Point Estimation

• What is point estimation?

Example 6.1 (current across muscle cell membrane, TBp. 257-258)

- Bevan, Kullberg, and Rice (1979) studied <u>random fluctuations</u> of <u>current</u> across a muscle <u>cell membrane</u>. The cell membrane contained a <u>large number</u> of <u>channels</u>, which <u>opened and closed at random and were assumed to operate independently</u>. The <u>net current</u> resulted from <u>ions</u> flowing through open channels.
- They obtained 49,152 observations of the net current, x_1, \ldots, x_{49152} .
- The <u>net current</u> was the <u>sum</u> of a <u>large number</u> of roughly <u>independent</u> small currents.
- It seems appropriate to <u>model</u> the net current <u>data</u>, X_1, \ldots, X_{49152} as <u>i.i.d.</u> $N(\mu, \sigma^2)$, where μ and σ^2 represent the <u>mean</u> and <u>variance</u> of net current. Note that the values of μ and σ^2 are unknown.
- Question: how to use the observed data, $\underline{x_1, \dots, x_{49152}}$ to gain knowledge about the values of μ and σ^2 ?

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.2

Example 6.2 (emission of alpha particles, TBp. 255-256)

- Berkson (1966) conducted an experiment about <u>emission</u> of <u>alpha particles</u> from <u>radioactive sources</u>. The <u>number of emissions</u> per <u>unit of time</u> is <u>not constant</u> but fluctuates in a <u>random</u> fashion.
- The experimenter recorded 10,220 times between successive emissions. The numbers of emissions, x_i , i = 1, ..., 1027, observed in 1207 time intervals, each of length 10 sec, are summarized in the following table: $x_i \in \{0, 1, 2\} \quad x_i = 3 \quad x_i = 4 \quad \cdots$

e.g., in <u>28 of the 1207</u> intervals, there were <u>3 counts</u>, etc.

- Assume (1) the underlying <u>rate of emission</u> is <u>constant</u> over the period of observation (2) the <u>particles</u> come from a <u>very large number</u> of <u>independent sources</u>
- It seems appropriate to <u>model</u> the <u>numbers of emissions</u> X_1, \ldots, X_{1027} as <u>i.i.d.</u> $P(\lambda)$, where λ represents the underlying <u>rate of emission</u>. Note that the value of λ is unknown.
- Question: how to use the <u>observed data</u>, $\underline{x_1, \ldots, x_{1207}}$, to gain knowledge about the <u>value of λ ?</u>

Example 6.3 (rainfall amount, TBp. 258-259)

- Le Cam and Neyman (1967) studied rainfall amounts from storms.
- They obtained rainfall amount <u>data</u>, see the <u>graphs</u> for the <u>histogram</u> of the data. Let us denote x_1, \ldots, x_{227} as the <u>227</u> rainfall amounts.
- The family of $\Gamma(\alpha, \lambda)$, where $\alpha > 0, \lambda > 0$, provides a flexible set of pdfs for non-negative random variable. We may model the rainfall amount data, X_1, \ldots, X_{227} as i.i.d. $\sim \Gamma(\alpha, \lambda)$. Note that the values of α and λ are unknown.
- Question: how to use $\underline{x_1, \dots, x_{227}}$ to find a <u>particular</u> Gamma distribution $\underline{\Gamma(\alpha_0, \lambda_0)}$ that can "<u>best</u>" fit the observed data, i.e., which <u>pdf</u> of Gamma is "mostly similar" to the histogram?

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Cho n 4

Summary (procedure of fitting a particular distribution to data, i.e. point estimation)

- 1. observed data. x_1, \ldots, x_n
 - Ex 6.1: 49152 net currents; Ex 6.2: 1027 numbers of emissions; Ex 6.3: 227 rainfall amounts
- 2. **statistical modeling.** Regard $\underline{x_1, \ldots, x_n}$ as a <u>realization</u> of <u>random</u> variables $\underline{X_1, \ldots, X_n}$, and <u>assign</u> X_1, \ldots, X_n a <u>joint distribution</u>:

a joint cdf
$$\underline{F}(\cdot|\underline{\Theta})$$
, or a joint pdf $\underline{f}(\cdot|\underline{\Theta})$, or a joint pmf $p(\cdot|\Theta)$,

where $\Theta = (\theta_1, \dots, \theta_k)$, and $\underline{\theta_i's}$ are **fixed constants**, but their values are **unknown**.

- Ex 6.1: i.i.d. Normal, $\Theta = (\mu, \sigma^2)$
- Ex 6.2: i.i.d. Poisson, $\Theta = \lambda$
- Ex 6.3: i.i.d. Gamma, $\Theta = (\alpha, \lambda)$
- 3. **point estimation.** Find a function of X_1, \ldots, X_n , denoted by $\underline{\Theta}$, to estimate $\underline{\Theta}$ or a function of $\underline{\Theta}$, and substitute x_1, \ldots, x_n to get an estimate.

Notes

- 1. In statistical modeling, we define
 - (unknown) systematic pattern
 - random disturbance

in the data.

• For example,

(1)
$$X_1, ..., X_n$$
 i.i.d. $\sim N(\mu, 1)$

(1)
$$\underline{X_1}, \dots, \underline{X_n}$$
 i.i.d. $\sim N(\mu, 1)$ (2) $\underline{X_1}, \dots, \underline{X_n}$ i.i.d. $\sim N(\underline{\mu}, \underline{\sigma^2})$

Compare their difference:

— prediction of
$$\underline{\mu}$$
 (parameter) $\Rightarrow E(\overline{X}_n) = \mu$, $Var(\overline{X}_n) = \sigma^2/\underline{n}$
— prediction of $X_{n+1}(\underline{r.v.}) = \underline{\mu} + \epsilon_{n+1} \Leftarrow \epsilon_{n+1} \sim N(0,1)$

The assumptions given in statistical modeling (i.e., joint distribution) need to be examined.

Ch8, p.6

- 2. <u>distinctions</u> between X_1, \ldots, X_n and x_1, \ldots, x_n
 - X_1, \ldots, X_n are random variables while x_1, \ldots, x_n are values
 - different time points: before the data is collected $\Rightarrow X_1, \dots, X_n$; after the data is collected $\Rightarrow x_1, \dots, x_n$
 - statistical inference is usually developed on the basis of X_1, \ldots, X_n not x_1, \ldots, x_n . That is, we prefer to develop a statistical procedure that is "suitable" for all possible (future) observations under the consideration of their uncertainty, not only for a particular set of (past) observations.
- 3. (TBp.259) reasons for fitting a particular distribution to data
 - Scientific theory may suggest the form of a probability distribution, and parameters of that distribution may be of direct interest.
 - For descriptive purposes as a method of data summary or compression.
 - A probability model may play a role in complex modeling. For example, utility companies may model daily temperatures as random variables from a distribution, which may be used in simulations of <u>effects</u> of various pricing and generation schemes.

Definition 6.1 (parameter)

The <u>fixed</u> but <u>unknown</u> constant(s), i.e., $\underline{\Theta}$, in the <u>joint distribution</u> of X_1, \ldots, X_n are called <u>parameters</u>. Sometimes, <u>functions of Θ </u> are also called parameters.

Definition 6.2 (statistic, estimator, estimate, sampling distribution, TBp.260)

- A <u>statistic</u> is a <u>function of X_1, \ldots, X_n </u>.
- A (point) <u>estimator</u> $\hat{\theta}$ of a <u>parameter</u> θ is a <u>statistic</u> used to <u>estimate</u> θ , and a (point) <u>estimate</u> is <u>a value of</u> $\hat{\theta}$ computed based on the observed data $\underline{x_1, \ldots, x_n}$. Note that an <u>estimator</u> is a <u>random variable</u> and an <u>estimate</u> is a <u>number</u>.
- The distribution of an estimator is called sampling distribution.

Definition 6.3 (standard error, estimated standard error, TBp. 262)

- The <u>standard error</u> of an <u>estimator</u> is the <u>standard deviation</u> of its <u>sampling distribution</u>, i.e., $\sqrt{Var_{\underline{\theta}}(\hat{\theta})}$.
- An estimate of the standard error is called **estimated standard error**.

Definition 6.4 (bias, unbiased estimator, TBp. 262)

- The <u>bias</u> of an <u>estimator</u> is defined as $E_{\underline{\theta}}(\hat{\theta}) \theta$.
- An <u>estimator</u> is called <u>unbiased</u> if $E_{\theta}(\hat{\theta}) = \theta$, i.e., bias equals zero.

❖ Reading: textbook, 8.1, 8.2, 8.3

NTHU MATH 2820, 2025, Lecture Notes made by S -W. Cheng (NTHU, Taiwan)

Ch8, p.8

• Method of finding estimators I --- method of moments

Recall. The <u>kth moment</u> of a <u>distribution</u>, if exists, is

$$\mu_k \equiv E_{\theta}(X^k),$$

where X is a random variable following that <u>distribution</u>.

Definition 6.5 (sample moment, TBp. 260)

If $X_1, X_2, ..., X_n$ are i.i.d. random variables from a distribution, the kth **sample moment** is defined as:

$$\underline{\hat{\mu}_k} = \frac{1}{n} \sum_{i=1}^n X_i^k.$$

Definition 6.6 (method of moments, TBp. 261)

- Step 1. Calculate <u>low-order moments</u>, find <u>expressions</u> for the <u>moments</u> in terms of the parameters.
- **Step 2.** <u>Invert</u> the expressions found in Step 1, finding new <u>expressions</u> for the parameters in terms of the moments.
- Step 3. Insert the sample moments into the expressions obtained in Step 2, thus obtaining estimator of the parameters.

For example, suppose θ_1, θ_2 are <u>parameters</u> such that

$$\underline{\theta_1} = \underline{g_1(\mu_1, \mu_2)}; \qquad \underline{\theta_2} = \underline{g_2(\mu_1, \mu_2)}$$

then the method of moments estimators of θ_1 and θ_2 are

$$\underline{\hat{\theta}_1} = g_1(\underline{\hat{\mu}_1}, \underline{\hat{\mu}_2}); \qquad \underline{\hat{\theta}_2} = g_2(\underline{\hat{\mu}_1}, \underline{\hat{\mu}_2}).$$

Example 6.4 (Poisson distribution, TBp. 261)

• Suppose that X_1, \dots, X_n are i.i.d. $\sim P(\lambda)$. Then the first moment of $P(\lambda)$ is $\underline{\lambda}$. The first sample moment is $\hat{\mu}_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$.

$$\underline{\hat{\mu}_1} = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i.$$

Therefore, the method of moment estimator of λ is $\hat{\lambda} = \overline{X}$.

As an example, asbestos fibers on filters were counted as part of a project to develop measurement standards for asbestos concentration. Asbestos dissolved in water was spread on a filter, and punches of 3-mm diameter were taken from the filter. Counts of the numbers of fibers in each of 23 grid squares are

> 31 29 19 18 31 28 34 27 34 30 16 18 26 27 27 18 24 22 28 24 21 17 24

and the method of moments estimate of λ is $\lambda = 24.9$.

Ch8, p.10

Questions:

- 1. Is the estimate (i.e., 24.9) the real λ ?
- 2. Next time when the same procedure (same sample size, same estimator, same ...) is repeated again to get a new estimate, how far the future estimate will be away from 24.9?
- 3. In which range will you expect say 95% of the future estimate falls? (e.g., [24.8, 25] or [15, 35]?)
- 4. This is a question related to the stability/uncertainty/ variation of the estimator.
- 5. How to characterize the stability of an estimator? (**Note.** We have to answer the question using only the observed data.)

To evaluate the stability/uncertainty of an estimation procedure, it is required to know what the sampling distribution is.

Example 6.5 (cont. Ex.6.4, TBp. 262)

• Exact sampling distribution of $\hat{\lambda}$:

Because
$$X_1, X_2, \dots, X_n$$
 i.i.d. $\sim P(\lambda)$,
$$S = \underbrace{\sum_{i=1}^n X_i} \sim P(n\lambda)$$

$$\underline{E(\hat{\lambda})} = \frac{1}{n} E(S) = \underline{\lambda}, \quad \underline{Var(\hat{\lambda})} = \frac{1}{n^2} Var(S) = \underline{\lambda/n}.$$

Thus, (1) the <u>sampling distribution</u> of $\underline{\hat{\lambda}}$ is $\frac{1}{n}P(n\lambda)$, (2) $\underline{\hat{\lambda}}$ is <u>unbiased</u>, and (3) the <u>standard error</u> of $\underline{\hat{\lambda}}$ is $\sigma_{\hat{\lambda}} = \sqrt{\lambda/n}$.

• Estimated standard error of $\hat{\lambda}$ is

$$s_{\hat{\lambda}} = \sqrt{\hat{\lambda}/n} = \sqrt{24.9/23} = \underline{1.04}.$$

• Asymptotical method: By CLT, sampling distribution of $\hat{\lambda}$ is approximately normal when n is large enough. Since a normally distributed random variable is very unlikely to be more than $\underline{2}$ standard deviation away from its mean, errors in $\hat{\lambda}$ is very unlikely to be more than $\underline{2}$ standard than $\underline{2}$.

Ch8, p.12 $x_1, \ldots, x_n \text{ (values)}$ θ_0 (value) <u>realization</u> $X_1, \dots, X_n \xrightarrow{(\underline{r.v.'s})} \xrightarrow{\underline{function}} \hat{\theta} \xrightarrow{(\underline{r.v.})} \xrightarrow{\underline{point}} \theta \xrightarrow{(\underline{parameter})}$ simulation _ histogram sampling distribution joint cdf $F_{X_1,...,X_n}(\cdot|\theta)$ $\operatorname{cdf} F_{\hat{\theta}}(\cdot|\theta)$ $\operatorname{cdf} \underline{F}_{\hat{\theta}}(\cdot|\theta_0)$ estimated Normal cdf standard error standard error $\rightarrow \sigma(\theta_0)$ $\sigma(\theta)$

- exact distribution \Rightarrow the form of $F_{\hat{\theta}}(\cdot|\theta)$ is known
- asymptotical method \Rightarrow the form of $F_{\hat{\theta}}(\cdot|\theta)$ is close to Normal cdf (usually when \underline{n} is large) $-\cdots$
- simulation method \Rightarrow useful when the form of $F_{\hat{\theta}}(\cdot|\theta)$ is unknown -----

Example 6.6 (Normal distribution, TBp. 263)

• The <u>first</u> and <u>second</u> moments for $N(\mu, \sigma^2)$ are

$$\begin{cases} \underline{\mu_1} &= E(X) = \underline{\mu} \\ \underline{\mu_2} &= E(X^2) = \underline{\mu^2 + \sigma^2} \end{cases}$$

$$\Rightarrow \begin{cases} \underline{\mu} &= \underline{\mu_1} \\ \underline{\sigma^2} &= \underline{\mu_2 - \mu_1^2} \end{cases}$$

Let X_1, X_2, \ldots, X_n be i.i.d. $\sim N(\mu, \sigma^2)$, then the method of moment estimators of μ and σ^2 are

$$\begin{cases} \frac{\hat{\mu}}{\hat{\sigma}^2} = \overline{X} \\ \frac{\hat{\sigma}^2}{\hat{\sigma}^2} = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 \end{cases}$$

• Sampling distribution of \overline{X} is $\overline{Normal(\mu, \frac{\sigma^2}{n})}$ and sampling distribution of $\underline{\hat{\sigma}^2}$ is $\underline{\frac{\sigma^2}{n}\chi_{n-1}^2}$. Furthermore, \overline{X} and $\underline{\hat{\sigma}^2}$ are independent.

made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.14

Example 6.7 (Gamma distribution, TBp. 263-264)

• The <u>first two moments</u> of the $\Gamma(\alpha, \lambda)$ are

$$\begin{cases}
\frac{\mu_1}{\mu_2} = \frac{\alpha/\lambda}{\alpha(\alpha+1)/\lambda^2} \Rightarrow \begin{cases}
\frac{\lambda}{\alpha} = \frac{\mu_1/(\mu_2 - \mu_1^2)}{\alpha(\mu_2 - \mu_1^2)} \\
\frac{\lambda}{\alpha} = \frac{\lambda}{\alpha(\mu_1 - \mu_1^2)}
\end{cases}$$

Let X_1, X_2, \ldots, X_n be i.i.d. $\sim \Gamma(\alpha, \lambda)$, then the method of moment estimators of λ and α are

$$\underline{\hat{\lambda}} = \underline{\overline{X}/\hat{\sigma}^2}, \qquad \underline{\hat{\alpha}} = \underline{\overline{X}^2/\hat{\sigma}^2}$$

where $\hat{\sigma}^2 = \hat{\mu}_2 - \hat{\mu}_1^2$.

- As a concrete example, let us consider the fit of the <u>rainfall amounts</u> during <u>227</u> storms in Illinois from 1960 to 1964 (the <u>data</u>, listed in Problem 42, <u>Textbook p.414</u>). For the data, $\overline{X} = .224, \hat{\sigma}^2 = .1338$, therefore $\hat{\alpha} = .375$ and $\hat{\lambda} = 1.674$.
- What are the sampling distributions of $\hat{\alpha}$ and $\hat{\lambda}$?
 - Exact distributions are complicated.
 - <u>Asymptotic</u> method: Use <u>central limit theorem</u> and other <u>asymptotic</u> totic theorems to obtain the limiting distributions.
 - <u>simulation</u> method: bootstrap.

Ch8, p.16

Definition 6.7 (parametric bootstrap, TBp. 264-265)

Generate many, many samples of size n from a distribution. (True values of parameters in the distribution are unknown, so use their estimates). From each of the samples, compute the estimates of parameters. The histogram of these estimates should give a good idea of the sampling distribution of estimator.

Example 6.8 (cont. Ex.6.7, bootstrap, TBp. 265-266)

Generate 1000 samples of size 227 from $\Gamma(\hat{\alpha}, \hat{\lambda})$, where $\hat{\alpha}, \hat{\lambda}$ are set to be .375 and 1.674, respectively. From each of 1000 samples, compute the estimates of α and λ using the estimators $\hat{\lambda} = \overline{X}/\hat{\sigma}^2$, $\hat{\alpha} = \overline{X}^2/\hat{\sigma}^2$. Denote the 1000 estimates by α_i^*, λ_i^* , $i = 1, \ldots, 1000$. Histograms of them indicate the variability that is inherent in estimating the parameters from a sample of this size.

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Histogram of 1000 simulated method of moment estimates of (a) α and (b) λ .

We can find from the 1000 α_i^* 's and λ_i^* 's that:

- The histograms looks like normal.
- The histogram suggests that if $\alpha = 0.375$, then it is not very unusual that $\hat{\alpha}$ is in error by 0.1 or more.
- The <u>histograms</u> are <u>centered</u> at <u>0.375</u> and <u>1.674</u>, the (<u>regarded</u>-as-true) parameter values used in the simulation.
- Estimated standard error of $\hat{\alpha}$ is

$$\underline{s_{\hat{\alpha}}} = \sqrt{\frac{1}{1000} \sum_{i=1}^{1000} (\alpha_i^* - \overline{\alpha})^2} = \underline{0.06},$$

where $\underline{\overline{\alpha}}$ is the <u>mean</u> of the <u>1000 values</u>. Also, in the same way, $s_{\hat{\lambda}} = 0.34$.

• method of finding estimators II --- Maximum Likelihood Estimator (MLE)

Questions:

- Toss a coin 10 times. Let $\underline{\theta}$ be the probability of getting a head. Suppose that we know $\theta \in \{0.1, 0.5, 0.9\}.$
- When we get $\underline{7}$ heads out of the $\underline{10}$ tosses, which $\underline{\theta}$ is more plausible to generate the output?
- Hint. $P(7 \text{ heads} | \theta = 0.1) \approx 0.000,$ $P(7 \text{ heads} | \overline{\theta} = 0.5) \approx \overline{0.117},$ $P(7 \text{ heads} | \theta = 0.9) \approx 0.057.$

Definition 6.8 (likelihood, log likelihood, TBp. 267, 268)

Suppose random variables X_1, \ldots, X_n have a joint pdf or pmf

$$f(x_1,\ldots,x_n|\Theta).$$

Given the <u>observed values</u> $X_1 = x_1^*, \dots, X_n = x_n^*$, the <u>likelihood function</u> of Θ is defined as $\mathcal{L}(\Theta) = f(x_1^*, x_2^*, \dots, x_n^* | \Theta)$,

which is a function of Θ . The **log likelihood function** is defined as $\log \mathcal{L}(\Theta)$.

NTHU MATH 2820, 2025, Lecture Notes

Notes.

Ch8, p.18

- 1. We consider <u>likelihood</u> function as a function of θ while joint pdf/pmf as a function of x_i 's.
- 2. For discrete case, likelihood function gives the probability of observing the data as a function of θ .

Definition 6.9 (maximum likelihood estimator, TBp. 267)

The <u>maximum likelihood estimator</u> (MLE) of $\underline{\theta}$ is the <u>value of $\underline{\theta}$ </u> that maximizes the likelihood.

Interpretation. MLE makes the observed data "most probable" or "most likely," i.e., MLE gives the most "plausible" model given the observed data.

Note.

1. For <u>i.i.d.</u> case, the <u>likelihood</u> function and the <u>log likelihood</u> function are, respectively,

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} f(\underline{x_i^*}|\theta), \text{ and } l(\theta) = \sum_{i=1}^{n} \log f(\underline{x_i^*}|\theta).$$

2. Maximizing the likelihood function, $\mathcal{L}(\theta)$, is equivalent to maximizing its natural logarithm, $l(\theta)$, since the logarithm is a monotonic function.

Theorem 6.1 (invariance property of MLE)

If $\underline{\hat{\theta}}$ is the MLE of $\underline{\theta}$, then for any function of $\underline{\theta}$, denoted by $\underline{\tau(\theta)}$, the MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Proof. MLE of $\tau(\theta)$ is a solution of the maximization problem

$$\max_{\tau(\theta)} \frac{l(\theta)}{}$$

Since $\underline{\hat{\theta}}$ is the MLE of θ , the maximum is attained when $\underline{\theta} = \hat{\theta}$, which implies the MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Example 6.10 (i.i.d Poisson distribution, TBp. 268)

Suppose X_1, X_2, \dots, X_n are i.i.d. $P(\lambda)$. The log likelihood is

$$\underline{l(\lambda)} = \sum_{i=1}^{n} \underline{\log} \frac{e^{-\lambda} \lambda^{X_i}}{X_i!} = \underline{-n\lambda} + \underline{\log} \lambda \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} \log X_i!.$$

Setting $\underline{l'(\lambda)} = 0$ gives

$$\frac{1}{\lambda} \sum_{i=1}^{n} X_i - \underline{n} = 0.$$

The MLE is then

$$\hat{\lambda} = \overline{X}.$$

NTHU MATH 2820, 2025, Lecture Notes

Ch8, p.20

Check that this is a maximum:

$$\underline{l''(\lambda)} = -\frac{n\overline{X}}{\lambda^2} \leq 0 \quad \Rightarrow \quad \underline{l(\underline{\lambda})} \text{ is concave.}$$

• Example for Thm 6.1, LNp.19 \Rightarrow the MLE of $\frac{1}{\lambda}$ is $\frac{1}{\overline{X}}$.

Example 6.11 (i.i.d normal distribution, TBp. 269)

Suppose that X_1, X_2, \dots, X_n are i.i.d. $N(\mu, \sigma^2)$ random variables. The joint density is

$$f(\underline{x_1, x_2, \dots, x_n} | \underline{\mu, \sigma}) = \prod_{i=1}^n \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{x_i - \mu}{\sigma} \right)^2 \right].$$

The log likelihood is

$$l(\underline{\mu}, \underline{\sigma}) = \sum_{i=1}^{n} \left[-\frac{\log \sigma}{2} - \frac{1}{2} \log (2\pi) - \frac{1}{2} \left(\frac{X_i - \mu}{\sigma} \right)^2 \right].$$

Setting

$$\begin{cases} \underline{0} = \frac{\partial l}{\partial \mu} = \sigma^{-2} \sum_{i=1}^{n} (X_i - \mu) \\ \underline{0} = \frac{\partial l}{\partial \sigma} = -n \underline{\sigma}^{-1} + \underline{\sigma}^{-3} \sum_{i=1}^{n} (X_i - \mu)^2 \end{cases}$$

The MLE is then

$$\begin{cases} \frac{\hat{\mu}}{\hat{\sigma}} = \overline{X} \\ \frac{\hat{\sigma}}{n} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2} \end{cases}$$

which is the <u>same</u> as the method of moments estimators.

Check maximum \Rightarrow

$$\begin{pmatrix} \frac{\partial^2 l}{\partial \mu^2} & \frac{\partial^2 l}{\partial \sigma \partial \mu} \\ \frac{\partial^2 l}{\partial \mu \partial \sigma} & \frac{\partial^2 l}{\partial \sigma^2} \end{pmatrix} = -\begin{pmatrix} \frac{n}{\sigma^2} & \frac{2}{\sigma^3} \sum_{i=1}^n (X_i - \mu) \\ \frac{2}{\sigma^3} \sum_{i=1}^n (X_i - \mu) & \frac{3}{\sigma^4} \sum_{i=1}^n (X_i - \mu)^2 - \frac{n}{\sigma^2} \end{pmatrix}$$

which is <u>negative definite</u> when $\underline{\mu = \hat{\mu} \text{ and } \sigma = \hat{\sigma}}$ and $\underline{l \to 0}$ as $(\underline{\mu}, \sigma)$ tends to boundary.

- Example for Thm 6.1, LNp.19,
 - MLE of $\underline{\mu^2}$, the square of a normal mean, is \overline{X}^2
 - MLE of $\underline{\sigma^2}$, the variance, is $\frac{1}{n} \sum_{i=1}^n (X_i \overline{X})^2$

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.22

Example 6.12 (i.i.d restricted normal distribution)

Suppose X_1, X_2, \dots, X_n are i.i.d. from $N(\mu, 1)$ with $0 \le \mu < \infty$. The log likelihood is

$$\frac{l(\mu)}{l(\mu)} = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n} (X_i - \mu)^2
= -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n} (X_i - \overline{X})^2 - \frac{n}{2}(\overline{X} - \mu)^2.$$

Hence the MLE of μ is

$$\underline{\hat{\mu}} = \begin{cases} \frac{\overline{X}}{\overline{X}}, & \text{if } \frac{\overline{X} \ge 0}{\overline{X} < 0} \end{cases}$$

Example 6.13 (i.i.d uniform $(0, \theta)$ distribution)

Suppose X_1, X_2, \dots, X_n are i.i.d. $U(0, \theta)$, where $\theta > 0$. Then the <u>likelihood</u> of θ is

$$\underline{\mathcal{L}(\theta)} = \begin{cases} \frac{\theta^{-n}}{\underline{0}}, & \text{if } \underline{0 \leq X_i \leq \theta}, i = 1, \dots, n \\ \underline{0}, & \text{otherwise} \end{cases}$$

$$= \begin{cases} \frac{\theta^{-n}}{\underline{0}}, & \text{if } \underline{\theta \geq \max_{1 \leq i \leq n} X_i} = \underline{X_{(n)}} \geq 0 \\ \underline{0}, & \text{otherwise} \end{cases}$$

Because $\underline{\mathcal{L}}(\theta)$ decreases when $\underline{\theta}$ increases, the MLE of $\underline{\theta}$ is $\underline{X_{(n)}}$.

Example 6.14 (multinomial distribution, TBp. 272)

Suppose $X_1, X_2, ..., X_m$ are counts in cells 1, 2, ..., m and follow a multinomial distribution with total count n and cell probabilities $p_1, p_2, ..., p_m$ $(p_i \ge 0 \text{ for } i = 1, 2, ..., m, \text{ and } \underline{p_1 + p_2 + \cdots + p_m = 1})$. The joint pmf of $X_1, X_2, ..., X_m$ is

$$f(\underline{x_1, x_2, \dots, x_m} | \underline{p_1, p_2, \dots, p_m}) = \underline{\frac{n!}{\prod_{i=1}^m x_i!}} \prod_{i=1}^m \underline{p_i^{x_i}},$$

where $\underline{x_1 + x_2 + \cdots + x_m = n}$. For n given, the <u>log likelihood</u> is

$$l(\underline{p_1, p_2, \dots, p_m}) = \log n! - \sum_{i=1}^m \log X_i! + \sum_{i=1}^m \underline{X_i \log p_i}.$$

$$\Rightarrow$$
 maximize $l(p_1, p_2, \dots, p_m)$ subject to $\sum_{i=1}^m p_i = 1$.

Introduce a Lagrange multiplier λ , and maximize

$$l(p_1, p_2, \dots, p_m, \underline{\lambda}) \equiv \log n! - \sum_{i=1}^m \log X_i! + \sum_{i=1}^m X_i \log p_i + \underline{\lambda} \left(\sum_{i=1}^m p_i - 1 \right).$$

Setting
$$\frac{\partial l}{\partial p_i} = \frac{X_i}{p_i} + \lambda = \underline{0}, i = 1, 2, \dots, m \text{ gives}$$

$$\hat{p}_j = -\frac{X_j}{\lambda}, \quad j = 1, 2, \dots, m.$$

NTHU MATH 2820, 2025, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.24

Since

$$\sum_{i=1}^{m} \hat{p}_i = \sum_{i=1}^{m} -\frac{X_i}{\lambda}, \quad \underline{1} = -\frac{n}{\lambda}$$

we have $\underline{\lambda = -n}$. Hence, $\hat{p_i} = X_i/n$, i = 1, 2, ..., m.

Example 6.15 (Hardy-Weinberg Equilibrium, TBp. 273)

Hardy-Weinberg law: if gene frequencies are in equilibrium, the genotypes \underline{AA} , \underline{Aa} , and \underline{aa} occur in a population with frequencies $(1-\theta)^2$, $2\theta(1-\theta)$, and $\underline{\theta}^2$.

		Mother		
		\underline{A} [1- θ]	$\underline{a}\left[heta ight]$	
Father	$A[1-\theta]$	AA $[(1-\theta)^2]$	$\underline{Aa} \left[\theta (1-\theta) \right]$	
	$\underline{a}\left[heta ight]$	$\underline{\underline{Aa}} [\theta(1-\theta)]$	$\underline{aa}[\theta^2]$	

Question: If we sample \underline{n} (a fixed number) persons from the population, and let $\underline{X_1, X_2}$, and $\underline{X_3}$ (random variables) denote the counts in the three cells (AA, Aa, aa), what is a suitable statistical model (i.e., joint distribution) for $(\underline{X_1, X_2, X_3})$?

Notice that $n = X_1 + X_2 + X_3$.

$$\underbrace{(X_1, X_2, X_3)}_{\text{Log likelihood of } \underline{\theta} \text{ is}} \sim \underbrace{\frac{(1-\theta)^2}{2\theta(1-\theta)}, \underbrace{\frac{p_2}{\theta^2}}_{\text{log likelihood of } \underline{\theta}} \text{ is} }_{\text{log likelihood of } \underline{\theta} \text{ is}} \underbrace{(1-\theta)^2, 2\theta(1-\theta), \underbrace{\theta^2}_{\text{log } X_i!}}_{\text{log } (1-\theta)^2 + X_2 \log [2\theta(1-\theta)]} + X_3 \log \underline{\theta^2}_{\text{log } X_i!}$$

$$= \log n! - \sum_{i=1}^{3} \log X_i!$$

$$+ (\underline{2X_1 + X_2}) \log (\underline{1-\theta}) + (\underline{2X_3 + X_2}) \log \underline{\theta} + X_2 \log 2.$$

Setting
$$\frac{\frac{d}{d\theta}l(\theta) = 0}{\frac{1-\theta}{1-\theta}} + \frac{2X_3 + X_2}{\frac{\theta}{\theta}} = 0$$

yields the MLE of θ $\frac{\hat{\theta}}{\hat{\theta}} = \frac{2X_3 + X_2}{2X_1 + 2X_2 + 2X_3} = \frac{2X_3 + X_2}{2\underline{n}}.$

$$\frac{1}{X_3} = \frac{2X_3 + X_2}{2n}.$$

What is the difference between Ex. 6.14 and Ex. 6.15?

Chinese population data of Hong Kong in 1937: (M, N) are erythrocyte antigens)

Blood Type Total $\frac{23}{\text{Frequency}} \quad \frac{23}{342} \quad \frac{23}{500}$ 1029 (by Ex.6.14) 0.333 0.486 0.182

- 1. MLE is $\hat{\theta} = 0.4247 \Rightarrow (\hat{p}_1, \hat{p}_2, \hat{p}_3) = (0.331, 0.489, 0.180).$
- 2. Approximate the sampling distribution of $\hat{\theta}$ by bootstrap:
 - Generate 1000 random counts from multinomial with n = 1029and cell probabilities <u>0.331</u>, <u>0.489</u>, and <u>0.180</u>.

• From each of the <u>1000</u> experiments, a MLE value $\hat{\theta}^*$ was determined.

From the histogram of the 1000 estimates (Figure 8.7 in Textbook), which should approximate the sampling distribution of $\hat{\theta}$.

- Looks like Normal.
- Standard deviation of the 1000 values gives estimated standard error of θ : $s_{\hat{\theta}} = 0.011.$

Example 6.16 (Muon Decay, TBp. 266 & 271)

- Let $\underline{\Theta}$ be the <u>angle</u> at which <u>electrons</u> are <u>emitted</u> in <u>muon decay</u>.
- Let $X = \cos(\Theta)$. It has a distribution with pdf

$$f(x|\alpha) = \frac{1}{2}(1+\alpha x), \quad \underline{-1 \le x \le 1, -1 \le \alpha \le 1}.$$

• The $\underline{\text{mean}}$ of X is

$$\mu = \alpha/3 \Rightarrow \alpha = 3\mu$$
.

- The moments estimator of $\underline{\alpha}$ based on a sample $\underline{X_1, \dots, X_n}$ is $\hat{\alpha} = 3\overline{X}$.
- The log likelihood of α is

$$\underline{l(\alpha)} = \sum_{i=1}^{n} \underline{\log(1 + \alpha X_i)} - n \log 2.$$

Setting the <u>derivative</u> equal to <u>zero</u>, the <u>MLE of α </u> satisfies the <u>nonlinear</u> equation

$$\underline{0 = \frac{d}{d\alpha} l(\alpha)} = \sum_{i=1}^{n} \frac{X_i}{1 + \alpha X_i}.$$

- The MLE of α has no easy close-form solution.
 - \Rightarrow can use an iterative method to numerically solve for MLE.
 - \Rightarrow method of moments estimate could be used as a starting value.

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.28

Example 6.17 (i.i.d. Gamma distribution, TBp. 270)

- Suppose X_1, X_2, \dots, X_n are i.i.d. $\Gamma(\alpha, \lambda)$. The joint pdf is $f(\underline{x_1, x_2, \dots, x_n} | \underline{\alpha, \lambda}) = \prod_{i=1}^n \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x_i^{\alpha-1} e^{-\lambda x_i}$
- The log likelihood is

$$l(\underline{\alpha}, \overline{\lambda}) = \sum_{i=1}^{n} [\alpha \log \lambda + (\alpha - 1) \log X_i - \lambda X_i - \log \Gamma(\alpha)]$$
$$= \underline{n\alpha \log \lambda} + (\alpha - 1) \sum_{i=1}^{n} \log X_i - \lambda \sum_{i=1}^{n} X_i - \underline{n \log \Gamma(\alpha)}$$

• Setting
$$\begin{cases} \underline{0} = \frac{\partial l}{\partial \alpha} = \underline{n \log \lambda} + \sum_{i=1}^{n} \log X_i - n \frac{\Gamma'(\alpha)}{\Gamma(\alpha)} \\ \underline{0} = \frac{\partial l}{\partial \lambda} = \frac{n\alpha}{\lambda} - \sum_{i=1}^{n} X_i \end{cases}$$

• The MLE then satisfies

$$\begin{cases} \frac{\hat{\lambda} = \hat{\alpha}/\overline{X}}{n \log \hat{\alpha} - n \log \overline{X}} + \sum_{i=1}^{n} \log X_i - n \frac{\Gamma'(\hat{\alpha})}{\Gamma(\hat{\alpha})} = 0 \end{cases}$$

- $\underline{\text{2nd part}}$ is a $\underline{\text{nonlinear}}$ equation $\Rightarrow \underline{\text{no}}$ easy $\underline{\text{closed-form solution}}$.
 - \Rightarrow can use iterative method to find (approximate) the solution
 - \Rightarrow method of moments estimates can be used as initial value.

- Rainfall amount data (Ex 6.7-6.8, LNp.14-16):
 - 1. Take the initial value as the method of moments estimates

$$\hat{\alpha} = 0.375, \ \hat{\lambda} = 1.674.$$

By an <u>iterative</u> procedure, the <u>MLE's</u> are computed:

$$\hat{\alpha} = 0.441, \quad \hat{\lambda} = 1.96$$

- \Rightarrow of little practical difference from the <u>moment estimates</u>.
- 2. Exact sampling distribution of the MLE is intractable \Rightarrow can use simulation to approximate:
 - Generate many, say 1000, samples of size 227 from Gamma with $\alpha = 0.441$, $\lambda = 1.96$.
 - Form MLE of α , λ for each sample.
 - Construct histogram of the 1000 MLE's.
- 3. From the histograms of the simulated MLEs:
 - The histograms look like <u>normal</u>.

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.30

- Estimated standard error of the MLE's are

$$\underline{s_{\hat{\alpha}} = 0.04}, \ \underline{s_{\hat{\lambda}} = 0.28}.$$

Sampling distribution of <u>MLE's</u> are <u>less</u>
 <u>dispersed</u> than those of the method of moments estimates.

Summary (<u>advantages</u> of <u>MLE</u>)

- 1. easy to interpret
- 2. widely applicable
- 3. the <u>range</u> of the <u>MLE</u> <u>coincides</u> with the <u>range</u> of the <u>parameter</u>
- 4. invariance under reparameterizations
- 5. nice theoretical properties
- * Reading: textbook, 8.5, 8.5.1

• Large sample (asymptotic) theory for method of moment estimator and MLE

Recall: 1. Law of Large Number for sum/average

2. Central Limit Theorem -

Definition 6.10 (consistent, TBp. 266)

Let $\underline{\hat{\theta}_n}$ be an <u>estimator</u> of a parameter $\underline{\theta}$ based on a sample of <u>size</u> \underline{n} . Then $\underline{\hat{\theta}_n}$ is called <u>consistent</u> in <u>probability</u> if $\underline{\hat{\theta}_n}$ converges in probability to $\underline{\theta}$ as \underline{n} tends to infinity, i.e. for any $\epsilon > 0$,

$$\underline{P}\left(|\hat{\theta}_n - \theta| > \epsilon\right) \longrightarrow \underline{0} \text{ as } \underline{n \to \infty}.$$

> method of moment estimator

Theorem 6.2 (consistency of method of moment estimator, TBp. 266)

The weak law of large numbers implies that

$$\frac{1}{\underline{n}} \sum_{i=1}^{n} \underline{X_i^k} \equiv \underline{\hat{\mu}_k} \longrightarrow \underline{\mu_k} \text{ in probability as } \underline{n} \to \underline{\infty}.$$

If the <u>function</u> relating μ_k and θ_j are <u>continuous</u>, method of <u>moments estimators</u> are <u>consistent</u>.

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.32

Theorem 6.3 (justification for estimating standard errors, TBp. 266-267)

- Recall: In LNp.12, $\sigma_{\hat{\theta}}(\underline{\hat{\theta}}) \xrightarrow{\text{estimate}} \underline{\sigma_{\hat{\theta}}(\theta)}$
- Consider the <u>standard error</u> of the <u>form</u>: $\sigma_{\hat{\theta}}(\theta) = \frac{1}{\sqrt{n}} \underline{\sigma}^*(\theta)$
 - $\underline{\text{Ex. } 6.5} \text{ (LNp.11): } \sigma_{\underline{\hat{\lambda}}}(\lambda) = \frac{1}{\sqrt{n}} \underline{\sqrt{\lambda}}$
 - $\underline{\text{Ex. } 6.6} \text{ (LNp.13): } \sigma_{\underline{\hat{\mu}}}(\mu, \sigma) = \frac{1}{\sqrt{n}} \underline{\sigma}, \text{ and } \sigma_{\underline{\hat{\sigma}^2}}(\mu, \sigma) \approx \frac{1}{\sqrt{n}} \underline{\sqrt{2}\sigma^2}$
- Let $\underline{\theta_0 = \text{true parameter}}$, and $\underline{\sigma_{\hat{\theta}}} \equiv \sigma_{\hat{\theta}}(\underline{\theta_0}) = \frac{1}{\sqrt{n}} \sigma^*(\underline{\theta_0})$.
- Estimate $\sigma_{\hat{\theta}}$ by $s_{\hat{\theta}} \equiv \frac{1}{\sqrt{n}} \sigma^*(\hat{\theta}).$
- If (1) $\underline{\sigma^*(\theta)}$ is <u>continuous</u> in θ , and (2) $\underline{\hat{\theta}}$ is <u>consistent</u> $(\underline{\hat{\theta}} \xrightarrow{P} \theta_0)$, then

as
$$\underline{n \to \infty}$$
, $\frac{\sigma^*(\hat{\theta}) \xrightarrow{P} \sigma^*(\theta_0)}{\sigma_{\hat{\theta}}}$, i.e., $\left(\Rightarrow \underline{s_{\hat{\theta}} \xrightarrow{p} \sigma_{\hat{\theta}}} \to 0\right)$

> MLE

Note. the <u>following discussion</u> is mainly for (1) the case of <u>i.i.d.</u> sample, and (2) <u>one-dimensional</u> parameter.

Ch8, p.34

Definition 6.11 (score equation, score function)

• The log likelihood of an i.i.d. sample of size n from a pdf/pmf $f(x|\theta)$ is

$$\underline{l(\theta)} = \sum_{i=1}^{n} \underline{\log f(X_i|\theta)}.$$

The MLE maximizes $l(\theta)$ and is usually obtained by solving the score equation

$$\underline{0 = \frac{\partial}{\partial \theta} l(\theta)} = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f(X_i | \theta).$$

• $\frac{\partial}{\partial \theta} l(\theta) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f(X_i | \theta)$ is called **score function**.

Definition 6.12 (Fisher information for one-dimensional parameter, TBp.263)

Let X_1, \ldots, X_n be a sample of size n with a joint pdf/pmf f. Define

$$I_{\underline{X_1,...,X_n}}(\underline{\theta}) = \underline{\mathbf{E}_{\theta}} \left[\frac{\partial}{\partial \theta} \underline{\log f(\underline{X_1,\cdots,X_n}|\theta)} \right]^{\underline{2}},$$

which is called the **(Fisher) information** of $\underline{\theta}$ contained in X_1, \ldots, X_n .

Question: What information does $I_{X_1,\dots,X_n}(\theta)$ offer?

$$I_{X_1,\dots,X_n}(\theta) = \frac{\mathbf{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log f(\underline{X}_1,\dots,\underline{X}_n | \theta) \right]^2}{\|\mathbf{E}_{\theta}\|^2}$$

Theorem 6.4 (TBp. 276)

Let X_1, \ldots, X_n be an <u>i.i.d.</u> sample of <u>size n</u> from a pdf/pmf $f(x|\theta)$.

$$I_{X_1, \dots, X_n}(\theta) = E_{\theta} \left(\frac{\partial}{\partial \theta} \log \left[\prod_{i=1}^n f(X_i | \theta) \right] \right)^2 = \underline{E_{\theta}} \left[\sum_{i=1}^n \frac{\partial}{\partial \theta} \log f(X_i | \theta) \right]^2$$

$$= \sum_{i=1}^{n} \underline{\mathbf{E}_{\theta}} \left[\frac{\partial}{\partial \theta} \log f(X_{i}|\theta) \right]^{2} + 2 \sum_{i \leq j} \underline{\mathbf{E}_{\theta}} \left[\frac{\partial}{\partial \theta} \log f(X_{i}|\theta) \right] \underline{\mathbf{E}_{\theta}} \left[\frac{\partial}{\partial \theta} \log f(X_{j}|\theta) \right]$$

$$= n \mathcal{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_1 | \theta) \right]^2 \equiv n \cdot \underline{I_{X_1}(\theta)}$$

- $I_{X_1}(\theta)$ is the <u>Fisher information</u> contained in a sample of <u>size one</u>.
- $\underline{nI_{X_1}(\theta)}$: interpreted as the <u>information of θ </u> contained in a sample of size n from $f(\cdot|\theta)$.
- The Fisher informations of independent samples are additive.

Theorem 6.4 (TBp. 276)

Under appropriate $\underline{\text{smoothness conditions}}$ on f,

$$I_{X_1}(\theta) \equiv \mathcal{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_1 | \theta) \right]^2 = \underline{Var_{\theta}} \left[\frac{\partial}{\partial \theta} \log f(X_1 | \theta) \right] = -\underline{\mathcal{E}_{\theta}} \left[\frac{\partial^2}{\partial \theta^2} \log f(X_1 | \theta) \right]$$

Proof (for pdf case): Since $\int f(x|\theta) dx = 1$ for all θ ,

$$\frac{0}{\partial \theta} = \frac{\partial}{\partial \theta} \int f(x|\theta) dx = \int \frac{\partial}{\partial \theta} f(x|\theta) dx = \int \left[\frac{\partial}{\partial \theta} f(x|\theta) \right] \underbrace{f(x|\theta)}_{f(x|\theta)} \underbrace{f(x|\theta)}_{f(x|\theta)} dx \\
= \int \left[\frac{\partial}{\partial \theta} \log f(\underline{x}|\theta) \right] f(\underline{x}|\theta) dx = \underbrace{E_{\theta}}_{\theta} \left[\frac{\partial}{\partial \theta} \log f(\underline{X}_{1}|\theta) \right] . \quad \cdots (\Delta)$$

$$\Rightarrow Var_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_1 | \theta) \right]$$

$$= E_{\theta} \left[\frac{\overline{\partial} \log f(X_1 | \theta)}{\overline{\partial} \theta} \right]^2 - \left\{ E_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_1 | \theta) \right] \right\}^2$$
$$= E_{\theta} \left[\frac{\partial}{\partial \theta} \log f(X_1 | \theta) \right]^2.$$

$$0 = \frac{\partial^2}{\partial \theta^2} \int f(x|\theta) dx = \frac{\partial}{\partial \theta} \int \left[\frac{\partial}{\partial \theta} \log f(x|\theta) \right] f(x|\theta) dx$$

$$= \int \left[\frac{\partial^2}{\partial \theta^2} \log f(\underline{x}|\theta) \right] \underline{f(\underline{x}|\theta)} dx + \int \left[\frac{\partial}{\partial \theta} \log f(\underline{x}|\theta) \right]^2 \underline{f(\underline{x}|\theta)} dx$$

$$= \underline{E_{\theta}} \left[\underline{\frac{\partial^2}{\partial \theta^2}} \log f(\underline{X_1}|\theta) \right] + \underline{E_{\theta}} \left[\underline{\frac{\partial}{\partial \theta}} \log f(\underline{X_1}|\theta) \right]^2.$$

(need smoothness of f for interchanging integration and differentiation.)

NTHU MATH 2820, 2025, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.36

Note (TBp. 278, 279).

For <u>i.i.d.</u> case,

$$\underline{E_{\underline{\theta}}[l'(\underline{\theta})^{2}]} = \underline{I_{X_{1},...,X_{n}}(\theta)} = \underline{n} \cdot \underline{I_{X_{1}}(\theta)} = -n\underline{E_{\theta}} \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f(\underline{X_{1}}|\theta) \right] \\
= -\sum_{\underline{i=1}}^{n} \underline{E_{\theta}} \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f(\underline{X_{i}}|\theta) \right] = -\underline{E_{\theta}} \left[\frac{\partial^{2}}{\partial \theta^{2}} \sum_{\underline{i=1}}^{n} \log f(X_{i}|\theta) \right] = -\underline{E_{\theta}} [\underline{l''(\theta)}]$$

• interpretation: when $|E_{\theta}[l''(\theta)]|$ is large at $\theta = \theta_0$, $l(\theta)$ is, on average, changing rapidly in a vicinity of θ_0

Example 6.18 (Fisher information of i.i.d. Bernoulli $B(\theta)$)

Let X_1, \ldots, X_n be i.i.d. from Bernoulli distribution $B(\theta)$ (i.e., the pmf of X_i is, $\underline{\theta^x(1-\theta)^{1-x}}$, for $x \in \{0,1\}$),

then $E(X_i) = \theta$ and $Var(X_i) = \theta(1 - \theta)$.

• For a <u>single</u> observation X_i , the <u>first</u> and <u>second</u> deratives of its <u>log</u> likelihood are:

$$\frac{\log f(x|\theta)}{\partial/\partial\theta \log f(x|\theta)} = x \log \theta + (1-x) \log(1-\theta),$$

$$\frac{\partial/\partial\theta \log f(x|\theta)}{\partial^2/\partial\theta^2 \log f(x|\theta)} = x/\theta - (1-x)/(1-\theta) = (x-\theta)/(\theta(1-\theta)),$$

$$\frac{\partial^2/\partial\theta \log f(x|\theta)}{\partial\theta^2 \log f(x|\theta)} = -x/\theta^2 - (1-x)/(1-\theta)^2.$$

• The Fisher information of a single observation, say X_1 , is

$$I_{X_{1}}(\theta) = \underline{E}_{\theta} \left[\frac{X_{1} - \theta}{\theta(1 - \theta)} \right]^{2} = \frac{E_{\theta}[(X_{1} - \theta)^{2}]}{\theta^{2}(1 - \theta)^{2}}$$

$$= \frac{Var_{\theta}(X_{1})}{\theta^{2}(1 - \theta)^{2}} = \frac{\theta(1 - \theta)}{\theta^{2}(1 - \theta)^{2}} = \frac{1}{\theta(1 - \theta)}.$$

$$I_{X_{1}}(\theta) = -\underline{E}_{\theta} \left[-\frac{X_{1}}{\theta^{2}} - \frac{1 - X_{1}}{(1 - \theta)^{2}} \right]$$

$$= \frac{\theta}{\theta^{2}} + \frac{1 - \theta}{(1 - \theta)^{2}} = \frac{1}{\theta} + \frac{1}{1 - \theta} = \frac{1}{\theta(1 - \theta)}.$$

• The <u>Fisher information</u> of observations X_1, \ldots, X_n is

$$\underline{I_{X_1,\dots,X_n}(\theta) = nI_{X_1}(\theta)} = \frac{n}{\theta(1-\theta)}.$$

Notice that $I_{X_1,\dots,X_n}(\theta)$

- increases when n increases,
- increases when $\theta \downarrow 0$ or $\theta \uparrow 1$,
- reaches a minimum 4n at $\theta = 0.5$.

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.38

• Consider a <u>single</u> observation $\underline{Y} \sim \underline{\text{Binomial}(n, \theta)}$. The <u>pmf of Y is</u>

$$f(y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}, \text{ for } y \in \{0, 1, \dots, n\}.$$

- The second derative of log likelihood is

$$\partial^2 \underline{\log f(y|\theta)} / \underline{\partial^2 \theta} = \underline{-y/\theta^2 - (n-y)/(1-\theta)^2}.$$

- The Fisher information of \underline{Y} , is

$$I_Y(\theta) = -\underline{E}_{\theta} \left[-\frac{\underline{Y}}{\theta^2} - \frac{n - \underline{Y}}{(1 - \theta)^2} \right] = \frac{n\theta}{\theta^2} + \frac{n - n\theta}{(1 - \theta)^2} = \frac{n}{\theta(1 - \theta)}.$$

- Note that $\underline{I_Y(\theta)}$ is the <u>same</u> as $\underline{I_{X_1,\dots,X_n}(\theta)}$.

Theorem 6.5 (consistency of MLE, TBp. 275)

Under appropriate smoothness conditions of \underline{f} , the MLE from an i.i.d. sample is consistent.

Proof (sketch, for pdf case): Denote the true value of θ by θ_0 . The MLE

$$\underline{\text{maximizes}} \ \underline{\frac{l(\theta)}{n}} = \underline{\frac{1}{n}} \underline{\sum_{i=1}^{n}} \underline{\log f(\underline{X_i}|\theta)}.$$

What is the <u>difference</u> between $\int [\log f(x|\theta)] f(x|\underline{\theta_0}) dx$ and $\int [\log f(x|\theta)] f(x|\overline{\theta}) dx$?

The weak law of large numbers implies

$$\underline{\forall \theta}, \quad \underline{t(\theta)} \xrightarrow{\mathcal{P}} \underline{\mathbf{E}}_{\underline{\theta_0}}[\underline{\log f(X|\underline{\theta})}] = \int [\underline{\log f(x|\underline{\theta})}] \underline{f(x|\underline{\theta_0})} \, dx \quad \text{as } n \to \infty.$$

For large n, the $\underline{\theta}$ value that maximizes $l(\underline{\theta})$ should be close to the $\underline{\theta}$ value chapter and the maximizes $l(\underline{\theta})$ should be close to the $\underline{\theta}$ value chapter and $\underline{\theta}$ value chapter that maximizes $E_{\theta_0}[\log f(X|\theta)]$. To maximize $E_{\theta_0}[\log f(X|\theta)]$, consider

$$\frac{\partial}{\partial \theta} \mathbf{E}_{\underline{\theta_0}} [\log f(X|\underline{\theta})] = \frac{\partial}{\partial \theta} \int \left[\underline{\log f(x|\underline{\theta})} \right] \underline{f(x|\underline{\theta_0})} \, dx = \int \frac{\partial}{\partial \theta} f(x|\theta) \, dx \, .$$

If $\theta = \theta_0$ then

$$\frac{\partial}{\partial \theta} \mathcal{E}_{\theta_0} [\log f(X|\theta)] \Big|_{\theta = \theta_0} = \int \frac{\partial}{\partial \theta} f(x|\theta) \, dx \Big|_{\theta = \theta_0} = \frac{\partial}{\partial \theta} \int \underline{f(x|\theta)} \, dx \Big|_{\theta = \theta_0} = \frac{\partial}{\partial \theta} \underline{1} = 0.$$

Thus $\underline{\theta_0}$ is a stationary point and hopefully a maximizer.

Theorem 6.6 (asymptotic normality of MLE for one-dimensional parameter, TBp. 277)

Under some regularity conditions on f, the probability distribution of

$$\sqrt{nI_{X_1}(\theta_0)}(\hat{\theta}_{\text{MLE}}-\theta_0)$$

tends to a standard Normal distribution as n tends to infinity, where θ_{MLE} is MLE and θ_0 is the <u>true value of θ </u>.

Proof (sketch): Denote $\underline{\hat{\theta}}_{\text{MLE}}$ by $\underline{\hat{\theta}}$. By Taylor expansion,

$$\underline{0 = l'(\hat{\theta})} \approx l'(\underline{\theta_0}) + (\hat{\theta} - \underline{\theta_0})l''(\underline{\theta_0})$$

$$\underline{\sqrt{n}(\hat{\theta} - \theta_0)} \approx \frac{-l'(\theta_0)/\sqrt{n}}{l''(\theta_0)/n}$$

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Consider the numerator.

Ch8, p.40

$$\underline{\mathbf{E}_{\theta_0}} \left[\underline{l'(\theta_0)} \right] = \sum_{i=1}^n \underline{\mathbf{E}_{\theta_0}} \left[\frac{\partial}{\partial \theta} \log f(X_i | \underline{\theta_0}) \right] = \underline{\mathbf{0}},$$

$$\underline{\mathrm{Var}_{\theta_0}}\left[\underline{l'(\theta_0)}\right] = \sum_{i=1}^n \mathrm{E}_{\underline{\theta_0}} \left[\frac{\partial}{\partial \theta} \log f(X_i | \underline{\theta_0})\right]^2 = \underline{nI_{X_1}(\theta_0)}.$$

And, since $\underline{l'(\theta_0)} = \underline{\sum_{i=1}^n} \frac{\partial}{\partial \theta} \log f(X_i|\theta_0)$, Central Limit Theorem implies that $l'(\theta_0)/\sqrt{nI_{X_1}(\theta_0)}$ converges in distribution to a standard Normal random variable. For the denominator,

$$\frac{l''(\theta_0)}{n} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial^2}{\partial \theta^2} \log f(X_i | \theta_0) \xrightarrow{P} \underline{\mathbf{E}_{\underline{\theta_0}}} \left[\frac{\partial^2}{\partial \theta^2} \log f(X_i | \underline{\theta_0}) \right] = -I_{X_1}(\theta_0).$$

Hence

$$\sqrt{nI_{X_1}(\theta_0)}(\hat{\theta} - \theta_0) \xrightarrow{\mathcal{D}} N(0, 1)$$

Also,
$$\underbrace{\frac{\sqrt{nI_{X_1}(\theta_0)}(\hat{\theta} - \theta_0)}{N(0, 1)}}_{\text{Also}} \approx 0, \qquad \underbrace{\frac{\text{Var}_{\theta_0}(\hat{\theta} - \theta_0)}{N(0, 1)}}_{\text{N}(0, 1)} \approx \frac{1}{nI_{X_1}(\theta_0)}.$$

Thus, MLE $(\underline{\theta})$ is asymptotically unbiased and its asymptotic variance is

$$\underline{\left[nI_{X_1}(\theta_0)\right]^{-1}} = \underline{\left[I_{X_1,\dots,X_n}(\theta_0)\right]^{-1}} = \underline{\left[-E_{\theta_0}(l''(\theta_0))\right]^{-1}}.$$

Notes (TBp. 277)

- 1. Theorem 6.6 (LNp.39) says the large sample distribution of an MLE is approximately normal with
 - mean θ_0 and (\Rightarrow asymptotically unbiased)
 - variance $1/(nI_{X_1}(\theta_0))$. $(\Rightarrow 1/(nI_{X_1}(\theta_0))$ referred to as asymptotic variance)
- 2. Regularity conditions for Theorem 6.6 (LNp.39):
 - (a) True value θ_0 is an interior point of the set of all parameter values (e.g., the theorem would not be expected to apply in Ex 6.16, LNp.27, if $\alpha_0 = 1$.)
 - (b) Support of $f(x|\theta)$, i.e., the set of x's for which $f(x|\theta) > 0$, does not depend on θ (e.g., the theorem would not be expected to apply to estimating θ from a sample that are uniformly distributed on the interval $[0, \theta]$ (Ex 6.13, LNp.22).)

Theorem 6.7 (Fisher information under reparameterization)

Under the reparameterization $\tau(\theta)$, the (Fisher) information of $\tau(\theta)$ is

$$\underline{I_{X_1}(\tau(\theta))} \equiv \underline{\mathbf{E}} \left[\frac{\partial}{\partial \tau(\theta)} \log f(X_1 | \theta) \right]^2 = \frac{I_{X_1}(\theta)}{\tau'(\theta)^2}$$

made by S.-W. Cheng (NTHU, Taiwan)

Proof:

$$I_{X_{1}}(\tau(\theta)) = E\left[\frac{\partial}{\partial \tau(\theta)} \log f(X_{1}|\theta)\right]^{2} = E\left[\frac{\partial \theta}{\partial \tau(\theta)} \frac{\partial}{\partial \theta} \log f(X_{1}|\theta)\right]$$

$$= \left(\frac{1}{\tau'(\theta)}\right)^{2} \cdot E\left[\frac{\partial}{\partial \theta} \log f(X_{1}|\theta)\right]^{2} = \frac{I_{X_{1}}(\theta)}{\tau'(\theta)^{2}}$$

Theorem 6.8 (asymptotic normality of MLE under reparameterization)

Under the reparameterization $\tau(\theta)$, the MLE of $\tau(\theta)$, $\tau(\hat{\theta})$, is asymptotically Normal with mean $\tau(\theta)$ and variance

$$\frac{1}{nI_{X_1}(\tau(\theta))} = \frac{1}{\underline{n}} \cdot \frac{\tau'(\theta)^2}{I_{X_1}(\theta)}.$$

Example 6.19 (information and asymptotic distribution of MLE for Poisson mean, TBp.282)

Let X_1, \ldots, X_n be i.i.d $\sim P(\lambda)$. The <u>MLE</u> of $\underline{\lambda}$ is $\hat{\lambda} = \overline{X}$. The <u>information</u> of Poisson distribution is:

$$\underline{I_{X_1}(\lambda)} = \mathbb{E}\left[\frac{\partial}{\partial \lambda} \log \underline{f(X|\lambda)}\right]^2 = \mathbb{E}\left[\frac{\partial}{\partial \lambda} \underline{\log}\left(\frac{\lambda^X e^{-\lambda}}{X!}\right)\right]^2 \\
= \mathbb{E}\left[\frac{\partial}{\partial \lambda} (\underline{X \log \lambda} - \underline{\lambda} - \log X!)\right]^2 = \mathbb{E}\left(\frac{X}{\underline{\lambda}} - 1\right)^2 = \frac{1}{\underline{\lambda}}.$$

$$I_{X_1}(\lambda) = -\underline{\mathbf{E}}\left[\frac{\partial^2}{\partial \lambda^2}\log f(X|\lambda)\right] = -\mathbf{E}\left[\frac{-X}{\underline{\lambda^2}}\right] = \frac{1}{\underline{\lambda}}.$$

Hence, by theorem 6.6, the <u>asymptotic distribution</u> of \overline{X} is <u>Normal</u> with <u>mean λ </u> and variance λ/n .

Exercise: Suppose that we are interested in the parameter $\tau = 1/\lambda$,

- what is the (Fisher) information of τ ? (Ans: τ^{-3})
- what is the MLE of τ ? (Ans: $\hat{\tau}_{\text{MLE}} = 1/\overline{X}$)
- what is the asymptotic distribution of the MLE?
- what is its asymptotic variance?

Theorem 6.9 (multidimensional parameters, information and asymptotic normality of MLE, TBp.279)

Suppose $\underline{\Theta} = (\theta_1, \theta_2, \dots, \theta_k)'$, a \underline{k} -dimensional vector. Then, the <u>asymptotic</u> joint distribution of the <u>MLE</u> $\underline{\hat{\Theta}} = (\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_k)'$ is <u>multivariate normal</u> with <u>mean vector Θ_0 and <u>covariance matrix</u> $\underline{\frac{1}{n}}I^{-1}(\Theta_0)$ where $\underline{I}(\underline{\Theta})$ is the $\underline{k} \times \underline{k}$ matrix with \underline{ij} -th component</u>

$$\underline{\mathbf{E}_{\Theta}} \left[\underline{\frac{\partial}{\partial \theta_i} \log f(X_1 | \Theta)} \, \underline{\frac{\partial}{\partial \theta_j} \log f(X_1 | \Theta)} \right] = -\underline{\mathbf{E}_{\Theta}} \left[\underline{\frac{\partial^2}{\partial \theta_i \partial \theta_j}} \log f(X_1 | \Theta) \right] \, .$$

Here, $I(\Theta)$ is called the **(Fisher) information matrix** for Θ .

❖ Reading: textbook, 8.5.2; **Further reading**: Hogg et al., 6.1, 6.2

NTHU MATH 2820, 2025, Lecture Notes made by S -W. Cheng (NTHU, Taiwan)

Ch8, p.44

• Data reduction --- the concepts of sufficiency, minimal sufficiency, and completeness

Question 6.1 (information and data reduction)

(<u>numerical</u> or <u>graphical</u>) <u>transformations</u> of <u>data</u> appear all the time in statistics for offering a <u>summary of information</u> contained in data. For example,

To present or <u>extract</u> concrete <u>information</u>, the <u>data reduction</u> through useful <u>transformations</u> is required. However, <u>non-invertible</u> transformations can cause the <u>loss of information</u>. (<u>Example?</u>) The lost information can be <u>important</u> or <u>worthless</u> to the <u>objective</u> of studying the data.

Q: How to examine whether the important information lost in transformation? Furthermore, what is important information?

Summary (formulation of information and data reduction problem, TBp. 305)

- Let $X_1, X_2, ..., X_n$ be a sample with joint pdf/pmf $f(\mathbf{x}|\Theta)$, where Θ is unknown parameter.
 - $-X_1, X_2, \ldots, X_n$ contains two types of information:
 - * information related to Θ
 - * information irrelevant to Θ
 - For example, toss a coin n times, i.e., X_1, X_2, \ldots, X_n are i.i.d. from Bernoulli $B(\theta)$,
 - * $\overline{X_n}$ or $T = \sum_{i=1}^n X_i$ contains information about θ
 - * When <u>T</u> is known, say $T = \underline{t}$, the information that <u>at which</u> trials the <u>t</u> head's occur is irrelevant to θ
 - * n=5, consider the following possible results:
 - $(0, 1, 1, 1, 1), \underline{T = 4}; (1, \underline{0}, 1, 1, 1), T = 4; (1, 1, \underline{0}, 1, 1), T = 4; (1, 1, 1, \underline{0}, 1, 1), T = 4; (1, 1, 1, 1, 0), T = 4$
 - $(1, 0, 0, 0, 0), \underline{T = 1}; (0, \underline{1}, 0, 0, 0), T = 1; (0, 0, \underline{1}, 0, 0), T = 1; (0, 0, 0, \underline{1}, 0), T = 1; (0, 0, 0, \underline{1}, 0), T = 1; (0, 0, 0, \underline{1}, 0), T = 1;$

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.46

• Information about θ is revealed by the different values of T, i.e., larger T, larger θ , and vice versa. $T = \sum_{i=1}^{n} X_i$

 (X_1,\ldots,X_n)

• Question. Is there a statistic $T(X_1, X_2, ..., X_n)$ which contains all the information in the sample about θ ? If so, a reduction of the original data to this statistic without loss of information is possible.

Definition 6.13 (sufficient, TBp. 305)

A statistic $\underline{T(X_1, X_2, \dots, X_n)}$ is said to be <u>sufficient</u> for $\underline{\theta}$ if the <u>conditional</u> distribution of $\underline{X_1, X_2, \dots, X_n}$ given $\underline{T = t}$ does <u>not depend on $\underline{\theta}$ for any value of \underline{t} .</u>

Caution:

- 1. If \underline{T} is a sufficient statistic, formally, we can keep only \underline{T} and throw away all X_i 's. Realistically, the $\underline{X_i}$'s are used to check whether the model did not fit, or that something was fishy about the data.
- 2. The <u>definition</u> of "<u>all (important) information</u>" depends on the <u>statistical modeling</u>, i.e., the joint distribution assumption.

Example 6.20 (sufficient statistics of i.i.d. Bernoulli distribution, TBp. 306)

Let X_1, \ldots, X_n be a sequence of independent Bernoulli random variables with $\underline{P(X_i = 1) = \theta}$. Let $T = \sum_{i=1}^n X_i$ then

$$P(X_1 = x_1, ..., X_n = x_n | \underline{T = t}) = \frac{P(X_1 = x_1, ..., X_n = x_n, T = t)}{P(T = t)}$$

$$= \frac{\theta^t (1 - \theta)^{n-t}}{\binom{n}{t} \theta^t (1 - \theta)^{n-t}} = \frac{1}{\binom{n}{t}},$$

if $\underline{x_1 + \cdots + x_n = t}$ and $\underline{x_i}$ are nonnegative integers, and <u>0</u> otherwise. The conditional distribution is independent of θ . Hence T is sufficient for θ .

Theorem 6.10 (factorization theorem, TBp. 306)

A <u>necessary and sufficient condition for $T(X_1, \ldots, X_n)$ to be <u>sufficient</u> for a</u> parameter θ is that the joint pdf or pmf of X_1, \ldots, X_n factors in the form $\underline{f(x_1, x_2, \dots, x_n | \theta)} = \underline{g}(\underline{T(x_1, x_2, \dots, x_n)}, \underline{\theta}) \underline{h}(\underline{x_1, x_2, \dots, x_n})$

intuition:
$$P(X_1 = x_1, \dots, X_n = x_n) = P(T = t)P(X_1 = x_1, \dots, X_n = x_n | T = t)$$

Proof: only for discrete case (continuous case requires some regularity conditions, but the <u>basic idea</u> are the <u>same</u>.): (\Leftarrow) Suppose

$$f(x_1, x_2, \dots, x_n | \theta) = g(T(x_1, x_2, \dots, x_n), \theta) h(x_1, x_2, \dots, x_n).$$

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.48

Then
$$P(\underline{T=t}) = \sum_{\underline{T(\mathbf{x})=t}} \underline{P(\mathbf{X}=\mathbf{x})} = \underline{g(t,\theta)} \sum_{\underline{T(\mathbf{x})=t}} h(\mathbf{x}),$$
$$\underline{P(\mathbf{X}=\mathbf{x}|T=t)} = \frac{\underline{P(\mathbf{X}=\mathbf{x},T=t)}}{P(\underline{T=t})} = \frac{\underline{g(t,\theta)} \sum_{\underline{T(\mathbf{x})=t}} h(\mathbf{x}),$$

which does not depend on θ . Hence T is sufficient for θ . (\Rightarrow) Conversely, suppose that the conditional distribution of X given T is independent of θ . Let

 $g(t, \theta) = P(T = t | \theta), \quad h(\mathbf{x}) = P(\mathbf{X} = \mathbf{x} | T = t).$

Then $P(\mathbf{X} = \mathbf{x}|\theta) = P(\overline{T = t|\theta})P(\mathbf{X} = \mathbf{x}|T = t) = g(t,\theta)h(\mathbf{x})$ as required.

Theorem 6.11 (MLE and sufficient statistics, TBp.309)

If T is sufficient for θ , then the maximum likelihood estimate for θ , if unique, is a function of T.

Proof. From factorization theorem, the likelihood is $g(t,\theta)h(\mathbf{x})$. To maximize this quantity we only need to maximize $g(t,\theta)$

Example 6.21 (cont. Ex. 6.20, sufficient statistic of i.i.d. Bernoulli distribution, TBp.309)

Let X_1, X_2, \ldots, X_n be <u>independent Bernoulli</u> random variables

$$P(X_i = x) = \theta^x (1 - \theta)^{1-x}, \quad x = 0 \text{ or } 1.$$

Then

$$\underline{f(x_1, \dots, x_n | \theta)} = \prod_{i=1}^n \underline{\theta^{x_i} (1-\theta)^{1-x_i}} = \underline{\theta^{\sum_{i=1}^n x_i}} (1-\theta)^{n-\sum_{i=1}^n x_i}$$

$$= \left(\frac{\theta}{1-\theta}\right)^{\frac{\sum_{i=1}^n x_i}{t}} (1-\theta)^n = \underline{g(t, \theta)} h(x_1, \dots, x_n)$$
where
$$\underline{t = \sum_{i=1}^n x_i}, \quad \underline{g(t, \theta)} = \left(\frac{\theta}{1-\theta}\right)^t (1-\theta)^n, \quad \underline{h(x)} = \underline{1}$$

Hence $T = \sum_{i=1}^{n} X_i$ is <u>sufficient</u> for θ .

Example 6.22 (sufficient statistics of i.i.d. Normal distribution, TBp.308)

If $X_i \sim N(\mu, \sigma^2)$, i = 1, 2, ..., n, are <u>i.i.d</u>, where μ, σ are unknown. Then

$$f(x_1, \dots, x_n | \mu, \sigma) = \prod_{i=1}^n \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^2} (x_i - \mu)^2\right\}$$

$$= \frac{1}{\sigma^n (2\pi)^{\frac{n}{2}}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right\}$$

$$= \frac{1}{\sigma^n (2\pi)^{\frac{n}{2}}} \exp\left\{-\frac{1}{2\underline{\sigma}^2} \left(\sum_{i=1}^n x_i^2 - 2\underline{\mu} \sum_{i=1}^n x_i + n\underline{\mu}^2\right)\right\}$$

and $(\underline{\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2})$ is a <u>2</u>-dimensional <u>sufficient</u> statistic for (μ, σ) .

NTHU MATH 2820, 2025, Lecture Notes

Ch8, p.50

Question 6.2

There exist <u>many sufficient statistics</u>. A <u>trivial</u> example is the <u>raw data</u>. However, a <u>large collection</u> of <u>numbers</u> is <u>not as meaningful</u> as a <u>few good summary statistics</u>. How can we know whether the data has been <u>reduced</u> as <u>much</u> as <u>possible</u> and still keep relelvant information?

Definition 6.14 (minimal sufficient statistic)

A <u>sufficient</u> statistic \underline{S} for θ is called <u>minimal</u> if \underline{S} is a <u>function of T</u> for <u>any</u> sufficient statistic T of θ .

$$\underline{X_1, \dots, X_n}$$
 $\underline{T} = \underline{g}(\underline{X_1, \dots, X_n})$ $\underline{S} = \underline{h}(\underline{T})$

Example 6.23 (minimal sufficient statistics for i.i.d. Uniform distribution $U(\theta, \theta+1)$)

Let X_1, \ldots, X_n be i.i.d. from uniform distribution $U(\theta, \theta + 1)$. Then, the joint pdf is

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \underline{I_{(\theta,\theta+1)}}(\underline{x_i}) = I_{(\underline{x_{(n)}}-1,x_{(1)})}(\underline{\theta}),$$

where $\underline{I_{(a,b)}(u)} = 1$ if $a \le u \le b$ and 0 otherwise. Therefore, $T = (\underline{X_{(1)}}, \underline{X_{(n)}})$ is sufficient for θ by factorization theorem.

Note that

$$\underline{x_{(1)}} = \underline{\sup}\{\underline{\theta} : \underline{f(\mathbf{x}|\theta) > 0}\}, \text{ and}$$
$$x_{(n)} = 1 + \underline{\inf}\{\underline{\theta} : \underline{f(\mathbf{x}|\theta) > 0}\}.$$

For a sufficient statistics T, by factorization theorem, $f(\mathbf{x}|\theta) = g(t,\theta)h(\mathbf{x})$. Therefore, for **x** such that $h(\mathbf{x}) > 0$,

$$\underline{x_{(1)}} = \sup\{\theta : g(\underline{t}, \theta) > 0\} \text{ and } \underline{x_{(n)}} = 1 + \inf\{\theta : g(\underline{t}, \theta) > 0\}.$$

We conclude that $(X_{(1)}, X_{(n)})$ is minimal sufficient.

Example 6.24 (cont. Ex. 6.23, ancillary statistics)

• In Example 6.23, the \underline{pdf} of $\underline{R} = X_{(n)} - X_{(1)}$ is $n(n-1)\overline{r^{n-2}(1-r)}, \longrightarrow \overline{\text{Beta}(n-1,2)}$

for $0 \le r \le 1$, which is **irrelevant** to θ .

- For any θ , the appearance of the values of <u>R</u> follows the <u>same</u> probabilistic pattern. $\overline{(\underline{\text{cf. }}T = \sum_{i=1}^{n} X_i, \text{ where } X_1, \dots, X_n \text{ are i.i.d. from Bernoulli}(\theta))}$
- The observed values of R do not carry information about θ
- That is, there exists transformation of the minimum sufficient statistics $X_{(1)}$ and $X_{(n)}$ that contains no information about θ .

made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.52

- Statistics like R are called **ancillary statistics**, which have distributions free of the parameters and seemingly contain no information about the parameters.
- other example of ancillary statistics?

$$\frac{X_1, \dots, X_n, \text{ i.i.d. } N(\theta, 1),}{S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 \text{ is ancillary}} \frac{X_1, X_2, \text{ i.i.d. } Gamma(1, \theta),}{Z = \frac{X_1}{X_1 + X_2} \text{ is ancillary}}$$

$$X_1, X_2$$
, i.i.d. $Gamma(1, \theta)$, $Z = \frac{X_1}{X_1 + X_2}$ is ancillary

Question 6.3

Note that minimal sufficient statistics may still contain ancillary information. What other property can guarantee sufficient statistics containing no ancillary information?

Definition 6.15 (completeness, TBp.310)

Let $f(s|\theta)$, $\theta \in \Omega$, be a family of pdfs or pmfs for a statistic $S = S(X_1, \ldots, X_n)$. The family of probability distributions is called **complete** if $E_{\theta}[u(S)] = 0$ (or c: a constant) for all $\theta \in \Omega$, where u is a function of S, implies u(S) = 0 (or c) with probability 1 for all $\theta \in \Omega$. Equivalently, S is called a **complete statistics**.

$$\underline{(X_1,\ldots,X_n)}$$
 $\underline{S}(X_1,\ldots,X_n)$ $\underline{u_1}(S)$: non-constant function $\underline{u_2}(S)$: constant function

- $E_{\theta}[\underline{u(S)} \underline{c}] = \underline{0}$, for any $\underline{\theta}$. • \underline{S} is complete $\Leftrightarrow \underline{E_{\theta}[u(S)]}$ is a constant for all $\underline{\theta}$ implies that the transformation u is a constant transformation.
- S is complete \Leftrightarrow any transformations of S (except the constant functions) contains *some* information about θ .
- In Example 6.24, $E_{\theta}(R) = \frac{n-1}{n+1}$. That is,

$$X_{(n)} - X_{(1)} - \frac{n-1}{n+1} = R - E_{\theta}(R)$$

has $\overline{\text{mean zero for all } \theta}$. \Rightarrow there is a *nonzero* function of $X_{(1)}$ and $X_{(n)}$ whose expectation is zero for all θ .

Example 6.25 (sufficient and complete statistics of i.i.d. Uniform distribution $U(0,\theta)$)

Let X_1, \ldots, X_n be i.i.d. from Uniform distribution $U(0, \theta), \theta > 0$.

- By factorization theorem, $X_{(n)}$, the largest order statistics, is sufficient.
- The pdf of $X_{(n)}$ is $\frac{nx^{n-1}}{\theta^n}\underline{I_{(0,\theta)}(x)}.$

Let \underline{u} be a function such that $\underline{E}[u(X_{(n)})] = 0$ for all θ . Then

which implies $\frac{\int_0^{\theta} u(x) \underline{x^{n-1}} dx = 0, \text{ for } \underline{\text{all } \theta > 0},$

 $\underline{u(x)x^{n-1}} = 0$, a.s. for $\underline{x \in (0, \infty)}$ $\Longrightarrow \underline{X_{(n)}}$ is complete.

NTHU MATH 2820, 2025, Lecture Notes made by S -W. Cheng (NTHU, Taiwan)

Ch8, p.54

Example 6.26 (sufficient and complete statistic of i.i.d. Poisson distribution)

Suppose X_1, \ldots, X_n is an i.i.d. sample from Poisson distribution $P(\lambda)$. Then

$$\underline{f(x_1,\ldots,x_n;\lambda)} = (\underline{e^{-n\lambda}}\underline{\lambda}\underline{\sum_{i=1}^n x_i})/\underline{\prod_{i=1}^n x_i!}.$$

So $S = \sum_{i=1}^{n} X_i$ is sufficient for λ and $S \sim P(n\lambda)$. If $\underline{u(S)}$ is a function of S s.t., $\underline{0 = \mathbb{E}[u(S)]} = e^{-n\lambda} \sum_{s=0}^{\infty} \underline{\underline{u(s)(n)^s}}_{S!} \underline{\lambda^s}, \text{ for all } \underline{\lambda},$

then, all coefficients of λ are zero and u(s) = 0. Hence S is also complete.

Theorem 6.12

- A <u>complete and sufficient</u> statistic is <u>minimal sufficient</u>. However, a <u>minimal sufficient</u> statistic is not necessarily complete (e.g., Ex.6.24 in LNp.53).
- If a <u>non-constant function</u> of a <u>sufficient</u> statistic $\underline{S} = (S_1, \ldots, S_k)$ is ancillary, then \underline{S} is not complete.

Definition 6.16 (one-parameter exponential family of probability distributions, TBp.308)

A family of distributions $\{\underline{f(x|\theta)} : \underline{\theta} \in \Omega\}$ is a <u>one-parameter exponential</u> family if the pdf or pmf is of the form:

$$f(x|\theta) = \left\{ \overline{\frac{\exp\left[c(\theta) T(x) + d(\theta) + S(x)\right]}{0,}} = \underline{e^{c(\theta)T(x)}} \underline{e^{d(\theta)}} \underline{e^{S(x)}}, \quad x \in \underline{A} \\ x \notin \overline{A} \right\}$$

where the set A does not depend on θ .

Theorem 6.13 (sufficient and complete statistics, one-parameter exponential family, TBp.309)

Suppose X_1, X_2, \dots, X_n is an i.i.d. sample from a member of the exponential family, the joint probability function is

$$f(x_1, \dots, x_n | \theta) = \underline{\prod_{i=1}^n \exp\left[c(\theta)T(\underline{x_i}) + d(\theta) + S(\underline{x_i})\right]} \underline{I_A(x_i)}$$
$$= \underline{\exp\left[c(\theta)\sum_{i=1}^n T(x_i) + nd(\theta) + \sum_{i=1}^n S(x_i)\right]} \underline{\prod_{i=1}^n I_A(x_i)},$$

where $I_A(x_i) = 1$ if $x_i \in A$ and 0 otherwise. Then, $\sum_{i=1}^n T(X_i)$ is a sufficient and complete statistics for θ .

Example 6.27 (some one-parameter exponential families, TBp.309)

• The pmf of the Bernoulli distribution $B(\theta)$ is

$$\overline{P(X=x) = \theta^x (1-\theta)^{1-x}} = \exp\left[\underline{x} \log\left(\frac{\theta}{1-\theta}\right) + \log(1-\theta)\right], \ x = 0, 1.$$

This is a one-parameter exponential family with $\underline{T(x)} = \underline{x}$. For i.i.d. $\underline{X_1, \dots, X_n} \sim B(\theta)$, $\underline{\sum_{i=1}^n X_i}$ is sufficient and complete for θ .

• The <u>pmf</u> of the Binomial distribution $B(m, \theta)$ is: for $x \in \{0, ..., m\}$,

$$\underline{p(X=x) = \binom{m}{x} \theta^x (1-\theta)^{m-x}} = \underline{\exp\left[\underline{x} \log \frac{\theta}{1-\theta} + m \log(1-\theta)\right] \binom{m}{x}.$$

This is a <u>one-parameter exponential family</u> with $\underline{T(x)} = \underline{x}$. For <u>i.i.d.</u> $\underline{X_1, \ldots, X_n} \sim B(m, p)$, $\underline{\sum_{i=1}^n X_i}$ is <u>sufficient and complete</u> for θ .

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.56

• The pmf of the Poisson distribution $P(\lambda)$ is

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!} = \underline{\exp}(\underline{x} \, \underline{\log \lambda} - \lambda - \underline{\log x!}), \quad x = 0, 1, 2, \dots$$

This is a <u>one-parameter exponential family</u> with $\underline{T(x)} = \underline{x}$. For <u>i.i.d.</u> $\underline{X_1, \ldots, X_n} \sim P(\lambda)$, $\sum_{i=1}^n X_i$ is <u>sufficient and complete</u> for λ .

Definition 6.17 (regular k-parameter exponential family, TBp.309)

A family of distributions $\{\underline{f(x|\Theta)}: \underline{\Theta} \in \underline{\Omega} \subset \underline{\mathbb{R}^k}\}$ is called a **regular** \underline{k} -**parameter exponential family** if the pdf or pmf is of the form

$$f(x;\Theta) = \begin{cases} \frac{\exp\left[\sum_{j=1}^{k} q_j(\Theta) T_j(x)\right] c(\Theta)h(x), & x \in \underline{A} \\ 0, & \text{otherwise} \end{cases}$$

where $\Theta = (\theta_1, \theta_2, \dots, \theta_k)$ is k-parameter, and the following conditions hold:

- 1. \underline{A} does not depend on $\underline{\Theta}$, and $\underline{\Omega}$ contains a nonempty, \underline{k} -dimensional open rectangle.
- 2. $\{\underline{(q_1(\Theta), q_2(\Theta), \dots, q_k(\Theta))} : \underline{\Theta} \in \Omega\}$ is non-degenerate and $\underline{q_j(\Theta)}$'s are non-trivial, functionally independent, continuous function of Θ .
- 3. (a) For <u>continuous</u> case, $\underline{T_j(x)}$'s are <u>linearly independent</u>, <u>continuous</u> functions of x over A; (b) For <u>discrete</u> case, $\underline{T_j(x)}$'s are <u>nontrivial</u> functions of x, and none is a linear function of the others.

Theorem 6.14 (sufficient and complete statistics for regular k-parameter exponential family)

Let X_1, X_2, \dots, X_n be an i.i.d. sample from a regular k-parameter exponential family, then n

$$\underline{S_1} = \sum_{i=1}^n \underline{T_1(X_i)}, \quad \underline{S_2} = \sum_{i=1}^n \underline{T_2(X_i)}, \dots, \underline{S_k} = \sum_{i=1}^n \underline{T_k(X_i)}$$

is a <u>minimal set</u> of complete and sufficient statistics for $\theta_1, \theta_2, \dots, \theta_k$.

Example 6.28 (some regular *k*-parameter exponential families)

• The pdf of the Normal distribution $N(\mu, \sigma^2)$ is

$$f(x|\mu,\sigma) = 1/(\sqrt{2\pi}\sigma) \exp\left[-(x-\mu)^2/(2\sigma^2)\right]$$
$$= \exp\left[\frac{\mu}{\sigma^2} \frac{x}{2\sigma^2} - \frac{1}{2\sigma^2} \frac{x^2}{2\sigma^2} - \log(\sqrt{2\pi}\sigma)\right]$$

This is a regular <u>two-parameter exponential family</u> with $T_1(x) = x$ and $T_2(x) = x^2$. Consequently, for an <u>i.i.d.</u> sample X_1, \ldots, X_n from $N(\mu, \sigma^2)$, $(S_1 = \sum_{i=1}^n X_i, S_2 = \sum_{i=1}^n X_i^2)$ is a <u>minimal set</u> of <u>sufficient and complete</u> statistics for (μ, σ^2) . Since the relations

$$\frac{S_1}{n} = \overline{\overline{X}} \equiv \underline{\hat{\mu}} \quad \text{and} \quad \frac{S_2 - S_1^2/n}{n-1} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1} \equiv \underline{\hat{\sigma}^2}$$

define a <u>one-to-one</u> transformation, $(\hat{\mu}, \hat{\sigma}^2)$ are also <u>sufficient and complete</u> for (μ, σ^2) .

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.58

Exercise: Show that Multinomial distribution, $\underline{Multinomial(n, p_1, ..., p_r)}$, is a regular $\underline{(r-1)}$ -parameter exponential family and find its sufficient and complete statistics. [Hint: subsitute $\underline{X_r}$ by $\underline{n-X_1-X_2-\cdots-X_{r-1}}$ and $\underline{p_r}$ by $\underline{1-p_1-p_2-\cdots-p_{r-1}}$]

Exercise: Check whether other distributions given in LN, Ch1-6, p.58-85, belong to exponential family.

- **Reading**: textbook, 8.8, 8.8.1; **Further reading**: Hogg et al., 7.2, 7.4, 7.5, 7.7, 7.8, 7.9
- criteria for evaluating estimators

Question 6.4 (choice among different estimators of the same parameter, TBp.298)

- In most statistical <u>estimation</u> problems, there are <u>a variety of</u> possible parameter estimators.
- Among these estimators, how to choose a better ones?
- What <u>properties</u>, that we have defined and discussed for estimators, can be used to evaluate estimators?
 - 1. unbiased 2. consistency (large sample criterion)

Note that the two criteria <u>not directly compare</u> the <u>dispersion</u> of estimator. Any <u>other criteria?</u>

E(ô)

Question 6.5 (TBp.298)

<u>criteria</u> related to <u>dispersion</u> of estimator: conceptually, perfer the <u>estimator</u> whose <u>sampling distribution</u> is <u>most concentrated</u> around the <u>true parameter value</u>. How to construct an <u>operational definition</u>, i.e., how to specify a <u>quantitative measure</u> of the dispersion?

Definition 6.18 (mean square error, TBp.298)

The **mean square error** of an estimator $\underline{\hat{\theta}}$ at $\underline{\theta}$ is defined as

$$\underline{MSE_{\theta}}(\underline{\hat{\theta}}) = \underline{E_{\underline{\theta}}}[(\underline{\hat{\theta}} - \underline{\theta})^{\underline{2}}].$$

Note that

- 1. $MSE_{\theta}(\hat{\theta}) = Var_{\theta}(\hat{\theta}) + [Bias(\hat{\theta})]^2$, where $Bias(\hat{\theta}) = E_{\theta}(\hat{\theta}) \underline{\theta}$.
- 2. If $\hat{\theta}$ is unbiased, $MSE_{\theta}(\hat{\theta}) = Var_{\theta}(\hat{\theta})$

Definition 6.19 (relative efficiency, TBp.298)

Suppose $\underline{\hat{\theta}}$ and $\underline{\tilde{\theta}}$ are two estimators of parameter θ . The **efficiency of** $\underline{\hat{\theta}}$ **relative to** $\underline{\tilde{\theta}}$ at θ is defined as:

$$\underline{\operatorname{eff}_{\theta}}(\hat{\theta}, \tilde{\theta}) = \underline{\operatorname{Var}_{\theta}(\tilde{\theta})} / \underline{\operatorname{Var}_{\theta}(\hat{\theta})},$$

which is most meaningful when $\hat{\theta}$ and $\tilde{\theta}$ are both unbiased. Note that $\text{eff}(\tilde{\theta}, \hat{\theta}) = 1/\text{eff}(\hat{\theta}, \tilde{\theta})$.

Ch8, p.60

Notes (interpretation of relative efficiency, TBp. 298)

- 1. Finite sample case. $\underline{\text{eff}_{\theta}(\hat{\theta}, \tilde{\theta})}$: accuracy of $\hat{\theta}$ relative to accuracy of $\tilde{\theta}$. \Rightarrow For $\underline{\theta}$ s.t. $\underline{\text{eff}_{\theta}(\hat{\theta}, \tilde{\theta}) > 1}$, $\underline{\hat{\theta}}$ has smaller variance than $\underline{\tilde{\theta}}$ on the $\underline{\theta}$
- 2. <u>Large sample</u> case. When $\underline{\text{Var}(\hat{\theta}_n)} = \underline{c_1}\underline{n^{-\alpha}}(1 + \underline{o(1)})$ and $\underline{\text{Var}(\tilde{\theta}_n)} = \underline{c_2}\underline{n^{-\beta}}(1 + \underline{o(1)})$, where \underline{n} is the sample size, then

3. Relative sample size. When $\operatorname{Var}(\hat{\theta}_n) = \underline{c_1 n^{-1}} (1 + o(1))$ and $\operatorname{Var}(\underline{\tilde{\theta}}_m) = \underline{c_2 m^{-1}} (1 + o(1))$, where \underline{n} and \underline{m} are the sample sizes. For \underline{n} fixed, let \underline{m} be the smallest sample size such that $\operatorname{Var}(\hat{\theta}_n) \geq \operatorname{Var}(\tilde{\theta}_m)$. Then

$$\underline{\lim_{n \to \infty} \frac{m}{n}} \approx \underline{\lim_{n \to \infty} \operatorname{eff}_{\theta}(\hat{\theta}_n, \tilde{\theta}_n)} = \frac{c_2}{c_1}.$$

That is, $\underline{\text{eff}_{\theta}(\hat{\theta}_n, \tilde{\theta}_n)}$ is approximately the <u>ratio of sample sizes</u> necessary to obtain the <u>same variance</u> for $\hat{\theta}_n$ and $\tilde{\theta}_m$.

Example 6.29 (Muon Decay, TBp.299)

- $\tilde{\alpha} = 3\overline{X}$: method of moments estimator
- MLE $\hat{\alpha}$ solves $\sum_{i=1}^{n} X_i/(1+\hat{\alpha}X_i) = 0$ $Var(\tilde{\alpha}) = 9Var(\overline{X}) = (3-\alpha^2)/\underline{n}$
- $\underline{\mathrm{Var}(\hat{\alpha})} \approx [\underline{n}I(\alpha)]^{-1}$

$$I(\alpha) = E_{\alpha} \left[\frac{\partial}{\partial \alpha} \log f(X|\alpha) \right]^{2} = \int_{-1}^{1} \frac{x^{2}}{(1+\alpha x)^{2}} \left(\frac{1+\alpha x}{2} \right) dx$$

$$= \begin{cases} \frac{1}{2\alpha^{3}} \left[\log \frac{1+\alpha}{1-\alpha} - 2\alpha \right], & -1 < \alpha < 1, \alpha \neq 0 \\ \frac{1}{3}, & \alpha = 0 \end{cases}$$

• The asymptotic relative efficiency is thus

$$\underline{\lim_{n \to \infty}} \underbrace{\operatorname{eff}_{\alpha}(\tilde{\alpha}, \hat{\alpha})}_{n \to \infty} = \lim_{n \to \infty} \frac{\operatorname{Var}(\hat{\alpha})}{\operatorname{Var}(\tilde{\alpha})} = \frac{2\alpha^3}{3 - \alpha^2} \left[\log \left(\frac{1 + \alpha}{1 - \alpha} \right) - 2\alpha \right]^{-1}, \text{ for } \alpha \neq 0.$$

• The following table gives this efficiency for various values of α

α	0	0.1	0.2	0.3	0.4	• • •	0.9	0.95
$\overline{\lim_{n\to\infty}\operatorname{eff}_{\alpha}(\tilde{\alpha},\hat{\alpha})}$	1	0.997	0.989	0.975	0.953		0.582	0.464

The MLE is not much better than method of moments estimator for α close to 0, but does increasingly better as α tends to 1.

Ch8, p.62

Question 6.6 (TBp.300)

Is there a lower bound for the MSE of any estimator? If such a lower bound exists, what can it help us on the comparison and choice of estimators?

Ans: 1. It would function as a benchmark against which estimator could be compared.

2. For estimators achieve the lower bound, they cannot be "improved" upon.

Theorem 6.15 (Cramer-Rao inequality, TBp.300)

Suppose X_1, \ldots, X_n are i.i.d. with pdf/pmf $f(x|\theta)$, and $T = T(X_1, \ldots, X_n)$ is an <u>unbiased</u> estimator of θ . Then, under <u>smooth assumptions</u> on $f(x|\theta)$,

$$\underline{\operatorname{Var}_{\theta}(T)} \ge \frac{1}{\underline{n} \underline{I_{X_1}(\theta)}}$$

Proof: Let

$$\underline{Z} = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f(\underline{X_i}|\underline{\theta}) = \sum_{i=1}^{n} \frac{\frac{\partial}{\partial \theta} f(X_i|\underline{\theta})}{f(X_i|\underline{\theta})}.$$

Then $E_{\theta}(Z) = 0$, $Var_{\theta}(Z) = nI_{X_1}(\theta)$. By the Cauchy-Schwarz inequality,

$$\operatorname{Cov}_{\theta}^{2}(T, Z) \leq \operatorname{Var}_{\theta}(T) \operatorname{Var}_{\theta}(Z).$$

But

$$Cov_{\theta}(T, Z) = E_{\theta}(TZ) - E_{\theta}(T)E_{\theta}(Z)$$

$$= \int \cdots \int \underline{T(x_1, x_2, \dots, x_n)} \left[\sum_{i=1}^n \frac{\frac{\partial}{\partial \theta} f(x_i | \theta)}{f(x_i | \theta)} \right] \left[\prod_{j=1}^n f(x_j | \theta) \right] dx_1 dx_2 \cdots dx_n$$

$$= \int \cdots \int T(x_1, x_2, \dots, x_n) \left[\frac{\partial}{\partial \theta} \prod_{i=1}^n f(x_i | \theta) \right] dx_1 dx_2 \cdots dx_n$$

$$= \frac{\partial}{\partial \theta} \int \cdots \int \underline{T(x_1, x_2, \dots, x_n)} \left[\prod_{i=1}^n f(x_i | \theta) \right] dx_1 dx_2 \cdots dx_n$$

$$= \frac{\partial}{\partial \theta} \underline{\mathrm{E}}_{\theta}(T) = \frac{\partial}{\partial \theta} \underline{\theta} = \underline{1} \Rightarrow \underline{1} \leq \underline{\mathrm{Var}}_{\theta}(T) \underline{\mathrm{Var}}_{\theta}(Z) \Rightarrow \underline{\mathrm{Var}}_{\theta}(T) \geq \underline{\frac{1}{\mathrm{Var}}_{\theta}(Z)} = \underline{\frac{1}{nI_{X_{1}}(\theta)}}$$

and we have completed the proof.

Notes

- 1. An <u>unbiased</u> estimator whose <u>variance</u> achieves this lower bound will have the smallest MSE among all unbiased estimators.
- 2. Theorem 6.15 does <u>not preclude</u> the possibility that there is a <u>biased</u> estimator of θ that has a <u>smaller MSE</u> than the <u>unbiased</u> estimator that achieve the lower bound.

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.64

Definition 6.20 (efficiency, efficient, asymptotically efficient, TBp.302)

• The **efficiency** of an <u>unbiased</u> estimator $\hat{\theta}$ of θ is

$$\underline{\operatorname{eff}_{\theta}(\hat{\theta})} = \frac{1/nI_{X_1}(\theta)}{\operatorname{Var}_{\theta}(\hat{\theta})} = \frac{1}{nI_{X_1}(\theta)\operatorname{Var}_{\theta}(\hat{\theta})}.$$

- An <u>unbiased</u> estimator whose <u>variance</u> achieves the lower bound is called **efficient**.
- If the <u>asymptotic variance</u> of an <u>estimator equals</u> the <u>lower bound</u>, the estimator is said to be **asymptotically efficient**.

Notes (TBp.302)

- 1. MLE is asymptotically efficient.
- 2. For a finite sample size, MLE may not be efficient.
- 3. <u>MLEs</u> are not the only asymptotically efficient estimators.
- 4. There may exist <u>biased</u> and <u>super efficient</u> estimators. For example, if X_1, \ldots, X_n is an iid sample $\sim \text{Normal}(\mu, 1)$. Let $\underline{\tilde{\mu}} = \overline{X} \ \underline{I}(|\overline{X}| > n^{-1/4})$. Then

$$\sqrt{n}(\tilde{\mu} - \mu) \xrightarrow{D} \underline{N}(\underline{0}, \underline{\sigma^2(\mu)})$$

where $\underline{\sigma^2(\mu)} = 1$ if $\mu \neq 0$ and $\sigma^2(\underline{0}) = 0$.

Example 6.30 (Poisson distribution, TBp.302)

For the <u>Poisson</u> distribution, $\underline{I_{X_1}(\lambda)} = 1/\lambda$. For any <u>unbiased</u> estimator \underline{T} of λ , based on a sample of i.i.d. Poisson variables X_1, X_2, \ldots, X_n ,

$$\operatorname{Var}_{\lambda}(T) \ge \underline{\lambda/n}$$
.

<u>MLE</u> of λ is $\overline{X} = S/n$ and

$$\operatorname{Var}_{\lambda}(\overline{X}) = \lambda/n.$$

Hence \overline{X} attains the <u>Cramer-Rao lower bound</u>. (<u>Note</u>. There may <u>exist</u> a biased estimator of λ that has a smaller MSE than \overline{X} .)

Theorem 6.16 (generalization of Cramer-Rao inequality)

Suppose X_1, \ldots, X_n are i.i.d. with pdf/pmf $f(x|\theta)$, and $\underline{T} = T(X_1, \ldots, X_n)$ is an unbiased estimator of $\tau(\theta)$. Then, under smooth assumptions on $f(x|\theta)$,

$$\underline{\operatorname{Var}_{\theta}(T)} \ge \frac{\tau'(\theta)^2}{nI_{X_1}(\theta)}.$$

Example 6.31 (generalized negative binomial, TBp.302-305)

• The generalized negative binomial distribution has the pmf:

$$f(x|\underline{m,k}) = \left(\frac{k}{m+k}\right)^{\frac{k}{2}} \frac{\Gamma(k+x)}{x!\Gamma(k)} \left(\frac{m}{m+k}\right)^{\frac{x}{2}}, \ \underline{x=0,1,\dots}.$$

Note that its mean is $\mu = m$ and its variance is $\sigma^2 = m + m^2/k$

NTHU MATH 2820, 2025, Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.66

- Generalized negative binomial model arises in several cases.
 - 1. If \underline{k} is an <u>integer</u>, then the <u>number of failures</u> up to the \underline{k} th success in a <u>sequence of Bernoulli trails</u> with <u>probability of success</u> $\underline{p} = k/(m+k)$ follows a generalized negative binomial distribution.
 - 2. <u>Hierarchical model:</u> If $\underline{\Lambda} \sim \operatorname{Gamma}(k, k/m)$, and $\underline{X} | \underline{\Lambda} = \underline{\lambda} \sim \operatorname{Poisson}(\underline{\lambda})$, then $X \sim \operatorname{generalized}$ negative binomial.
 - 3. Biological model (Solomon, 1983): If N, the number of clusters/colonies, follows a Poisson(λ) distribution and X_i , i = 1, ..., N, the numbers of individuals in each colonies, follows a logarithmic series distribution with success probability p

$$\underline{P(X_i = t)} = \frac{-1}{\log(p)} \frac{(1-p)^t}{t}, \ t = 1, 2, \cdots.$$

Assume that the X_i 's are independent. Then the distribution of the total number of individuals is generalized negative binomial with $k = -\lambda/\log(p)$ and p = m/(m+k).

4. <u>birth</u>, <u>death rate</u> = <u>constant</u>; <u>immigration rate</u> = <u>constant</u> Population size \sim generalized negative binomial Estimation of m and k

method 1: method of moments estimators

method 2:

$$\underline{n_0} = \underline{\text{number of zeros}} \text{ out of a sample of } \underline{\text{size } n} \\
\underline{p_0} = \underline{\left(\frac{k}{m+k}\right)^k} = \underline{\text{probability}} \text{ of } \underline{\text{zero count}}$$

If \underline{m} is estimated by \overline{X} , then \underline{k} can be estimated by solving the equation

 $\frac{n_0}{n} = \left(\frac{\hat{k}}{\hat{k} + \overline{X}}\right)^{\hat{k}} = \left(1 + \frac{\overline{X}}{\hat{k}}\right)^{-\hat{k}}.$

method 3: MLE is difficult to compute. MLE of m is the sample mean X, but MLE of k is the solution of a nonlinear equation.

- estimators (Figure 8.11 in textbook) Asymptotic relative efficiencies of
 - when p_0 close to 1 or 0.
 - Method 1 becomes more efficient as k increases.

Ch8, p.68

• Insect counts data, Bliss and Fisher (1953)

- 25 leaves from each of 6 apple trees in an sprayed orchard
- number of adult female red mites on each of the leaves

<u>number</u> per leaf	observed <u>count</u>	Poisson fit	Negative Binomial fit
0	70	47.7	69.5
1	38	54.6	37.6
2	17	31.3	20.1
3	10	12.0	10.7
4	9	3.4	5.7
5	3	0.75	3.0
6	2	0.15	1.6
7	1	0.03	0.85
8+	0	0.00	0.95

- Recursive algorithm for pmf of generalized negative binomial:

$$\overline{f(\underline{0}|m,k) = \left(1 + \frac{m}{k}\right)^{-k}}, \quad f(\underline{n}|m,k) = \frac{k+n-1}{n} \left(\frac{m}{k+m}\right) f(\underline{n-1}|m,k)$$

- Poisson fit is not good. Heterogeneous: the rates of insect infection might be different on different trees and at different locations on the same tree. (For the Poisson fit, polling the last 3 cells: $\chi^2 = 82.4$, df=5, extremely small p-value; For the Negative Binomial fit, pooling last 2 cells: $\chi^2 = 2.48$, df=5, p-value=0.22)
- ❖ Reading: textbook, 8.7; Further reading: Hogg et al., 6.2

• method of finding estimator III --- UMVUE (or MVUE)

Question 6.7 ("best" unbiased estimator)

Among all unbiased estimators, how to find the "best" estimator, i.e., the one that has the smallest MSE?

[1]. $MSE_{\theta}(\hat{\theta}) = Var_{\theta}(\hat{\theta})$ for any unbiased estimator $\hat{\theta}$; (Recall.

[2]. Cramer-Rao bound)

Definition 6.21 (UMVUE)

An estimator T^* of $\tau(\theta)$ is called a (uniformly) minimum variance unbiased estimator (UMVUE or MVUE) of $\tau(\theta)$ if

- 1. T^* is unbiased for $\tau(\theta)$, and
- 2. for any unbiased estimator T of $\tau(\theta)$, $\operatorname{Var}_{\theta}(\underline{T}^*) \leq \operatorname{Var}_{\theta}(\underline{T})$ for all $\theta \in \Omega$.

Example 6.32 (cont. Ex. 6.30, UMVUE of Poisson mean, TBp.302)

- The Cramer-Rao bound for $\tau(\theta) = \theta$ is θ/n .
- On the other hand, $E(\overline{X}) = \theta$ and $Var(\overline{X}) = \theta/n$.
- Hence, \overline{X} is a <u>UMVUE</u> of θ .

Ch8, p.70

Question 6.8

A UMVUE may not achieve the Cramer-Rao lower bound. Are there other systematic procedures that can be used to derive/identify a UMVUE among a large number of unbiased estimators?

Theorem 6.17 (Rao-Blackwell theorem, TBp.310)

Suppose X_1, \ldots, X_n have a joint pdf or pmf $f(x_1, \ldots, x_n; \theta)$, and

$$S = (S_1, \dots, S_k)$$

is sufficient for θ . If T is any estimator of $\tau(\theta)$ with $E(T^2) < \infty$, let

$$S=s$$

$$\underline{T^*} = \underline{\underline{E_\theta}}(\underline{T} \mid \underline{S}).$$

Then.

- (1). $E_{\theta}(T^*)=E_{\theta}(T)$ for any θ ,
- (2). T^* is a function of S alone and does not involve θ , i.e., T^* is a statistics,

all unbiased estimators

unbiased estimators and

function of S

(3). $E_{\theta}(T^* - \tau(\theta))^2 \leq E_{\theta}(T - \tau(\theta))^2$, i.e., $MSE_{\theta}(T^*) \leq MSE_{\theta}(T)$, for every $\underline{\theta}$ and the equality is strict unless $T = T^*$. Q: Why $\overline{T^*}$ better?)

Proof.

- 1. $E(T^*) = E[E(T|S)] = E(T)$
- 2. S is sufficient for $\theta \Rightarrow$ distribution of $X_1, \ldots, X_n \mid S$ not involve θ
 - \Rightarrow conditional distribution T|S does not involve θ
 - $\Rightarrow T^* = E(T|S)$ is a function of S only
- 3. $\frac{\overline{\operatorname{Var}(T)}}{\geq} = \frac{\operatorname{Var}[\operatorname{E}(T|S)]}{\operatorname{Var}[\operatorname{E}(T|S)]} + \frac{\operatorname{E}[\operatorname{Var}(T|S)]}{\operatorname{Var}(T^*)}$

with equality if and only if E[Var(T|S)] = 0, i.e. Var(T|S) = 0 with probability 1, which is the case only if T is a function of S, which would imply $T = T^*$.

Question 6.9 (uniqueness)

Suppose that two estimates $\underline{T_1}$ and $\underline{T_2}$ are <u>unbiased</u> (or have <u>same bias</u>). Which of $\underline{E(T_1|S)}$ and $\underline{E(T_2|S)}$, where \underline{S} is sufficient, has <u>smaller variance</u>? Is it possible that there exists only one <u>unique function of S</u> that is <u>unbiased</u> (or has <u>same bias</u>)?

Theorem 6.18

If the distribution of <u>S</u> is complete and $E[\underline{u_1(S)}] = \underline{\tau(\theta)}$, $E[\underline{u_2(S)}] = \underline{\tau(\theta)}$ for all $\underline{\theta}$, then $E[\underline{u_1(S)} - \underline{u_2(S)}] = \underline{0}$ for all $\underline{\theta}$, which implies that $\underline{u_1(S)} = \underline{u_2(S)}$ with probability 1 for any $\underline{\theta}$.

NTHU MATH 2820, 2025, Lecture Notes made by S.-W. Cheng (NTHU, Taiwan)

Ch8, p.72

Theorem 6.19 (Lehmann-Scheffe theorem)

Suppose that $X_1, X_2, ..., X_n$ have joint pdf/pmf $f(x_1, x_2, ..., x_n; \theta)$ and S is a complete and sufficient statistic for θ . If $T^* = T^*(S)$ is a function of S and unbiased for $\tau(\theta)$. Then T^* is the unique UMVUE of $\tau(\theta)$.

Proof. Suppose \underline{T} is any other statistic with $\underline{E}(T) = \tau(\theta)$ for all θ . Then $\underline{E}(T|S)$ is also <u>unbiased</u> for $\tau(\theta)$ and a <u>function of S</u>. Completeness implies that any statistic that is a <u>function of S</u> and <u>unbiased</u> for $\tau(\theta)$ must be <u>equal to T^* </u> with probability 1. Hence, $T^* = \underline{E}(\underline{T}|S)$ with probability 1 and

$$Var(T^*) \le Var(T)$$
 for all θ .

Therefore T^* is the unique UMVUE of $\tau(\theta)$.

Summary (methods of finding UMVUE)

- 1. If $\underline{E}(T) = \tau(\theta)$ for all θ and $\underline{Var}(T)$ achieves the Cramer-Rao lower bound. Then \underline{T} is a UMVUE of $\tau(\theta)$. (Note. A UMVUE may not attain Cramer-Rao lower bound.)
- 2. If <u>S</u> is a <u>complete sufficient</u> statistic, and $\underline{u(S)}$ satisfies $\underline{\mathrm{E}[u(S)]} = \tau(\theta)$ for all θ . Then u(S) is a UMVUE of $\tau(\theta)$.
- 3. If \underline{T} is an <u>unbiased</u> estimator for $\tau(\theta)$ and \underline{S} is a <u>complete sufficient</u> statistic for θ . Then $\mathrm{E}(T|S)$ is a UMVUE of $\tau(\theta)$.

Example 6.33 (cont. Ex. 6.32, UMVUE of Poisson mean)

Suppose X_1, \ldots, X_n is an i.i.d. sample from Poisson(λ) distribution. Then $\underline{S} = \sum_{i=1}^{n} X_i$ is a sufficient and complete statistics for λ . Because $\overline{X} = \underline{S/n}$ is a function of S and $E(\overline{X}) = \lambda$, \overline{X} is UMVUE of λ .

Example 6.34 (UMVUE of Normal mean and variance)

Let X_1, \ldots, X_n be i.i.d. random variables from Normal distribution $N(\mu, \sigma^2)$, $\underline{\overline{X}}$ and $\underline{S}^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{1}$ then

are sufficient and complete statistics for (μ, σ^2) . Clearly, $E(\overline{X}) = \mu$ and $E(S^2) = \mu$ $\underline{\sigma^2}$ (Note. $\underline{(n-1)S^2/\sigma^2} \sim \chi_{n-1}^2 \Rightarrow \underline{E((n-1)S^2/\sigma^2) = n-1}$, so \overline{X} and S^2 are <u>unbiased</u> estimator of μ and σ^2 , respectively. Since they depend only on the sufficient and complete statistics, they are UMVUE.

Example 6.35 (UMVUE may not attain Cramer-Rao lower bound)

Let $X \sim \text{Poisson}(\lambda)$. Let T(X) = 1 if X = 0 and T(X) = 0 otherwise. Then, <u>T is UMVUE</u> of $\tau(\lambda) = e^{-\lambda}$ and $Var(T) = e^{-\lambda}(1 - e^{-\lambda})$. The <u>Cramer-Rao</u> lower bound for $e^{-\lambda}$ is $e^{-2\lambda}/I(\lambda) = e^{-2\lambda}\lambda$. Hence $\operatorname{Var}(T) - e^{-2\lambda}\lambda = e^{-\lambda}(1 - e^{-\lambda} - e^{-\lambda}\lambda) = e^{-\lambda}P(X \ge 2) \ge 0$

$$\underline{\operatorname{Var}(T) - e^{-2\lambda}\lambda} = e^{-\lambda}(\underline{1 - e^{-\lambda} - e^{-\lambda}\lambda}) = e^{-\lambda}\underline{P(X \ge 2)} \ge \underline{0}$$

and Cramer-Rao lower bound is not attained.

Ch8, p.74

Example 6.36 (UMVUE of Poisson zero probability)

Suppose X_1, \ldots, X_n is a sample from a Poisson(λ) distribution. Then \underline{S} = $\sum_{i=1}^{n} X_i = \underline{nX}$ is complete and sufficient for λ . To find a UMVUE of $\underline{e^{-\lambda}}$, start with $I(X_1 = 0)$, which is an <u>unbiased</u> estimator. Since

$$\underline{E}[\underline{I(X_1 = 0)}|\underline{S} = s] = 1 \cdot \underline{P}(\underline{X_1 = 0}|\underline{S} = s) = \frac{P(\underline{X_1 = 0}, \underline{\sum_{i=2}^n X_i} = s)}{P(\underline{\sum_{i=1}^n X_i} = s)} \\
= \frac{e^{-\lambda}(e^{-(n-1)\lambda}[(n-1)\lambda]^s/s!)}{e^{-n\lambda}(n\lambda)^s/s!} = (\underline{1 - \frac{1}{n}})^s,$$

the <u>UMVUE</u> of $e^{-\lambda}$ is $(1 - n^{-1})^{nX}$

Example 6.37 (cont. Ex. 6.25, UMVUE of Uniform upper bound, c.f. Ex. 6.13)

Suppose X_1, \ldots, X_n is an i.i.d. sample from Uniform distribution $U(0, \theta)$. Because $X_{(n)}$ is sufficient and complete, and $E(X_{(n)}) = \frac{n}{n+1}\theta$, $\frac{n+1}{n}X_{(n)}$ is unbiased and is the UMVUE of θ .

Theorem 6.20

Suppose that S_1 and S_2 are sufficient statistics for θ , and $S_2 = g(S_1)$. If U is an unbiased estimator for $\tau(\theta)$, let $V_1 = E(U|S_1)$ and $V_2 = E(U|S_2)$ then $Var(V_2) \leq Var(V_1)$.

* Reading: textbook, 8.8.2; Further reading: Hogg et al., 7.1, 7.3, 7.6