = (o, \)
3. point estimation. Find a function of X;,...,X,, denoted by @,

to estimate © or a function of ©, and substitute x,...,x, to get an
estimate.




Chs, p.5

Notes

1. In statistical modeling, we define

— (unknown) systematic pattern

— random disturbance

in the data.

e For example,
(1) Xy,..., X, iid. ~ N(g,1) (2) Xy,..., X, iid. ~ N(H,a_2)

All information
contained in data

Compare their difference: . .
— prediction of p (parameter) = E(X,) = u, Var(X,) = 0°/n
— prediction of X;11(r.v.) = p + €ny1 < €11 ~ N(0,1)

e The assumptions given in statistical modeling (i.e., joint distribution)
need to be examined.
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2. distinctions between Xy,..., X, and z1,..., 2,
e Xj,...,X, are random variables while z;,...,z, are values
e different time points: before the data is collected = X, ..., X,;
after the data is collected = x1,...,x,
e statistical inference is usually developed on the basis of X, ..., X,
not x1,...,x,. That is, we prefer to develop a statistical proce-

dure that is “suitable” for all possible (future) observations under
the consideration of their uncertainty, not only for a particular set
of (past) observations.

3. (TBp.259) reasons for fitting a particular distribution to data

e Scientific theory may suggest the form of a probability distribu-
tion, and parameters of that distribution may be of direct interest.
e For descriptive purposes as a method of data summary or com-

pression.
e A probability model may play a role in complex modeling. For ex-

ample, utility companies may model daily temperatures as random
variables from a distribution, which may be used in simulations

of effects of various pricing and generation schemes.
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The fixed but unknown constant(s), i.e., ©, in the joint distribution of
X1,...,X, are called parameters. Sometimes, functions of © are also called
parameters.

Definition 6.2 (statistic, estimator, estimate, sampling distribution, TBp.260)
e A statistic is a function of X7,..., X,,.

e A (point) estimator 0 of a parameter 0 is a statistic used to estimate 6,
and a (point) estimate is a value of 0 computed based on the observed
data x1,...,x,. Note that an estimator is a random variable and an
estimate is a number.

e The distribution of an estimator is called sampling distribution.

Definition 6.3 (standard error, estimated standard error, TBp. 262)

e The standard error of an estimator is the standard deviation of its

sampling distribution, i.e., 1/ Var (é)

e An estimate of the standard error is called estimated standard error.

Definition 6.4 (bias, unbiased estimator, TBp. 262)

A

e The bias of an estimator is defined as Fy(0) — 6.

A

e An estimator is called unbiased if Fy(0) = 0, i.e., bias equals zero.

+ Reading: textbook, 8.1, 8.2, 8.3
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* Method of finding estimators I --- method of moments

Recall. The kth moment of a distribution, if exists, is
HE = EG(X k)?
where X is a random variable following that distribution.

Definition 6.5 (sample moment, TBp. 260)

If X1, X,,...,X, arei.i.d. random variables from a distribution,
the kth sample moment is defined as:

~ 1 n k
@—;Zilei-

Definition 6.6 (method of moments, TBp. 261)

Step 1. Calculate low-order moments, find expressions for the
moments in terms of the parameters.

Step 2. Invert the expressions found in Step 1, finding new ex-
pressions for the parameters in terms of the moments.

Step 3. Insert the sample moments into the expressions ob-

tained in Step 2, thus obtaining estimator of the param-
eters.




For example, suppose 0, 0, are parameters such that cha, p.9

01 = gi1(p1, p2); b2 = ga(p1, pi2)

then the method of moments estimators of 8; and 6, are

Example 6.4 (Poisson distribution, TBp. 261)

e Suppose that X;,---, X, are iid. ~ P()\). Then the first mo-
ment of P(A) is A. The first sample moment is

m=X-1%% %

Therefore, the method of moment estimator of A is A=X.

e As an example, asbestos fibers on filters were counted as part of
a project to develop measurement standards for asbestos concen-
tration. Asbestos dissolved in water was spread on a filter, and
punches of 3-mm diameter were taken from the filter. Counts of
the numbers of fibers in each of 23 grid squares are

31 29 19 18 31 28 34 27 34 30 16 18
26 27 27 18 24 22 28 24 21 17 24

A

and the method of moments estimate of \ is A = 24.9.
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- Questions:

1. Is the estimate (i.e., 24.9) the real \?

2. Next time when the same procedure (same sample size,
same estimator, same ...) is repeated again to get a
new estimate, how far the future estimate will be away
from 24.97

3. In which range will you expect say 95% of the future
estimate falls? (e.g., [24.8, 25] or [15, 35]7)

4. This is a question related to the stability /uncertainty/
variation of the estimator.

5. How to characterize the stability of an estimator? (Note.
We have to answer the question using only the observed
data.)

To evaluate the stability/uncertainty of
an estimation procedure, it is required to
know what the sampling distribution is.
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Example 6.5 (cont. Ex.6.4, TBp. 262)

e Exact sampling distribution of A:
Because X, Xy,..., X, i.id. ~ P(}),

Thus, (1) the sampling distribution of \ is LP(nA), (2) ) is unbiased,
and (3) the standard error of \ is o5 = \/A/n.

e Fstimated standard error of 5\_ is

e Asymptotical method: By CLT, sampling distribution of 3 1S ap-
proximately normal when n is large enough. Since a normally dis-
tributed random variable is very unlikely to be more than 2 standard

deviation away from its mean, errors in A is very unlikely to be more

than 2.08.
” Chs, p.12
L1,y ..., Ty (values) i ~ 6y (value)[ -~
=TT s s s m e ~.
realization | | N
| function ), point "
X1y, Xy (rv’s) 1 > Q\(T-V) —imation” 0 (parameter) ;
E SimulatiOH : \\NN\‘~\\~hiSl‘0gram /."/
joint cdf E Samplmg‘ distribution /_,.;,7—‘-~'~:':\':'\:
Fx,,..x,(-6) cdf Fy(+|0) ——— cdf F;(-|fp)
T I S "
P =TT ! estimated
Normal cdf |=~ standard error : standarg error
a(0) : - (6o)
e exact distribution = the form of Fj(-|0) is known ------»

e asymptotical method = the form of Fj(-|0) is close to Normal
cdf (usually when n is large) —..—.»

e simulation method = useful when the form of Fj(-|f) is un-
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Example 6.6 (Normal distribution, TBp. 263)

e The first and second moments for N(u,o?) are

{m = E(X)=p

pp = E(X?)=p’+0°

po=
i - A
{ﬁ S

Let X;,Xs,...,X, beiid. ~ N(u,o0?), then the method
of moment estimators of x4 and o are

{

\

>

\um VA x99 1'72 1 <N > x 2

2imi Xi =X =52 (X — X)

| =

3=

e Sampling distribution of X is Normal(y, %2) and sampling
distribution of 62 is %X%_y Furthermore, X and &2 are
independent.
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Example 6.7 (Gamma distribution, TBp. 263-264)

e The first two moments of the I'(a, \) are

{ mo= a/x _ { A = /(e — i)
pe = ala+1)/3 a = Mu = p3/(pe — )
Let Xy, Xs,..., X, be iid. ~ ['(a,\), then the method of moment

estimators of A and « are
A=X/e%  a=X/8

where 62 = [iy — [i3.

e As a concrete example, let us consider the fit of the rainfall amounts
during 227 storms in Illinois from 1960 to 1964 (the data, listed in
Problem 42, Textbook p.414). For the data, X = .224,6% = .1338,

therefore & = .375 and ﬁz 1.674.

e What are the sampling distributions of & and \?

— Exact distributions are complicated.

— Asymptotic method: Use central limit theorem and other asymp-
totic theorems to obtain the limiting distributions.

— simulation method: bootstrap.
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Definition 6.7 (parametric bootstrap, TBp. 264-265)

Generate many, many samples of size n from a distribution.
(True values of parameters in the distribution are unknown, so
use their estimates). From each of the samples, compute the es-
timates of parameters. The histogram of these estimates should
give a good idea of the sampling distribution of estimator.

Example 6.8 (cont. Ex.6.7, bootstrap, TBp. 265-266)

Generate 1000 samples of size 227 from I'(&, 5\), where @ are
set to be .375 and 1.674, respectively. From each of 1000 sam-
ples, compute the estimates of o and A\ using the estimators
A= X/62, & = 72/62. Denote the 1000 estimates by o, A,
i =1,...,1000. Histograms of them indicate the variability that
is inherent in estimating the parameters from a sample of this

size.

Ch8, p.16
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Histogram of 1000 s(iar)nulated method of moment estimates(;f (a) @ and (b) A.

We can find from the 1000 «’s and A}’s that:

e The histograms looks like normal.

e The histogram suggests that if a = 0.375, then it is not very
unusual that & is in error by 0.1 or more.

e The histograms are centered at 0.375 and 1.674, the (regarded-

as-true) parameter values used in the simulation.
e Eistimated standard error of & is

| oo
N — * oy 2 =
Sa 1000 Z; (af — @)% =0.06,

where @ is the mean of the 1000 values. Also, in the same way,
85\ = 0.34.

% Reading: textbook, 8.4
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* method of finding estimators II --- Maximum Likelihood Estimator (MLE)

e Toss a coin 10 times. Let 6 be the probability of getting a head. Sup-
pose that we know

0 € {0.1,0.5,0.9}.

e When we get 7 heads out of the 10 tosses, which 6 is more plausible to
generate the output?

e Hint. P(7 heads|d = 0.1) ~ 0.000,
P(7 heads|@ = 0.5) ~ 0.117,
P(7 heads|f = 0.9) ~ 0.057.

Definition 6.8 (likelihood, log likelihood, TBp. 267, 268)

Suppose random variables X, ..., X,, have a joint pdf or pmf
flx1, ..., 2,]0).
Given the observed values X; = z7,...,X,, = z, the likelihood function

of O is defined as . % N
- *C(@):f(xl?aba'“?xnl@)?

which is a function of ©. The log likelihood function is defined as log £(0).
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Notes.
1. We consider likelihood function as a function of 6 while joint pdf/pmf
as a function of z,’s.

2. For discrete case, likelihood function gives the probability of observing
the data as a function of 6.

Definition 6.9 (maximum likelihood estimator, TBp. 267)
The maximum likelihood estimator (MLE) of 6 is the value of 6 that

maximizes the likelihood.

Interpretation. MLE makes the observed data “most probable” or “most
likely,” i.e., MLE gives the most “plausible” model given the observed data.

1. For i.i.d. case, the likelihood function and the log likelihood function
are, respectively,

n

L£(0) =]] f(z7]0), and l(Q)ZZbgf(ﬂf_ﬂ@)-

=1

2. Maximizing the likelihood function, £(6), is equivalent to maximizing

its natural logarithm, [(6), since the logarithm is a monotonic function.




Theorem 6.1 (invariance property of MLE)
If § is the MLE of 6, then for any function of #, denoted by 7(60),

the MLE of 7(0) is 7(6).

Proof. MLE of 7(6) is a solution of the
maximization problem

max-1{6)-
nax 1(0)

Since 6 is the MLE of 6, the maximum is attained
when 6 = 0, which implies the MLE of 7(0) is 7(0).

Example 6.10 (i.i.d Poisson distribution, TBp. 268)
Suppose X1, Xo, ..., X, are i.i.d. P()). The log likelihood is

M———Zlo_ge l :—n)\—I—log)\ZXi—ZlogXi!.
i=1 = i=1

e Example for Thm 6.1, LNp.19 = the MLE of % is

i=1
1 d = 1 mn
Setting I'(\) = 0 gives Ly X, —n=0.
The MLE is then o
A= X.

Check that this is a maximum:

X

I"(\) = —%5- <0 = [(}) is concave.

L
X

Example 6.11 (i.i.d normal distribution, TBp. 269)

density is

oy |l 1@ — 2
f(xtha"'aaj’rLllu?O-)“Ho_\/ﬁexp|: 2( o ):|

The log likelihood is

l(p,0) = ;j [— logo — %1og (2m) — 1(XZ — M)Q] :

: 2 o
=il

Setting

{Q = 4= 0 L (XK

0 = & = —not+o 3L (Xi—p)

Suppose that X, X, ..., X, are i.i.d. N(u,c?) random variables. The joint
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The MLE is then

= X
— iYL (X -X)

which is the same as the method of moments estimators.

| =

Check maximum =

921 921 n "
G G o2 = 2 (Xi — 1)
= & 2y e Xi—p) XL (X-p)?-5

which is negative definite when y = fi and 0 = 6 and [ — 0 as (u,0) tends
to boundary.

e Example for Thm 6.1, LNp.19,
— MLE of &2 , the square of a normal mean, isz2

— MLE of ¢?, the variance, is + > 7 | (X; — X)?

Example 6.12 (i.i.d restricted normal distribution)
Suppose Xy, Xy, ..., X, are i.id. from N(u,1) with 0 < pu < oo. The log
likelihood is
(w) = —3log(2m) — 10, (Xi - p)
1
2

Suppose X1, Xo,..., X, are i.i.d. U(0,0), where § > 0. Then the likelihood
of 0 is

—-n . < .
£(9> - {6—7 1f w7z 17"'7n

0, otherwise

. H;”, if 6 Z maXj<i<n Xz - X(n) 2 0
- 0, otherwise

Because £(f) decreases when 0 increases, the MLE of 6 is X ).




Example 6.14 (multinomial distribution, TBp. 272)

Suppose X1, Xo,...,X,, are counts in cells 1,2,...,m and follow a multi-
nomial distribution with total count n and cell probabilities pi,pa, ..., pm
(pp > 0fori=1,2,...,m, and p; +ps + -+ + p = 1). The joint pmf of
Xl,XQ,...,Xm is I m
n! -
L1,L2,-..,T s P2y == i
fxy, 29 m|D1, P2 Pm) H¢:1 0 };Ilp_

where 1 + x5 + - - - + x,, = n. For n given, the log likelihood is

l(p1,p2, ..., Dm) = logn! — ZlogXi! + ZXZ' log p;.

=1 1=1

= maximize [(p1, s, . .., Pm) Subject to > " p; = 1.

Introduce a Lagrange multiplier A\, and maximize

Setting %:§+A:g,z‘:1,2,...,mgwes
. X;
pj:—T’ 17=12...,m.
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Since n X n
Ai: __la l=——
2 =2 ==X
i=1 i=1 —=
we have A = —n. Hence, p; = X;/n, i =1,2,...,m.

Example 6.15 (Hardy-Weinberg Equilibrium, TBp. 273)
Hardy-Weinberg law: if gene frequencies are in equilibrium,

the genotypes AA, Aa, and aa occur in a population with fre-
quencies (1 —6)% 26(1 — 6), and 6%

Mother
A[1-0] ald]
Father | A[1-0] | AA[(1-6?% | Aa[&1-0)]

al0] | Aa[&1-0)] aa [67]

If we sample n (a fixed number) persons from the popu-
lation, and let X7, X5, and X3 (random variables) denote the counts
in the three cells (AA, Aa, aa), what is a suitable statistical model
(i.e., joint distribution) for (X7, X5, X3)?

Notice that n = X; + X9 + X5.

~
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(X1, X3, X3) ~ multinomial(n, p1, p2, p3)
—

(1—6)2,20(1 — 6),6°

Log likelihood of 6 is
3
[(0) = logn!— Zlong-!

o=l

+X; log (1 —0)* + Xz log [20(1 — 0)] + X5log 6°

3
= logn! — ZlogXi!

=1l

+(2X; + Xo)log (1 — 0) + (2X3 + X5)logf + Xslog 2.

Settmg l(@) O, 2X1 =F XQ 2X3 = X2
_ L — 0
1—460 0
yields the MLE of 6
A 2X3‘|-X2 . 2X3+X2

O —

2X; +2Xo+2X;  2n
- What is the difference between Ex. 6.14 and Ex. 6.157
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Chinese population data of Hong Kong in 1937: (M, N are erythro-
cyte antigens)

Blood Type M  MN N  Total

Frequency 342 500 187 1029
(by Ex.6.14) 0.333 0.486 0.182

1. MLE is § = 0.4247 = (p1, P2, P3) = (0.331,0.489,0.180).
2. Approximate the sampling distribution of Q by bootstrap:

e Generate 1000 random counts from multinomial with n = 1029

and cell probabilities 0.331, 0.489, and 0.180.
e From each of the 1000 experiments, a MLE value §* was deter-

mined.

From the histogram of the 1000 estimates

(Figure 8.7 in Textbook), which should
approximate the sampling distribution of 6.

e [Looks like Normal.
e Standard deviation of the 1000 values "
gives estimated standard error of 6: JFF( h

Sé = 0.011.




Ch8, p.27
Example 6.16 (Muon Decay, TBp. 266 & 271)

e Let O be the angle at which electrons are emitted in muon decay.
o Let X = cos(0). It has a distribution with pdf

1
f(a:loz):§(1+cwc), —1<z<],-1<a<l.
e The mean of X is
w=a/3d=a=3u.

e The moments estimator of a based on a sample X;,--- , X, is & = 3X.
e The log likelihood of « is

(o) = Sjlog (1+ aX;) —nlog?2.

i=ll

Setting the derivative equal to zero, the MLE of « satisfies the nonlinear

equation n

d X,
O—E&l(a)—Z————1+aXi.

1=1

e The MLE of a has no easy close-form solution.
= can use an iterative method to numerically solve for MLE.
= method of moments estimate could be used as a starting value.
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Example 6.17 (i.i.d. Gamma distribution, TBp. 270)
e Suppose X1, Xo,..., X, are i.i.d. I'(a, \). The joint pdf is

flx1, @, ... xp|la, N) =1, ﬁ)\o‘x?'le”‘mi
e The log likelihood is
la,\) = Y [alog A+ (o —1)log X; — AX; —logT'(«)]

= nalogh+(a—1)> " logX; —A> " X; —nlogl'(a).

e Setting { 0 = & = nlogh+> 7 logX; "nI;((S))
. ETR _ no iz
0 = 2 Zizl X;

e The MLE then satisfies

A=a/X
nlogd —nlog X + >  log X; — nl;/((do‘)) =}

e 2nd part is a nonlinear equation = no easy closed-form solution.
= can use iterative method to find (approximate) the solution

= method of moments estimates can be used as initial value.
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e Rainfall amount data (Ex 6.7-6.8, LNp.14-16):

1. Take the initial value as the method of moments estimates

A

a=0.375, \=1.674.

By an iterative procedure, the MLE’s are computed:

A

a=0441, X=1.96
= of little practical difference from the moment estimates.

2. Exact sampling distribution of the MLE is intractable = can use
simulation to approximate:

— Generate many, say 1000, samples of size 227 from Gamma
with o = 0.441, A = 1.96.

— Form MLE of a, A\ for each sample.
— Construct histogram of the 1000 MLE’s.

3. From the histograms of the simulated MLEs:

— The histograms look like normal.

Chs, p.30

— The histogramsA are centered at o -
a = 0.471 and A = 1.97. R

— Estimated standard error of the MLE’s are —’_’—L_

sq = 0.04, s5 =0.28.

))))))

— Sampling distribution of MLE’s are less ~ _ |
dispersed than those of the method of
moments estimates. |

Summary (advantages of MLE)

1. easy to interpret

2. widely applicable

3. the range of the MLE coincides with the range of the pa-
rameter

4. invariance under reparameterizations
5. nice theoretical properties

* Reading: textbook, 8.5, 8.5.1
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* Large sample (asymptotic) theory for method of moment estimator and MLE

Recall: 1. Law of Large Number for sum /average
2. Central Limit Theorem ]

Definition 6.10 (consistent, TBp. 266)

Let 9 be an estimator of a parameter § based on a sample of size n. Then
0, is called consistent in probability if 9 converges in probability to 6 as
n tends to infinity, i.e. for any € > 0,

E([én-—9|>e> — 0l s = 6o,

> method of moment estimator

Theorem 6.2 (consistency of method of moment estimator, TBp. 266)

The weak law of large numbers implies that

— ZXik = [l — U in probability as n — oo.

n —_—

— =1
If the function relating p; and 6, are continuous,
method of moments estimators are consistent.

Theorem 6.3 (justification for estimating standard errors, TBp. 266-267)

e Recall: In LNp.12, 09(@ estimate o;(0)

e Consider the standard error of the form: o4(6) = —=0*(0)
— Ex. 6.5 (LNp.11): 05()) = 7=VA -

— Ex. 6.6 (LNp.13): 0a(p,0) = =0, and 0p2(p, 0) = —-+v/20°

o Let §y = true parameter, and o; = 04(6p) = ﬁa* (6o)-
720" (0).
e If (1) 0*(0) is continuous in 8, and (2) 6 is consistent (9 LR 90), then

e Estimate o4 by cy

o*(0) - 0% (), ie.,
— 1 in probability (ﬁ Sj 4 o5 —> O)

as n — oQ,

5
99

» MLE
Note. the following discussion is mainly for (1) the case of i.i.d.
sample, and (2) one-dimensional parameter.
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Definition 6.11 (score equation, score function)

e The log likelihood of an i.i.d. sample of size n from a pdf/pmf f(x|0)
1s n

@ = Zlog f(Xz'|9)-

e The MLE maximizes [(f) and is usually obtained by solving the
score equation 9 "9

= 7' = -~ 99

o 21(0) =31, Zlog f(X;|0) is called score function.

Definition 6.12 (Fisher information for one-dimensional parameter, TBp.263)

Let X1,...,X, be a sample of size n with a joint pdf/pmf f. Define

) 2
IX1,...,Xn(9) Ee [% log f(le"' >Xn|9)} )

which is called the (Fisher) information of § contained in Xj,..., X,,.

- What information does Ix, ... x, (0) offer?

[X17---,Xn(9) == Chs, p.34

Theorem 6.4 (TBp. 276)
Let Xi,...,X, be an i.i.d. sample of size n from a pdf/pmf f(z|6).

Ix, o x,(0) = Eo (59 log [[f(Xilﬁ)D —Ee[ gelogf(Xle)]

ZE(;[ 1ong\9) +QZE9[ long|6’)} [gelogf(XIH)]

1<J

e nlx, (0): interpreted as the information of # contained in a sample of
size n from f(-|0).

e The Fisher informations of independent samples are additive.




Theorem 6.4 (TBp. 276)
Under appropriate smoothness conditions on f ,

2

0g 1(3610)| = ~Eo | 5551w 610

06>

) ? )
Ix, () = Ey [5—9— log f(Xlle)} = Varg [69

Proof (for pdf case): Since [ f(x]0)dx =1 for all 6,
2 f(x|6
0 = &[S de =[G @) de = [ |BLG2] f(al6) do

= [ [35log f(2|0)] f(x]0) dx = Ey [f5log f(X4]0)] . ---(A)
= Vary :% log f(X1|9):

= Ey [& log f(X1|9):2 — {Ey [&1log f(X1]0)] }2
= By [ log £(X116)]”.
0 = a@fo zl0) dv = g [ [z5108 f(x]0)] f(x]6) dz
= [ |Zlog f(al6)| f(alt) du + [ [§ 108 £(2l0)]” f(2l0) du
— By | g log f(Xal6)| + Ey [§log £(X1]6)]".

(need smoothness of f for interchanging integration and differentiation.)

Ch8, p.36

Note (TBp. 278, 279)
For i.i.d. case,

Ball (8] = Ixiooe,(0) =1 I (6) = ~nEa | 7

\
O

2

o og 100

= —ZE@ {802 log f(X; |H)] = —Eq [%Zlogﬂ){il@)] = —Eo [I"(0)]

o interpretatlon. when |Ey[l"(0)]| is large at 6 = 6y,
[(0) is, on average, changing rapidly in a vicnity of 6,

Example 6.18 (Fisher information of i.i.d. Bernoulli B(6))

Let Xi,..., X, beii.d. from Bernoulli distribution B() (i.e., the pmf of X;
is, 0°(1 — )=, for x € {0,1}),

then F(X;) =60 and Var(X;) =6(1 —0).
e For a single observatoin X;, the first and second deratives of its log

likelihood are:
log f(z]#) = zlogd+ (1 —x)log(l —0),

0/001og f(xl6) = /60— (1—x)/(1—6) = (x —0)/(0(1—6)),
8%/90% log f(z]0) = —x/6%—(1—=z)/(1—0)
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e The Fisher information of a single observation, say Xj, is

3 Xi—-01°  Eg|(X:—6)?
Ia0) = E [9(1— J o P(1-0)
Varg(Xy)  0(1—-0) 1

02(1 —0)2  62(1—-60)2 6(1—06)

X1 1-X
Ix,(0) = —FEy|—=— —
a0 = |G- ]
B 9+ 1-—6 _1Jr I 1
82 (1-6)2 6 1-6 601-6)
e The Fisher information of observations X, ..., X, is
n

]le"'an (9) - n[Xl (9) -

Notice that Iy, ... x, (0)

— Increases when n increases,

— increases when 6 | 0 or 6 1 1,

— reaches a minimum 4n at 6 = 0.5.

Ch8, p.38
e Consider a single observation Y ~ Binomial(n, ). The pmf of Y is

flylo) = (Z)@y(l —0)" v, forye{0,1,...,n}.
— The second derative of log likelihood is
0°log f(yl0) /070 = —y/0” — (n —y)/(1 — 0)*.
— The Fisher information of Y, is
Y n-Y _n_0+n—n9_ n
2 (1-60)2] 6 (1-602 61-6)
— Note that Iy-(0) is the same as Iy, ... x, ().

Iy(0) = —FEy

Theorem 6.5 (consistency of MLE, TBp. 275)

Under appropriate smoothness conditions of f, the MLE from an i.i.d. sample
1s consistent.

Proof (sketch, for pdf case): Denote the true value of § by 6. The MLE

maximizes l(9) TlL > log f( l|9) What is the difference between
— — 1 6 ’|6p)dx and
The weak law of large numbers implies ﬁl?é ;ij 9))]]];(@‘3?)) d;c ;n
v 6, 1) s By, [log £(X|0)] = / | log f(x]0)] f(z]60) dz  as n — oo.
o 0o v, v /0
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For large n, the # value that maximizes [(f) should be close to the § value
that maximizes Eg,[log f(X|#)]. To maximize Egy,[log f(X|6)], consider

0 0 9 f(x]0
arEuliog 10x10)] = = [ 108 7(010)) g o = [ ZEED fsion)ao
If 0 = 60y then
9 9
aQEQO[logf X|9 /09 (x]6) da; 0“90 09/f = %l: 0.

Thus 0, is a Statlonary point and hopefully a maximizer.

Theorem 6.6 (asymptotic normality of MLE for one-dimensional parameter, TBp. 277)
Under some regularity conditions on f, the probability distribution of

n]Xl (00)(éMLE - 90)
tends to a standard Normal distribution as n tends to infinity, where
Oy 1S MLE and @ is the true value of 6.

Proof (sketch): Denote Oy Dy é By Taylor expansion,
0.=U'(9) ~ I'(6o) + (6 — 60)l" (6)

609~ LI

5 Chs, p.40
Consider the numerator, P

[Z’QO} ZEeo [aaelogf( |90)}=_,

Vary, [l/(eo)} = ZE_@ [;% log f(Xz‘|@)r = nlx, (0) -

And, since '(6) = _7_, & log f(X;|65), Central Limit Theorem implies that
I'(6p)/+/nlx,(0y) converges in distribution to a standard Normal random

variable. For the denominator,

" 2
M0 _ L~ r(xil6)

62
B | 5 08 FOGI00)| = =3, 0.

iw

n 002

—zl
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Notes (TBp. 277)

1. Theorem 6.6 (LNp.39) says the large sample distribution of an MLE is
approximately normal with

e mean fy and (= asymptotically unbiased)

e variance 1/(nlx,(6y)). (= 1/(nlx,(0y)) referred to as asymp-
totic variance)

2. Regularity conditions for Theorem 6.6 (LNp.39):
(a) True value 6§ is an interior point of the set of all parameter values

(e.g., the theorem would not be expected to apply in Ex 6.16,
LNp.27, if ag = 1.)

(b) Support of f(x|f), i.e., the set of z’s for which f(x|f) > 0, does
not depend on 6 (e.g., the theorem would not be expected to apply

to estimating 6 from a sample that are uniformly distributed on
the interval [0, 6] (Ex 6.13, LNp.22).)

Theorem 6.7 (Fisher information under reparameterization)

Under the reparameterization 7(6), the (Fisher) information of 7(0) is

I (r(6) = E | 5 bog 119 | = 2500
Proof: 2 g P2
I (r(0) = E[afg@) logf(X1!<9)] :E[aff9> D105 7110

— <7/29))2 - E l% log f(Xll@)}2 = IT),((IQ()QQ)

Theorem 6.8 (asymptotic normality of MLE under reparameterization)

Under the reparameterization 7(0), the MLE of 7(6), 7(f), is asymptotically
Normal with mean 7(6) and variance

1

Let X1,...,X, beiid ~ P(\). The MLE of A is A = X. The information

of Poisson distribution is:

0 = B[] = [ (V)]

[ 0

2 2
- — N N =g _— _
E _8)\(X10g)\ A 1ogX.)} E( >
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Or, 2 _
I () = -E | 5 o f(xXIN| = -E | S| = 3.

Hence, by theorem 6.6, the asymptotic distribution of X is Normal with

mean A and variance \/n.

_ Suppose that we are interested in the parameter 7 = 1/,
what is the (Fisher) information of 77 (Ans: 77?)

what is the MLE of 77 (Ans: 7y = 1/X)
what is the asymptotic distribution of the MLE?
what is its asymptotic variance?

Theorem 6.9 (multidimensional parameters, information and asymptotic normality of MLE, TBp.279)

Suppose © = (01,02,...,0;), a k-dimensional vector. Then, the asymptotic
joint distribution of the MLE © = (61, 0,,...,0;) is multivariate normal with

mean vector O and covariance matrix =171(0g) where I(0) is the k x k matrix

with ij-th component

Fo |2 1og £(X1/0) -2 1og £(X10)| = —Ee | =2
=0 |9, S\ T By, 08 SAEIE) | = T2 1 50 50,

Here, 1(©) is called the (Fisher) information matrix for ©.

log f(X1]©)] .

+ Reading: textbook, 8.5.2; Further reading: Hogg et al., 6.1, 6.2

Chs, p.44

» Data reduction --- the concepts of sufficiency, minimal sufficiency, and completeness

Question 6.1 (information and data reduction)

(numerical or graphical) transformations of data appear all the time in statis-
tics for offering a summary of information contained in data. For example,

order statistics

X(l),X(z), S ,X(n)

raw (original) data

X17X27"'7Xn

histogram

sample variance
% Z?:l(Xi _ Yn)2

To present or extract concrete information, the data reduction through use-
ful transformations is required. However, non-invertible transformations can
cause the loss of information. ( ) The lost information can be
important or worthless to the objective of studying the data.

How to examine whether the important information lost in transforma-

tion? Furthermore, what is tmportant information?
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Summary (formulation of information and data reduction problem, TBp. 305)

o Let X1, Xs,..., X, be asample with joint pdf/pmf f(x|©),

where © is unknown parameter.

— X1, X,, ..., X, contains two types of information:

* information related to ©

— [dgre example, toss a coin n tlmes, ie., X1,Xo,...,X, are ii.d.
from Bernoulli B(0),

x* X, or T =5 " X, contains information about 0

x When T is known, say 7" = ¢, the information that at which
trials the ¢ head’s occur is irrelevant to 6

*x n=9, consider the following possible results:

> (0,1, 1, 1, 1),Ti4;(1,g, L1,1),T=4 C D

(1,1,0,1,1), T=4;(1,1,1,0,1), T = 4;
(1,1, 1, 1, Q), =4
> (1,0,0,0,0),T=1;(0,1,0,0,0), T =1;
(07071707077—1:17( 707071_70)7T:17
(0,0,0,0,1), T=1
Ch8, p.46
e Information about 6 is revealed by the different values of 7', i.e., larger
T, 1 6, and vi : n
T, larger 0, and vice versa T=Y2 1%
(X1,...,Xn)

[s there a statistic T (X1, Xs, ..., X, ) which contains all the
information in the sample about 7 If so, a reduction of the original
data to this statistic without loss of information is possible.

Definition 6.13 (sufficient, TBp. 305)

A statistic T'(X1, Xo, ..., X,,) is said to be sufficient for 6 if the conditional

distribution of X;, Xs,...,X,, given T" = t does not depend on 6 for any
value of ¢.

Caution:

1. If T is a sufficient statistic, formally, we can keep only T and throw
away all X;’s. Realistically, the X,’s are used to check whether the
model did not fit, or that something was fishy about the data.

2. The definition of “all (important) information” depends on the statis-
tical modeling, i.e., the joint distribution assumption.




Example 6.20 (sufficient statistics of i.i.d. Bernoulli distribution, TBp. 306)

Let X4, ..., X, be asequence of independent Bernoulli random variables with
P(X;=1)=60. Let T =>_" | X, then

P(K = Jilgo -

P(Xlsz;Xn:xn‘T:t) —

)
eL—0)*t 1
(e —or=— ()

if 4 +--- 4+ x, = t and x; are nonnegative integers, and 0 otherwise. The
conditional distribution is independent of #. Hence T is sufficient for 6.

Theorem 6.10 (factorization theorem, TBp. 306)

A necessary and sufficient condition for T'(X3, ..., X,,) to be sufficient for a
parameter 6 is that the joint pdf or pmf of X;y,..., X, factors in the form

f(x17$27 o 03 7:Un|0) :g(T(xhx% ° 00 7ajn)7@ }i(.flfl,l’g, 000 7$n)

fintuition: P(X1=21,...,X,=x,)=PL =0O)PX1 =11,...,X,, = z,]] =1)
Proof: only for discrete case (continuous case requires some regularity con-
ditions, but the basic idea are the same.): (<) Suppose

flxy,xe, ..., x,]0) = g(T(azl,:cg, L ,azn),Q) h(xy, T, ..., Tp).

Chs, p.48

Then  pr_n— ¥ PX-x)-gt) 3 hx

T(x)=t L
o PX=xT=t)  g(t,0) h(x)
PX=x|T=t)= P(T = 1) T g(t,0) ZT(X):t h(x)’

which does not depend on 6. Hence T is sufficient for 6. (=-) Conversely,
suppose that the conditional distribution of X given 7' is independent of 6.
Let g(t,0) =P(T =t|0), h(x)=P(X =x|T =1).

Then P(X =x|0) = P(T =t|0)P(X = x|T =t) = g(t,0)h(x) as required.

Theorem 6.11 (MLE and sufficient statistics, TBp.309)

If T is sufficient for 0, then the maximum likelihood estimate for @, if unique,
is a function of T

Proof. From factorization theorem, the likelihood is g(¢,0)h(x).
To maximize this quantity we only need to maximize g(¢, 6)

Example 6.21 (cont. Ex. 6.20, sufficient statistic of i.i.d. Bernoulli distribution, TBp.309)

Let X1, Xo,..., X, be independent Bernoulli random variables

P(X;=x)=0°(1-0)""", z=0o0rl.

Then
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flxy, ..., z,]0) = H@wi(l — 9)l% = H2i=1 (] — Q)H—E?zlzci

=1

_ (LQ)Z—(l 0" = gt Oh(zy, ... 21)

n
where Z
t = Z; ,
i=1

[N

-

0\
7)) = (m) (1-6)", h(z)=1
Hence T'= 3" | X; is sufficient for 6.

Example 6.22 (sufficient statistics of 1.i.d. Normal distribution, TBp.308)

If X; ~N(u,0%), i=1,2,...,n, are ii.d, where u, o are unknown. Then
= 1 )
f(:cl,...,xn\u,U) = gamexp{_—ﬁ(xl—ﬂ) }

1
1
T oY { 2° (Zw Q“ZQCZ*”“)}

and (37, X;, >, X?) is a 2-dimensional sufficient statistic for (y, o).
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Question 6.2

There exist many sufficient statistics. A trivial example is the raw data. However,
a large collection of numbers is not as meaningful as a few good summary statistics.
How can we know whether the data has been reduced as much as possible and still
keep relelvant information?

Definition 6.14 (minimal sufficient statistic)

A sufficient statistic S for 6 is called minimal if S is a function of T for any
sufficient statistic T of 6.

-Xl-,'H:Xn zz ((AX'],....,X,”) S = h(T)

Example 6.23 (minimal sufficient statistics for i.i.d. Uniform distribution U(8 6+1))
Let Xi,...,X, be iid. from uniform distribution U(,0 + 1). Then, the

joint pdf is
f(x[0) = wa 6+1) (%) = Lz —1,000)(0),

where [, (u) = 1if a <wu < b and 0 otherwise. Therefore, T' = (X(1), X(»))

is sufficient for 6 by factorization theorem.
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Note that Ty = sup{g: f(x]|0) >0}, and
Tm) = 1+inf{0 : f(x]0) > 0}.

For a sufficient statistics T, by factorization theorem, f(x|0) = g(t, 0)h(x).
Therefore, for x such that h(x) > 0,

z@) =sup{f: g(t,0) >0} and z(,) =1+ inf{6: g(¢,0) > 0}.

We conclude that (X(1y, X)) is minimal sufficient.

Example 6.24 (cont. Ex. 6.23, ancillary statistics)
e In Example 6.23, the pdf of R = X,,) — X(y) is
n(n — 1)r"2(1 —r), (= Beta(n — 1,2))
for 0 < r <1, which is irrelevant to 6.
— For any 0, the appearance of the values of IR follows the same

probabilistic pattern.
(cf. T =577 | X;, where X,..., X, are i.i.d. from Bernoulli())

— The observed values of R do not carry information about 6
— That is, there exists transformation of the minimum sufficient
statistics X (1) and X(,) that contains no information about 6.

Ch8, p.52
e Statistics like R are called ancillary statistics, which have distri-

butions free of the parameters and seemingly contain no information
about the parameters.
e other example of ancillary statistics?
X1, , Xn, iid. N(6,1), X1, Xo, 1.i.d. Gamma(1,0),

52 =L 5" (X, — X)? is ancillary Z = Xl)ilx2 is ancillary

Question 6.3

Note that minimal sufficient statistics may still contain ancillary information.
What other property can guarantee sufficient statistics containing no ancillary
information?

Definition 6.15 (completeness, TBp.310)

Let f(s|0), 6 € Q, be a family of pdfs or pmfs for a statistic S = S(X1,..., X,)-
The family of probability distributions is called complete if Eg[u(S)] = 0 (or c:

a constant) for all § € O, where u is a function of .S, implies u(S) = 0 (or ¢) with

probability 1 for all € €). Equivalently, S is called a complete statistics.

(X1,...,Xn) S(X1,...,X,) u,(S): non-constant function  u,(S): constant function

o . . COl e CY Y
. . . of e e e e e
. . . £ R I SR SENC SE SR
. . . 4« e e s e 4
. . S . . . S
. . . . . . .
. . . . . . .
S . L K YR SR SR SR
. . . £ I AW S S S




e u(S) =c, c: a constant, is a trivial ancillary statistic and Ch8, p.53

Epu(S) —c¢] =0, for any 6.
S is complete < FEylu(S)] is a constant for all § implies
that the trnasformation u is a constant transformation.
S is complete < any transformations of S (except the

constant functions) containa some information about 6.

o In Example 6.24, Ep(R) = = +1 That is,
n—1
Xy — X1y — =R — Fyo(R
m — X = oy =R Ep(R)

has mean zero for all . = there is a nonzero function
of X(;) and X(,) whose expectation is zero for all 6.

Example 6.25 (sufficient and complete statistics of i.i.d. Uniform distribution U(0, §))
Let Xi,..., X, beii.d. from Uniform distribution U(0,60), 6 > 0.

e By factorization theorem, X, the largest order statistics, is sufficient.
e The pdf of X, is na™ !

Let u be a function such that Flu(X,))] = 0 for all §. Then
foe u(x)z" tdr =0, forall 6 > 0,

which implies
u(z)z" ' =0, a.s. for z € (0,00) = X, is complete.

Example 6.26 (sufficient and complete statistic of 1.i.d. Poisson distribution)

Suppose X, ..., X, is an i.i.d. sample from Poisson distribution P(\). Then

flxy, ..z A) = (e2MAZi=%) TR, =)
So S =>" X, is sufficient for A and S ~ P(n\). If u(S) is a function of S
s.t.,

0= Bfu(9)] = 55, B e por an

then, all coefficients of A are zero and u(s ) = (. Hence S is also complete.

Theorem 6.12

e A complete and sufficient statistic is minimal sufficient. However, a minimal

sufficient statistic is not necessarily complete (e.g., Ex.6.24 in LNp.53).

e If a non-constant function of a sufficient statistic S = (S1,...,S5%) is
ancillary, then S is not complete.

Definition 6.16 (one-parameter exponential family of probability distributions, TBp.308)
A family of distributions {f (33\0) : 0 € 1} is a one-parameter exponential

[ exp [ ¢
fale) = { 5

Y

c(0)T(x) ,d(0) ,S(x)
AR tl0) ol Z)

—~~
&
=
I
Q)

8 8
R M
D>|D>

where the set A does not depend on 6.
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Theorem 6.13 (sufficient and complete statistics, one-parameter exponential family, TBp.309)

Suppose X1, Xo,---,X,, is an i.i.d. sample from a member of the exponential
family, the joint probability function is

[y, an|0) =TI, exp[c(0)T(2:) + d(6) + S(z:)] La(z:)

= exp C(H)ZT(mi)+nd(Q)+ZS($i) HIA(J%),

where I4(z;) =1 if 2; € A and 0 otherwise. Then, Y " ; T(X;) is a sufficient
and complete statistics for 6.

Example 6.27 (some one-parameter exponential families, TBp.309)
e The pmf of the Bernoulli distribution B(60) is

P(X=z)= 0*(1—-60)1"% =exp [ﬁ log <i—§—9) + log(1 — 9)], x=0,1.

This is a one-parameter exponential family with 7'(x) = x. For i.i.d.
X1,..., X~ B(#), >, X; is sufficient and complete for 6.

e The pmf of the Binomial distribution B(m,#) is: for z € {0,...,m},
0
p(X =z) = (7:)01:(1 — )™ % = exp {ﬁ log = + mlog(l — 0)} (ZL)

This is a one-parameter exponential family with T(z) = x. For i.i.d.
X1,...,Xn ~ B(m,p), >, X; is sufficient and complete for 6.

Ch8, p.56
e The pmf of the Poisson distribution P()) is
| Sl oo - \A)
P(X =z)= e' =exp(x logA—A—logz!), x=0,1,2,...
xZ. - —

This is a one-parameter exponential family with T'(x) = z. For i.i.d.
Xi1,..., X, ~P(\), > " | X, is sufficient and complete for .

Definition 6.17 (regular k-parameter exponential family, TBp.309)

A family of distributions {f(z|©) : ©® € @ C R"*} is called a regular k-
parameter exponential family if the pdf or pmf is of the form

exp | S5, 6(0) Ty(@)| e(©)h(a), e A

0, otherwise

f(x;@)Z{

where © = (61,05, ...,0k) is k-parameter, and the following conditions hold:

1. A does not depend on O, and €2 contains a nonempty, k-dimensional open

rectangle.
2. {(¢1(9),q2(0),...,q:(0)) : © € Q} is non-degenerate and g;(O)’s are non-
trivial, functionally independent, continuous function of ©.

3. (a) For continuous case, T} (z)’s are linearly independent, continuous func-
tions of x over A; (b) For discrete case, Tj(x)’s are nontrivial functions of

x, and none is a linear function of the others.




.).

Let X, Xy, ---,X,, be an ii.d. sample from a regular k-parameter exponential

exponential famil

Theorem 6.14 (sufficient and complete statistics for regular k-parameter

fa,mﬂz, then n n n
S = "T(Xy), Sa=Y Ta(Xi),....S =D T(Xy)

is a minimal set of complete and sufficient statistics for 61,605, ..., 0.

Example 6.28 (some regular k-parameter exponential families)

e The pdf of the Normal distribution NV (y, o?) is
f(zlp,0) = 1/(V2m0)exp [—(z — p)?/(207)]

1 2
= exp [ LS. - —2&5 ~log(\/27m)}
o

o2 — 202 —

This is a regular two-parameter exponential family with 77(z) = z and
Ty(x) = 22. Consequently, for an i.i.d. sample X1,..., X, from N(u,o?),
(S1=>1" 1 Xi, So = > ;" X?) is a minimal set of sufficient and complete

statistics for (u,0?). Since the relations
S1 52“5%/”_ Z?:1(Xi_X)2

n n—1 a n—1

| >
Il
Il
i

i and

define a one-to-one transformation, (f1, 62) are also sufficient and complete
for (u, o?).

Ch8, p.58

° - Show that Multinomial distribution, Multinomial(n,p1,...,

pr), is a regular (r — 1)-parameter exponential family and find its sufficient
and complete statistics. [Hint: subsitute X, by n — X7 — Xo — -+ — X,

and&byl—}h—pz—“'—pr—l]

I Check whether other distributions given in LN, Chl1-6, p.58-85,
belong to exponential family.

+ Reading: textbook, 8.8, 8.8.1; Further reading: Hogg et al., 7.2, 7.4, 7.5, 7.7, 7.8, 7.9

» criteria for evaluating estimators

Question 6.4 (choice among different estimators of the same parameter, TBp.298)

e In most statistical estimation problems, there are a variety of possible
parameter estimators.

e Among these estimators, how to choose a better ones?

e What properties, that we have defined and discussed for estimators,
can be used to evaluate estimators?

1. unbiased 2. consistency (large sample criterion)

Note that the two criteria not directly compare the dispersion of esti-
mator. Any other criteria?
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Question 6.5 (TBp.298)

criteria related to dispersion of estimator: conceptually, perfer the estima-
tor whose sampling distribution is most concentrated around the true parameter
value. How to construct an operational definition, i.e., how to specify a quanti-

tative measure of the dispersion?

Definition 6.18 (mean square error, TBp.298)

The mean square error of an estimator Q at 0 is defined as /\
MSEy(0) = Eol(6 — 6)3. =0
Note that _/ \__

1. MSEp(0) = Vare(9) + [Bias(0)]?, where Bias(d) = Eo(f) — 0. °
2. If 0 is unbiased, MSEy(0) = Varg(0)

Definition 6.19 (relative efficiency, TBp.298)

.
.
>
.
U
)
D:

Suppose 6 and # are two estimators of parameter . The efficiency of 6 rela-

tive to 0 at 6 is defined as: /\
effy(0,0) = Vary(0)/Vary(0), VA B N

which is most meaningful when 6 and 6 are both unbiased. A

Note that eff(é,_é) = l/eff(é,_é). _é—\_

Chs, p.60

Notes (interpretation of relative efficiency, TBp. 298)

1. Finite sample case. effg(é, 0): accuracy of 0 relative to accuracy of 6.

= For 6 s.t. effy(0,6) > 1, Qhas smaller variance than 6 on the 6

2. Large sample case. When Var(d,) = cin”“(1 4 o(1)) and Var(@~ ) =
con™P(1+ o(1)), where n is the sample size, then

c/c1, ifa=4,
0, it o < 3,
0, it o > .
3. Relative sample size. When Var(én) = cn (1 + o(1)) and Var(é_m) =
com~ (14 o(1)), where n and m are the sample sizes. For n fixed, let m

be the smallest sample size such that Var(d,) > Var(f,,). Then

asymptotic relative efficiency = lim effy(6,6) =
n—r0o0

lim =~ lim effg(fn,0n) = 2

n—oo 11 n—oo —— C1

That is, effg(én, én) is approximately the ratio of sample sizes necessary

to obtain the same variance for 6,, and 6,,
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Example 6.29 (Muon Decay, TBp.299)

& = 3X: method of moments estimator
e MLE & solves Y i | X;/(14+aX;) =0

) 2 1 22 1+ az
“{a_alogfm“)} :/_1<1+ax>2( 2 )dw

E
ﬁ{logl*_’—a—za}, l<a<l,a#0
%, @y = (]

e The asymptotic relative efficiency is thus

, v Var(a) 208
dm effe(0,0) = lim Gray =32

[log(l _a)—Zoz}_l, for a # 0.

e The following table gives this efficiency for various values of «

o 0 0.1 0.2 0.3 04 - 0.9 0.95
lim, o effo(@,&) 1 0997 0.989 0.975 0953 --- 0.582 0.464

e The MLE is not much better than method of moments estimator for

a close to 0, but does increasingly better as a tends to 1.

Question 6.6 (TBp.300)

Is there a lower bound for the M SFE of any estimator? If such a lower bound

exists, what can it help us on the comparison and choice of estimators?

Ans: 1. It would function as a benchmark against which estimator could be com-
pared.

2. For estimators achieve the lower bound, they cannot be “improved” upon.

Theorem 6.15 (Cramer-Rao inequality, TBp.300)
Suppose Xi,..., X, are i.i.d. with pdf/pmf f(z]f), and T = T(X4,..., X,)

is an unbiased estimator of #. Then, under smooth assumptions on f(z|d),

1
V. >
ar@( ) EIXl (9)
Proof : Let
n P f X |0

Z=>Y =1 B

z ; g8/ (Xs Z )
Then Ey(Z) =0, Varg(Z) = nlx, (0). By the Cauchy-Schwarz inequality,

Z) < Vary(T)Varg(Z).




COV@ T Z EQ(TZ) EQ(T)E9<Z) Chs, p.63

_ / / IR Zaaf %'9} [ﬁf@;ﬂ@)} dridzy - - - de,

9 n
= /'”/T(xlax%”')wn) %Hf(IZIQ):| dmldIden

| — =1
1] f(:z:ile)} drydzy - - - dz,,

= 89/ / xl,IQ,... ) 11
“—E(T) o = 1 < Vary(T)Varyg(Z) = Vary(T) > e —
a b - = Yo i . = Varg(Z) nlx,(0)

v=1
and we have completed the proof.

1. An unbiased estimator whose variance achieves this lower bound will
have the smallest MSE among all unbiased estimators.

2. Theorem 6.15 does not preclude the possibility that there is a biased
estimator of 6 that has a smaller M SE than the unbiased estimator
that achieve the lower bound.

Definition 6.20 (efficiency, efficient, asymptotically efficient, TBp.302)

e The efficiency of an unbiased estimator Q of 0 is
A~ 1/nlx (0) 1
offp(§) = L2 6) _ _
Vary(0) nlx, (6)Vary(0)

e An unbiased estimator whose variance achieves the
lower bound is called efficient.

e [f the asymptotic variance of an estimator equals the lower bound,
the estimator is said to be asymptotically efficient.

Notes (TBp.302)

1. MLE is asymptotically efficient.

. For a finite sample size, MLE may not be efficient.

2
3. MLEs are not the only asymptotically efficient estimators.
4. There may exist biased and super efficient estimators. For example, if

Xi,..., X, is an iid sample ~ Normal(y, 1). Let o = X I(|X] > n~/%).
Then -

where o?(u) = 1 if p # 0 and ¢%(0) = 0.
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Example 6.30 (Poisson distribution, TBp.302)

For the Poisson distribution, Ix, (A\) = 1/A. For any unbiased estimator 7" of A,

based on a sample of i.i.d. Poisson variables X1, Xo,..., X,,,
Vary(T) > \/n.

MLE of )\ is X = S/n and

Vary(X) = \/n.
Hence X attains the Cramer-Rao lower bound. (Note. There may exist a
biased estimator of A that has a smaller MSE than X.)

Theorem 6.16 (generalization of Cramer-Rao inequality)
Suppose X1, ..., X, are i.i.d. with pdf/pmf f(z|0), and T = T'(Xy,...,X,,) is

an unbiased estimator of 7(6). Then, under smooth assumptions on f(x|f),

7'(6)?
Varg(T) > m

Example 6.31 (generalized negative binomial, TBp.302-305)

e The generalized negative binomial distribution has the pmf:
([ k \T(k+z) ( m \*
\m+k /) 2l(k) \mtk/) "~

Note that its mean is u = m and its variance is 0> = m + m?/k

f(rxlm. k) =
S\ vy

LR

g Ay oo e
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m: 7 of black balls | — v 5 F}lack balls that will be drawn before
k . # of white balls the kth white ball is drawn
e Generalized negative binomial model arises in several cases.

:| draw with replacement

1. If k£ is an integer, then the number of failures up to the kth success

in a sequence of Bernoulli trails with probability of success

p = k/(m + k) follows a generalized negative binomial distribution.
2. Hierarchical model: If A ~ Gamma(k, k/m), and X|A = A\ ~ Poisson(}),
then X ~ generalized negative binomial.

3. Biological model (Solomon, 1983): If N, the number of clusters/colonies,
follows a Poisson(A) distribution and X;, ¢ = 1,..., N, the numbers

of individuals in each colonies, follows a logarithmic series distribu-

tion with success probability p )
P(Xzzt): —1 (1_]7)
— — log(p) ¢
Assume that the X,’s are independent. Then the distribution of
the total number of individuals is generalized negative binomial with
k=—\/log(p) and p=m/(m + k).

4. birth, death rate = constant; immigration rate = constant

’ t:172a°'

Population size ~ generalized negative binomial
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e Estimation of m and k

method 1: method of moments estimators
—2
5 X
m=X. h=——

g2 — X

method 2:
ng = number of zeros out of a sample of size n

Po = (ﬁ,;)k = probability of zero count

If m is estimated by X, then k can be estimated by solving the

equation . k i

E o i ( X) g
- — = p— — 1+T o
_n kE+ X k

method 3: MLE is difficult to compute. MLE of m is the sample mean
X, but MLE of k is the solution of a nonlinear equation.

100 T T
1 ]

o Asymptotic relative efficiencies of 40 -. p g —
estimators (Figure 8.11 in textbook) . o : // o
— Method 2 is quite efficient £ T
when pg close to 1 or 0. 0s | Ao — <] :Z;: ;_577‘55)?:52:::
— Method 1 becomes more B
efficient as k increases. Mehod e
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e Insect counts data, Bliss and Fisher (1953)
— 25 leaves from each of 6 apple trees in an sprayed orchard
— number of adult female red mites on each of the leaves
number per leaf observed count Poisson fit Negative Binomial fit
0 70 47.7 69.5
1 38 54.6 37.6
2 17 31.3 20.1
3 10 12.0 10.7
4 9 3.4 5.7
5 3 0.75 3.0
6 2 0.15 1.6
7 1 0.03 0.85
8t 0 0.00 0.95
— Recursive algorithm for pmf of generalized negative binomial:
my\ —F kE+n-—1 m
Omkz(l—!——) nim, k) = n—1\m, k
F(0lm, ) )L k) = TR () fasim,

— Poisson fit is not good. Heterogeneous: the rates of insect infection
might be different on different trees and at different locations on the
same tree. (For the Poisson fit, polling the last 3 cells: x? = 82.4 ,
df=5, extremely small p-value; For the Negative Binomial fit, pooling
last 2 cells: x? = 2.48, df=5, p-value=0.22)

¢ Reading: textbook, 8.7; Further reading: Hogg et al., 6.2
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» method of finding estimator III --- UMVUE (or MVUE)

Question 6.7 (“best” unbiased estimator)

Among all unbiased estimators, how to find the “best” estimator, i.e., the one
that has the smallest MSE?

(Recall. [1]. MSEy(0) = Varg(f) for any unbiased estimator ﬁ,
[2]. Cramer-Rao bound)

Definition 6.21 (UMVUE)

An estimator T of 7(0) is called a (uniformly) minimum variance unbi-
ased estimator (UMVUE or MVUE) of 7(0) if

1. T* is unbiased for 7(6), and
2. for any unbiased estimator 1" of 7(0), Varg(T™*) < Varg(T') for all 6 € (.

Example 6.32 (cont. Ex. 6.30, UMVUE of Poisson mean, TBp.302)

e The Cramer-Rao bound for 7(0) = 6 is 6/n.

e On the other hand, E(X) = § and Var(X) = 0/n.
e Hence, X is a UMVUE of .
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Question 6.8

A UMVUE may not achieve the Cramer-Rao lower bound. Are there other
systematic procedures that can be used to derive/identify a UMVUE among
a large number of unbiased estimators?

Theorem 6.17 (Rao-Blackwell theorem, TBp.310)

Suppose X1, ..., X, have a joint pdf or pmf f(x1,...,x,;0), and

S =(S1,...,5) [
is sufficient for 6. If T" is any \‘l l | — S=s
estimator of 7(0) with E(T?) < oo, b
let

T*=Eo(T|5).

Then, all unbiased estimators
unbiased estimators and "x x
(1). Eg(T*)=Ey(T) for any 6, function of S

(2). T is a function of S alone and does not involve 6, i.e., T* is a statistics,

(3). Eo(T*—7(0))> < Eo(T —7(0))?, i.e., MSEy(T*) < MSEy(T), for every
0 and the equality is strict unless 7' = T".
(. Why T* better?)




Proof. e
1. E(T*) = E[E(T]9)] = E(T)

2. S is sufficient for § = distribution of Xj,..., X, | S not involve 6
= conditional distribution T'|S does not involve 6
= T* = E(T|S) is a function of S only
3 Var(T) = Var[E(T|S)] + E[Var(T|S)]
> Var[E(T'|S)] = Var(T™)
with equality if and only if E[Var(T|S)] = 0, i.e. Var(T|S) = 0 with
probability 1, which is the case only if T is a function of S, which would

imply T'=T"*.

Question 6.9 (uniqueness)

Suppose that two estimates 7} and T are unbiased (or have same bias). Which
of E(T1]S) and E(T15|S), where S is sufficient, has smaller variance? Is it possible
that there exists only one unique function of S that is unbiased (or has same
bias)?

Theorem 6.18

If the distribution of S is complete and E[u1(S5)] = 7(0), Eluz(S)] = 7(0) for
all 0, then E[u;(S) — ua(S)] = 0 for all 6, which implies that u,(S) = ua(5)
with probability 1 for any 6.
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Theorem 6.19 (Lehmann-Scheffe theorem)
Suppose that Xy, Xo,..., X,, have joint pdf/pmf f(x1,x2,...,2,;0) and S is a

complete and sufficient statistic for 6. If 7% = T™(S) is a function of S and
unbiased for 7(#). Then T* is the unique UMVUE of 7(6).

Proof. Suppose T is any other statistic with E(T) = 7(6) for all §. Then
E(TS) is also unbiased for 7(6) and a function of S. Completeness implies that
any statistic that is a function of S and unbiased for 7(0) must be equal to T*
with probability 1. Hence, T* = E(T|S) with probability 1 and

Var(T™") < Var(T) for all 6.
Therefore T™ is the unique UMVUE of 7(6).

Summary (methods of finding UMVUE)
1. fE(T) = 7(0) for all § and Var(T') achieves the Cramer-Rao lower bound.

Then T is a UMVUE of 7(0). (Note. A UMVUE may not attain Cramer-
Rao lower bound.)

2. If S is a complete sufficient statistic, and u(.S) satisfies E[u(S)] = 7(6) for
all #. Then u(S) is a UMVUE of 7(6).

3. If T is an unbiased estimator for 7(#) and S is a complete sufficient statistic
for §. Then E(T|S) is a UMVUE of 7(6).
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Example 6.33 (cont. Ex. 6.32, UMVUE of Poisson mean)

Suppose Xi,...,X,, is an ii.d. sample from Poisson(A) distribution. Then
S =3>" X, is a sufficient and complete statistics for \. Because X = S/n is
a function of S and E(X) = )\, X is UMVUE of \.

Example 6.34 (UMVUE of Normal mean and variance)

Let Xi,...,X, beiid. random variables from Normal distribution N (u,o?),
then X and S2 — E?zl(Xil—XF

e i n—

are sufficient and complete statistics for (u, 02). Clearly, E(X) = y and E(S?) =
o2 (Note. (n—1)S%/0%2 ~x2_; = E((n—1)5%/0%) =n—1), so X and S?
are unbiased estimator of ;1 and o, respectively. Since they depend only on the
sufficient and complete statistics, they are UMVUE.

Example 6.35 (UMVUE may not attain Cramer-Rao lower bound)

Let X ~ Poisson(\). Let T(X) =1 if X = 0 and T(X) = 0 otherwise. Then,
T is UMVUE of 7(\) = e * and Var(T) = e (1 — e=?). The Cramer-Rao
lower bound for e=* is e 2*/I(\) = e ?*\. Hence

Var(T) —e A =e *l—e*—e ) =e?*P(X>2)>0

and Cramer-Rao lower bound is not attained.
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Example 6.36 (UMVUE of Poisson zero probability)

Suppose Xi,...,X, is a sample from a Poisson(\) distribution. Then S =
> . X; = nX is complete and sufficient for A. To find a UMVUE of e, start

with 7(X; = 0), which is an unbiased estimator. Since
PX1 =035 Xi=35)
P( iy Xi = 5)
e Me " [(n — DA/ _ (1- 1
e~ (n\)s/s! n’’

the UMVUE of e is (1 — n=1)"X

Example 6.37 (cont. Ex. 6.25, UMVUE of Uniform upper bound, c.f. Ex. 6.13)

Suppose X1, ..., X,, is an i.i.d. sample from Uniform distribution U (0, 8). Be-

cause X, is sufficient and complete, and £ (X)) = 7{3‘197 -’%‘—lX (n) is unbiased
and is the UMVUE of 6.

Theorem 6.20

Suppose that S; and Sy are sufficient statistics for 6, and Sy = ¢g(51). If U is
an unbiased estimator for 7(6), let V3 = E(U|S1) and Vo = E(U|S3) then

Var(V5) < Var(V7).

+ Reading: textbook, 8.8.2; Further reading: Hogg et al., 7.1, 7.3, 7.6




