Chapter 1 Ch1~6, p.2-1

There are many random phenomena (example?) in our real

life. What is the language/mathematical structure that we use to
depict them?

QOutline
» sample space

> event

» probability measure

« conditional probability
* independence
» three theorems Website of My Probability Course

» multiplication law

http://www.stat.nthu.edu.tw/~swc

* law of total probability heng/Teaching/math2810/inde
* Bayes’ rule x.php
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Definition (sample space, TBp. 2)

A sample space () is the set of all possible outcomes in a
random phenomenon.

Example 1.1 (throw a coin 3 times, TBp. 35)
Q = {hhh, hht, hth, thh, htt, tht, tth, ttt}

Q is a finite set

Example 1.2 (number of jobs in a print queue, Ex. B, TBp. 2)
Q=1{0,1,2,...}

Q 1s an infinite, but countable, set

Example 1.3 (length of time between successive earthquakes, Ex. C, TBp. 2)

Q = {t|t >0}

Q 1s an infinite, but uncountable, set

What are the differences between the Q in these examples?
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Definition (event, TBp. 2)

A particular subset of {2 is called an event.

Example 1.4 (cont. Ex. 1.1)
Let A be the event that total number of heads equals 2,

then A = {hht, hth,thh}.

Example 1.5 (cont. Ex. 1.2)

Let A be the event that fewer than 5 jobs in the print queue,
then A ={0,1,2,3,4}.

e union. C = AU B = (' at least one of A and B occur.
e intersection. ¢ = AN B = C: both A and B occur.

e complement. C' = A° = (C: A does not occur.

e disjoint. ANB = () = A and B have no outcomes in common.

S S
E F

a5

(a) Shaded region: EU F. (b) Shaded region: EF.
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Definition (probability measure, TBp. 4)

A probability measure on € is a function P from subsets of
) to the real numbers that satisfies the following axioms:

1. P(Q) =1.
2. It A CQ, then P(A) > 0.

3. If A; and A, are disjoint, then

P(A; U As) = P(Ay) + P(Ay).

More generally, if Ay, A, ... are mutually disjoint, then

P (fjl Ai) _ i:;l P(4,).

Example 1.6 (cont. Ex. 1.1)

Suppose the coin is fair. For every outcome w € ), P(w) = %.

Q = {hhh, hht, hth, thh, hit, tht, tth, ttt}
/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
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Property B. P(() = 0.

Property C. If A C B, then P(A) < P(B).

S

Property D. P(AUB) = P(A)+ P(B) — P(AN B).
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Definition (conditional probability, TBp. 17)
Let A and B be two events with P(B) > 0. The conditional

probability of A given B is defined to be

P(AN B)
P(B)

P(A|B) =
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Example 1.7 (cont. Ex. 1.6)
Suppose that the first throw is h. What is the probability that

we can get exact two h’s in the three trials?

Q) = {hhh, hht, hth, thh, hit, tht, tth, ttt}
B = {hhh, hht, hth, htt} |
A = {hht, hth, thh}

Theorem (Multiplication Law, TBp. 17)

Let A and B be events and assume P(B) > 0. Then
P(ANB) = P(A|B)P(B).

Example 1.7 (Ex. B, TBp. 18)

Suppose if it is cloudy (B), the probability that it is raining (A)
is 0.3, and that the probability that it is cloudy is P(B) = 0.2.
The probability that it is cloudy and raining is

P(AN B) = P(A|B)P(B) = 0.3 x 0.2 = 0.06.
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Theorem (Law of Total Probability, TBp. 18)

Let By, By, ..., By, be such that Uy B; = Q and B; N B; = {)
for i # 7, with P(B;) > 0 for all i. Then, for any event A,

Ve

P(A) =

P(A|B;)P(B;).

1

1

/ — st > 2nd_>Q

Theorem (Bayes’ Rule, TBp. 20)

Let A and By, ..., B, be events where the B, are disjoint,
", B; =Q and P(B;) > 0 for all 7. Then

P(A|Bj)P(B))

. P(A|B;)P(B;)

P(B;|A) =
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Definition (independence, TBp. 24)

Two events A and B are said to be independent if

P(AN B) = P(A)P(B).

A collection of events Aq, Ao, ..., A, are said to be mutually
independent if for any subcollection, A; , ... 4; ,

P(A;,N---NA; )=P(A;) - P(A; ).

When A and B are independent,

PuB) = St = ) pa)

and P(A°|B) = P(A°).
Furthermore, P(A|B¢)

P(A) and P(A°|B¢) = P(A°).
As+—B

Ac<_,Bc
+ Reading: textbook, Sections 1.1, 1.2, 1.3, 1.5, 1.6, 1.7

+¢ Further Reading: Roussas, Chapters 1 and 2




Chapters 2 and 3

Outline

» conditional distribution

>»random variables

» distribution >independent random variables
*discrete and continuous > function of random variables
eunivariate and multivariate * distribution of transformed r.v.
*cdf, pmf, pdf e extrema and order statistics

e random variable

Definition 2.1 (random variable, TBp. 33)

A random variable is a function from 2 to the real numbers.
> R
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Example 2.1 (cont. Ex. 1.1)

(1) X7 = the total number of heads
(2) X3 = the number of heads on the first toss
(3) X3 = the number of heads minus the number of tails
1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8
QO = {hhh, hht, hth, thh, htt, tht, tth, ttt}
vV OV Y Y vV vV vV ¥
X003, 2, 2,2 1, 1, 1, 0.

X,: 1, 1, 1, 0, 1, 0, 0, 0.
X,: 3, 1, 1, 1, -1, -1,-1, -3.

Why statisticians need random variables? Why they map to real line?
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* distribution

A random variable have a sample space on real line. Does it bring

some special ways to characterize its probability measure?

discrete continuous
uni- * pmf * pdf
variate | o cdf o cdf
r.v.  mgf/chf » mgf/chf
multi- | ¢ joint pmf * joint pdf
variate | . joint cdf * joint cdf
IAAN * joint mgf/chf | * joint mgf/chf

pmf: probability mass function, pdf: probability density function,
cdf: cumulative distribution function

mgf (moment generating function) and chf (characteristic function) will be
defined in Chapter 4
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Definition 2.2 (discrete and continuous random variables, TBp. 35 and 47)

A discrete random variable can take on only a finite or at
most a countably infinite number of values. A continuous ran-
dom variable can take on a continuum of values.

Definition 2.3 (cumulative distribution function, TBp. 36)

A function F' is called the cumulative distribution function
(cdf) of a random variable X if

F(z)=P(X <z),z€R.
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Definition 2.4 (probability mass function/frequency function, TBp. 36)

A function p(x) is called a probability mass function (pmf)
or a frequency function if and only if (1) p(x) > 0 for all

re X, and (2) > . p(z) =1
For a discrete random variable X with pmf p(x),
P(X =z) = p(),

P(X€A>:Z:E€AM

probability mass function cumulative distribution function

| —

and

‘ 2
1 o———l—
o 1 2 3 1 ) 1 2
x x
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Definition 2.5 (probability density function, TBp. 46)
A function f(x) is a probability density function (pdf) or

density function if and only if (1) f(z) > 0 for all x, and (2)
12, f(x)dx = 1.

For a continuous random variable X With pdf f,

P(X € A) / f(z) dz
pdf of Uniform(0, 1) cdf of Uniform(0.1)
FO) F(y»)
1 1
| |
o 1 0 1

flx) = %F(a:) ( Note. z st f(z) >0, P(X =x)= [ f(t)dt =0)

dx d z+&
For small dz, P <x —— < X<z+ x) = / ;2 f()dt = f(x)dx
How to interpret f(x)? 2 2 5
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Theorem 2.1 (properties of cdf)

If F(x) is a cumulative distribution function of some random
varaible X then the following properties hold.

1. 0< F(z) <1

2. F'(z) is nondecreasing.

3. For any x € R, F'(z) is continuous from the right; i.e.

lﬁfil F(t) = F(z).

4. lim F(z)=1and lim F(z)=0.

T—r00 T——00

5. P(X >z)=1—F(z) and Pla < X <b) = F(b) — F(a).
6. For any € R, F'(x) has left limit.
7. There are at most countably many discontinuity points of

Conversely, if a function F(x) satisfies properties 2, 3, 4 then
F(x) is a cdf.

Ch1~6, p.2-16

O (0108 Why need joint distribution for the study of multivariate r.v.’s?

Example 2.2 (cont. Ex. 2.1)

(2 = {hhh, hht, hth,thh, htt,tht, tth, ttt}
X,:#of | X;:total # of heads

head on
1t toss 0(1/8) 1(3/8) 2(3/8) 3(1/8)

om0 | ) ) K o)
ot | o) ) §) K

When we know the joint distribution, we can obtain every marginal
distributions. Is the reverse statement true?
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Definition 2.6 (joint cumulative distribution function, TBp. 71)

The joint cdf of X7, Xo,..., X, is

F(xhx%"' 7xn) :P(Xl leaXZ San"'

for x1,29,...,2, € R.

Pz < X <x9,0n <Y <)
= F(x9,y2) — F(x2,91)
—F(Cﬁlng) + F(xlayl)

Definition 2.7 (marginal cdf, TBp. 76)

The marginal cdf of X is

:Xl
Fx,(r) = P(Xy<ay) = lim (2,29, Zn)
« discrete case: marginal pmf px,(z) = Fx,(z) — Fx, (x—).
« continuous case: marginal pdf [x,(z) = %F ', (T).

e discrete multivariate case

p(£U1,CU2,"',CUn) — P<X1:£U1,X2:$2,...,Xn:l'n)
= joint pmf of X, Xo,..., X,

P((Xy,...,X,) €A) = > op(ay, .. T)
(T1yeeesy ) EA
F(ZCl,.TQ,"‘,xn) — Z p(t17t27"'7tn)
tle17 tQSZEQ, svey tngxn
le(aj1> :P(Xl :xl) — Z p(ﬂfl,tg,...,tn)
= —00<ty<00,...,—00<t, <00

e continuous multivariate case

f(x17x27”'7xn) — F(Ith)“'?xn)
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* independent random variables

Definition 2.8 (independent random variables, TBp. 84)

Random variables Xj, Xo,..., X, are said to be independent

if their joint cdf factors into the product of their marginal cdf’s

F(xy,29,...,2,) = Fx,(21)Fx,(x2) -+ Fx, ()

for all x1, 29, ..., x,.

Theorem 2.2 (TBp. 85-86)

1. For continuous case,

Fy,. o wn) = Fx,(21) - Fx, (wn) & fon, - 20) = fx(21) - - fx, (20)

For discrete case,

F(xla 200 7xn) = FXl(iEl) o 'FXW,($7L) <:>p($1, o0

L Tn) = px, (1) - px, (Tn)
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2. X, Y independent

& P(Xe€eAYeB)=PXeAPY € B)

joint distribution of X7, Xs,..., X,

i.e. the events {X € A} and {Y € B} are independent

3. X, Y independent = Z = ¢g(X) and W = h(Y) are inde-

pendent
—
Xi,...,X, are independent
l<ipp<nu<---<ip=n
Yi = gl(Xl 77777 Xi1)’
YQ = gZ(XiH-l 7777 Xl2)
i = g(Xior415-- -5 Xi,)
Y1, ..., Y, are independent
4. marginal distributions of X7, Xs, ..., X,,+ independence =




Ch1~6, p.2-21

» conditional distribution

Definition 2.9 (conditional pmf for discrete case, TBp. 87)

X and Y are discrete random variables with joint pmf pxy(z,y),
the conditional pmf of Y given X is

pyix(ylr) = P(Y = y|X =) = P();&W;Y; y)

_ pxy(z,y)
px(z)
if px(x) > 0. The probability is defined to be zero if px(z) = 0.
Ry
Y
X
x
Example 2.3 (cont. Ex 2.2)
Pxz)x) (0|1) — 2/37 and pX2|X1(1’1) — 1/3
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Definition 2.10 (conditional pdf for continuous case, TBp. 86)

X and Y are continuous random variables with joint pdf fxy (z,y),
the conditional pdf of Y given X is defined by

Ixy(z,y)
fY|X(y|x) fX( ) , Y€ R,

if 0 < fx(x) < oo and 0 otherwise.

y area=F(%)
o

)

Theorem 2.3

1. The definition of fy|x(y|z) comes from

f b | HAA;/; Ixv (u, v)dudv

f HAA:EQC[/; fx t)dt

o f; fxv(z,y)Az dy - ’ fXY(ﬂU,y)dy

Pla<Y <blz—Ax/2 < X < ax+Azx/2) =

fx(z)Ax B o fx(@)




Ch1~6, p.2-23

2. For each fixed z, py|x(y|r) is a pmf for y and fyx(y|v) is
a pdf for y.

3. pxy (7, y) = pyix(y|z) px (), and fxy(z,y) = frix(ylz) fx(z)

— multiplication law

4. py(y) = >, pyix (Wl)px (x), and fy (y) = [ frix (yle) fx (2)dz

— law of total probability

py|x (y|z) px(z) Iyix(ylz) fx(z)
. pX|Y—(|y> > 2 Py)x (ylx)px (x)° ande|y—(x|y) 7 Frix(ylz) fx (z)da

— Bayes’ rule
6. X, Y are independent < pyx(y|z) = py(y) or fyx(y|z) = fr(y)

* functions of random variables Question 2.6

Erzzr)lgfoirfla;or)ls For given r.v.’s X, ..., X,
St Al 4 how to derive the
g(X, ..., X,) distributions of their
> O transformations?
Extract
Information
1. method of events Ch1~6, p.2-24

Theorem 2.7

Let X = (X1, Xo, ..., X,,) be random variables, and Y = g(X).
Then, the distribution of Y is determined by the distribution of
X as follow: for any event B defined by Y, P(Y € B) = P(X €
A), where A =g (B).

Example 2.4 (univariate discrete random variable)

Let X be a discrete r.v. taking the values z;, ¢ = 1,2,..., and
Y = g(X). Then, Y is also a discrete r.v. taking the values y;,
j =1,2,.... To determine the pmf of Y, by taking B = {y,},
we have

A={x;: g(x;) = yj} and hence
py(y;) = P({y;}) = > px(w).

z,€A
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Example 2.5 (sum of two discrete random variables, TBp. 96)

X and Y are random variables with joint pmf p(x,y). Find the
distribution of Z = X +Y.

(Exercise: difference of two random variables, Z=X-Y)

pz(2) =P(Z=2)=P(X+Y =2) = y:p(:r:z—x

Ir—=—0C

When X, Y independent, p(z,y) = px(x)py (y),

y px(x)py(z —x) = convolution of py and py

r=—00

Y

A

>
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2. method of cumulative distribution function (a special case of method 1)
Let Y be a function of the random variables X, Xo, ..., X,,.

1. Find the region Y <y in the (z1,x9,...,x,) space.

2. Find Fy(y) = P(Y < y) by summing the joint pmf or
integrating the joint pdf of X, Xs,..., X, over the region
Y <uw.

3. (for continuous case) Find the pdf of Y by differentiating
Fy(y), ie., fr(y) = ZFv ().

Note. It can be generalized to multivariate Y = (Y7, Y5, ..., Y,,).

X,

}.<

/‘—.4—.
> 1 )

=
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Example 2.6 (square of a random variable, similar example see TBp. 61)

X is a random variables with pdf fx(z) and cdf Fx(x). Find
the distributon of Y = X2,

Fory >0, {Y <y} ={-y <X <y}
Fy(y) = P(Y <y) = P(—/y < X <y) = Fx(\y) - Fx (=)

fr(y) = d%FY(y) = d%FX(\/@) - %FX(_\/@
1 1
- fX(\/g)m - fx(—\/@(—m)
1
— m(fx(\/@Jer(—\/@)

and fy(y) =0 for y < 0.
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Example 2.7 (sum of two continuous random variables, TBp. 97)

X and Y are random variables with joint pdf f(z,y). Find the
distribution of 7 = X +Y.
(Exercise: difference of two random variables, Z=X-Y)

Let R, be {(z,y) : x +y < z}. Then,

Poz) = P22 =PX+Y 29— [ [ty

- [ ] sy

= /Z /Oof(a:,v—a:)d:cdv (set y = v — )

fz(z) = C%Fz(z) — /_OC f(x,z — x)dx

When X, Y independent, f(z,y) = fx(x)[fv(y),

fz(2) = /_OO fx(z)fy(z—x)dz = convolution of fx and fy
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Example 2.8 (quotient of two continuous random variables, TBp. 98)
X and Y are r.v. with joint pdf f(z,y). Find the distribution

of Z = Y/ X. (Exercise: product of two random variables, Z=XY)

Q. ={(x,y):y/zr <z} ={(z,y) : x <0,y > zz}U{(x,y) : x >0,y < zx}

= / sz(x,y)dxdy—/o /:Jr/w /m f(z, y)dydz
/OO/ / / xf(z,zv)dvdx (set y = xv)

/O / f(x,zv dvdaz+/ / @ f (z, zv)dvdzx
/ /—|x|f (x, zv)dxdv J__{(

o) = TP = [ lalf(ez)do —

(— / |z| fx (z) fy(xz)de when X, Y independent)
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Theorem 2.4 (TBp. 63)
Let X be a random variable whose cdf F' possesses a unique

inverse F~!. Let Z = F(X), then Z has a uniform distribution
on [0, 1].

Theorem 2.5 (TBp. 63)

Let U be a uniform random variable on [0,1] and F is a cdf
which possesses a unique inverse F~!. Let X = F~1(U). Then
the cdf of X is F.

Note. The 2 theorems
are useful for generating
pseudo-random numbers
in computer simulation
(the concepts can be
generalized to any r.v.’s).
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3. method of probability density function (for continuous r.v.’s and
differentiable, one-to-one transformations, a special case of method 2) :

Theorem 2.6 (univariate continuous case, TBp. 62)

Let X be a continuous random variable with pdf fx(x). Let
Y = g(X), where g is differentiable, strictly monotone. Then,

fry) = fx(g~' (v) |—dgd;(y) |

for y s.t. y = g(z) for some z, and fy(y) = 0 otherwise.

Example 2.9

X is a random variables with pdf fx(z). Find the distributon
of Y =1/X.

For z > 0 (or x < 0),
y=1/z=g(z) = x=g"'(y)=1/y
dg”'/dy==1/y* and |dg!/dy| =1y
hence fr(y) = fx(1/y)(1/y?)
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Theorem 2.7 (multivariate continuous case, TBp. 102-103)
X = (X1, Xa, ..., X,) multivariate continuous, Y = (¥1,Ys,...,Y,) =

g(X). g is one-to-one, so that its inverse exists and is denoted

x=g '(y) = w(y) = (wi(y), w2(y), - ., wa(y))-

Assume w have continuous partial derivatives, and let

owi(y) Owily) .. Owily)

Oy Oy 9y,
dwa(y) Owaly) .. Owaly)

J = oy Oy2 OYn
owp(y) Ownly) .. Owaly)

Oy 0y Yyn

Then
() = fx(g (¥)IJI.
for y s.t. y = g(x) for some x, and fy(y) = 0, otherwise.

Note. When the dimensionality of Y, denoted by k, is less than n, we can
choose another n — k transformations Z such that (Y, Z) satisfy the above
assumptions. By integrating out the last n—k& arguments in the pdf of (Y, Z),

the pdf of Y can be obtained.
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Example 2.10 (cont. Ex 2.8)

X; and X, are random variables with joint pdf fx, x,(x1,z9).

Let Yo = X;. Then

1= Y2 Eﬂ(yh%)
L2 = Y1Y2 EwQ(ylay2)'

Qwn _y Qw_y Owe - Ows
3y1 ) 3y2 ) Ui Y2, o ) Y1
0 1
d = = —1ys, and |J| =
I=| 0 | and 1=

Therefore,
vy, 92) = Fx,%, (42, y192) |9

Fvi(y) =/ leYz(yl,m)@:/ Fxix (Y2, 1y2) |yo| dys
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4. method of moment generating function: based on the
uniqueness theorem of moment generating function. To be
explained later in Chapter 4.

e extrema and order statistics

Definition 2.11 (order statistics, sec 3.7)

Let X1, Xs,..., X, be random variables. We sort the X;’s and
denote by X (1) < Xp) < --- < X, the order statistics. Using
the notation,

Xq) = min(X;, X, ..., X,) is the minimum

Xy = max(Xi, Xy,...,X,) is the maximum
R = X, — X is called range
S; = X)) — Xy-1),J =2,...,n are called jth spacings
I I

XX Xa Xy X5 X6)
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Note. In the section, we only consider the case that X, Xo,..., X, are

i.i.d continuous r.v.’s with cdf F' and pdf f. Although X, Xo,...,X,, are

independent, their order statistics are not independent in general.

Definition 2.12 (i.i.d.)
X1, Xy, ..., X, are i.i.d. (idependent, identically distributed)

with cdf F'/pmf p/pdf f = X1, Xs,..., X,, are independent and
have a common marginal cdf F/pmf p/pdf f.

Theorem 2.8 (TBp. 104)
The cdf of X3y is 1=[1 — F()]" and its pdfis nf(z)[1 — F(z)]" "

The cdf of X, is [F(x)]" and its pdf is nf(z)[F(z)]" .

Seydx
tax —}ﬂ_’ e EX(,,,) ('2’> - P(X(’l) S I’) - P(Xl S Ly aXn < il')
— )-F)——> N =
Xy X =5 choose. | 4o ok (-8 ae) = PXi<z)--PX,<=x
the st . (%, ) po
(%) Soodx[1-Fea]" " = [F(=)]".
%iwh I FX(l)(«’E) = P(X(l) 2l =PX 2 . X ;U)
tx1 = P(Xy>uz)--P(X, >x)
<—ﬂ7‘)—-—1

n

X1, Xn:}c\\ose.l-lppx(x-%?“g) - [1 - ( )] :
the st . (-a, %]

(V) Soadx (Foo)™
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q X-Jfoodx Theorem 2.9 (TBp. 105)

The p_df of the kth order statistic X 18
2K |
<—H1)—“—I—F<°‘)—> fxwl®) = 1)?(}1 i/ @F @I = PP
@ @ dx £oe)dx
)( -, X > choose | Yo P\am., v (x~—— o= > b (77
: k=l =+ : = (~CU ;}Q) % % Foaxa
ks fu, [ YR
YL Y -1 “ % 2.
(I K-t rv—k) foode LFoa]™ - TFoal <\ - > Ry -~ Toaydxn

Theorem 2.10 (TBp. 114, Problem 73)

)E(Z) The joint pdf of X(l), X(g), e ,X(n) 1S
>X(1) fX(l)X(g)...X(n) (:U17 Loy o 75571) — n'f<$1)f(x2) e f(ﬂ?n),
for x1 <ax9 <--- <z, and fX(l)X(g)...X(n) — 0 otherwise.

Question: Are X(), X(9),..., X, independent, judged from
the from of its joint pdf?
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Example 2.11 (range, TBp. 105-106)

The joint pdf of Xy and X, is

Fxy X (8:8) = n(n— 1) f(s) fFO)[F(t) — F(s)]" %, fors <t

and 0 otherwise. Therefore, the pdf of R = X(,,) — Xy is

fr(r) = / fx %0 (8, 8+r)ds for r >0, and fr(r) = 0, otherwise.

feodt X,-— Xn = choose. one 4o place Tn (592)9%)
. ons. 2D

% the vest i (s.%) i
A (" o) Terisftnrde (Fo-Fo))

T FB-HO— &

1. Find the joint pdf of X;) and X;), where ¢ < j.

2. Find the joint pdf of X ;) and X(; 1), and derive the pdf of jth spacing
Sj = Xg) — X

+ Reading: textbook, 2.1 (not including 2.1.1~5), 2.2 (not including 2.2.1~4), 2.3, 2.4, Chapter 3
¢ Further Reading: Roussas, 3.1, 4.1,4.2,7.1,7.2,9.1,9.2,9.3, 9.4, 10.1
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Outline

» expectation » moment generating function
& characteristic function

* mean, variance, standard

deviation, covariance, » conditional expectation and
correlation coefficient prediction
» 0 method

Can we describe the characteristics of distributions by use of

some intuitive and meaningful simple values?

X 3X 3X+3

IHI. |
A A

0.1 02 03 04

-0.1
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* expectation

Definition 3.1 (expectation, TBp. 122, 123)

For random variables X, ..., X,,, the expectation of a univari-
ate random variable Y = ¢g(X3, ..., X,,) is defined as

EY) = )  uypr(y) =Eg(X1,...,X,)]

1l
K
—~
&

s T)p(T1, Ty,

if X1, Xs,..., X, are discrete random variables, or

Ey) = [ "y @)y = Elg(Xa, ..., X)

) &
= / / g(x1, ... xn) f(xe, ... xp)dzy - - - dy,
— 00 — 00
if Y and X, Xy, ..., X, are continuous random variables.
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Definition 3.2 (mean, variance, standard deviation, covariance, correlation coefficient)

1. (TBp.116&118) g(x) = = = FElg(X)] = E(X) is called

mean of X, usually denoted by £(X) or ux.

2. (1Bpasn)  g(x) = (z — px)* = Elg(X)] = B(X—E(X))]
is called variance of X, usually denoted by Var(X) or o%.
The square root of variance, i.e., oy, is called standard
deviation.

3. (TBp138)  g(w,y) = (z — px)(y — py) = E[g(X,Y)] =
E[(X — E(X))(Y — E(Y))] is called covariance of X and
Y, usually denoted by Cov(X,Y) or oxy.

4. (TBp.142) The correlation coefficient of X, Y is defined
as oxy/(oxoy), usually denoted by Cor(X,Y) or pxy. X

and Y are called uncorrelated if pxy = 0.
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Notes. (intuitive explanation of mean)

1. Mean of a random variable parallels the notion of a weighted average.

2. It is helpful to think of the mean as the center of mass of the pmf/pdf.

3. Mean can be interpreted as a long-run average. (see Chapter 5.)

Notes. (intuitive explanation of variance and standard deviation)

1. variance is the average value of the squared deviation of X from py.

2. If X has units, then mean and standard deviation have the same unit,
and variance has unit squared.

Theorem 3.1 (properties of mean)

1. (TBp.125) For constants a, by, ..., b, € R,

Bilao4 Y ) = a4 ) Bl

2. (TBp.124) If X, Y are independent, then
Blg(X)h(¥)) = EG(X)) E((Y)).

In particular, F(XY) = E(X)E(Y).

(OSSO - /Y) = E(X)/E(Y)?)

Note. F[g(X)] # g[E(X)] in general.
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Theorem 3.2 (properties of variance and standard deviation)
1. (TBp.132) 0% =Var(X) = FE[(X — ux)?| = E(X?) — p%.

2. (IBp.131) Var(a+bX)="0"Var(X), a, b € R, and 044px = [blox.

3. (TBp.140)

Var (a + Z bin-) = y: b:Var(X;) + 2 Z b;b;Cov(X;, X;).
i=1

i=1 1<i<j<n

In particular, Var(X +Y) = Var(X)+ Var(Y) 4+ 2Cov(X,Y).
4. (TBp.140) If Xy,..., X, are independent,

Var iXZ- :iVar(Xi).
i=1 =1

5. (TBp.136) E[(X —6)% = Var(X) + (ux — 0)” (Mean square error =
variance + bias square)
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Theorem 3.3 (Chebyshev’s inequality, TBp. 133)

Let X be a random variable with mean y and variance o. Then
for any t > 0,

0.2

P(IX —p|>t) <.

Proof. Let f(x) be the pdf of X. Let R = {z : |z — p| > t}.
Then

No other restriction

P(|X — | > t) — / (z)dx < / M]ﬂ(m) dr | on the functional
R R 17 form of pdf/pmf

!

IA
(%)
|
=
Py
&
QU
=
I

Note.

1. Setting ¢ = ko we have

1
P(|X_H|>@)§k——2~ o
K >
2. (TBp. 134) Var(X)=0= P(X =pux)=1. e Y- -
-~ 446
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Notes. (intuitive explanation of covariance and correlation coefficient)

1. covariance is a measure of the joint variability of X and Y, or their
degree of association.

2. covariance is the average value of the product of the deviation of X
from its mean and the deviation of Y from its mean.

3. positive covariance and negative covariance
4. correlation coefficient is unit free

5. correlation coefficient measures the strength of the linear relationship
between X and Y.

do . Qf
olo N

=29
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Theorem 3.4 (properties of covariance and correlation coefficient)

1. (TBp.138) Cov(X,Y) = E[(X — px)(Y — py)] = E(XY) — pxpy

(Note. Cov(X, X) = Var(X).)

2. (TBp.140)
Cov (ng Z b X, ¢+ Z dej> — S: S: b;d;Cov(X;,Y;)
i=1 j=1 i=1 j=1

3. (TBp.140) If X, Y are independent then Cov(X,Y) = 0, i.e., in-
dependent = uncorrelated. But, the converse statement is not
necessarily true.

4. (TBp.143) —1<pxy <1l and pxy = £l if and only if Y =aX + b
with probability one for some a, b € R.

5 o =[50 (L)

6. |Cor(a+bX,c+dY)| = |Cor(X,Y)
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* moment generating function & characteristics function

Definition 3.3 (moment generating function, TBp. 155)

The moment generating function (mgf) of a random variable X is

Mx(t) = B(¥), teR

if the expectation exists.

Theorem 3.5 (properties of moment generating function)

1. The moment generating function may or may not exist for
any particular value of ¢.

2. uniqueness theorem (TBp.143). If the moment gener-
ating function exists for £ in an open interval containing

zero, it uniquely determines the probability distribution.
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3. (TBp.156)  If the moment generating function exists in an
open interval containing zero, then

MP0) = B(X").

4. (TBp.158)  For any constants a,b, M, ,x(t) = e Mx (bt).

5. (TBp.159) X, Y independent = My y(t) = Mx(t) My ().

6. continuity theorem (see Chapter 5)

Definition 3.4 (moment, TBp. 155)

The kth moment of a random variable is E(X*) = u;, and the
kth central moment is E[(X — pux)"] = 1.

» Some Notes.
k k n—1
" :u_;e = D i (z‘)(_l“X) Hg.

— k k n—it,/
" Kk . ZZZO(Z')('LLX) Hi- ,uli cee g e
_ _ )
» In particular, F(X)= ux = 1, and, |‘N:<|
Var(X) = 0% — pa — 12 — i o
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Definition 3.5 (joint moment generating function, TBp. 161)
For random variables Xy, X5, ..., X, their joint mgf is defined as:
MX1X2,,_Xn (tl, t2, L ,tn) — E(et1X1+t2X2++tan)

if the expection exists.

1. Mx,(t1) = Mx,x,-x,(t1,0,...,0)

2. uniqueness theorem

3. X1, X, ..., X, are independent if and only if

n
My, x,x, (t1 ta, - ta) = | | M, (t).
1=1

4, orittrn
Ot' ... Ot Mx, x-%, (1, b2, - - 5 Tn)
1 n

t1=to=---=t,=0

= By Xir)
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Definition 3.6 (characteristic function, TBp. 161)
The characteristic function (chf) of a random variable X is

éx(t) = E(@™) = Elcos(tX)] +i - E[sin(tX)

where ¢ = v/—1, and the joint characteristic function of Xy, X, ..., X,
1S

Ox, Xy X, (P, by, -y by) = E(MAHRA2E ),

Theorem 3.7 (properties of characteristic function)

1. The characteristic function always exists.
If Mx(t) exists, then ¢x(t) = Mx(it).

2
3. uniqueness theorem
4. (FYI) inversion theorem:

e discrete case: px(z) = 1im f_TT e o (t) dt
bx\T) =M J_p€ " Ox{)

e continuous case: fx(z) = 5= [ e " Px(t) dt

21 J—o00

5. The properties of characteristic function are similar to those of
moment generating function.
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» conditional expectation

Definition 3.7 (conditional expectation, TBp. 135-136)

The conditional expectation of h(Y) given X = x is

[Discrete case] : E(h(Y)|X =) = hy)pyx(y|z)
In particuler, E(¥|X=2) =Y, ypvz()

[Continuous case]: E(h(Y)|X =z) = [ h(y)fyx(ylr)dy
In particular, E(Y|X=2) = [yfyix(ylz)dy

f(x, y): joint pdf
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Theorem 3.8 (properties of conditional expectation)

1. Eyix(h(Y)|z) is a function of z and is free of V.

2. If X and Y are independent then By x (h(Y)|r) = Ey(h(Y)).

3. B(h(X)|X =) = h(z)

4. Let g(x) = Eyx(h(Y)|r), then g(X) is a random variable

(transformation of X') and usually denoted by Eyx (h(Y)|X).

5. law of total expection (TBp.149)
Ex[Eyx(h(Y)|X)] = Ey[h(Y)].
In particular,
Ey(Y) = Ex[Byx (Y] X)) | =

YT
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4. variance decomposition (TBp.151)
Vary(Y) = ‘
Varx[Byx(Y]X)] + | | x
Ex[Vary x(Y]X)] ‘

Note.
L. Vary(Y) > Ex[Vary x(Y|X)]
and the equality holds if and only if 4
Eyix(Y[X) = By(Y) ‘ ‘
with probability one.

2. Vary(Y) > Varx By x(Y|X)]
and the equality holds if and only if
Vary x(Y|X) =0 Y, ‘
with probability one; i.e.,
Y = By x(Y|X) | ‘ ‘

S

with probability one. .
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* prediction

Example 3.1 (predicting the value of a r.v. Y from another r.v. X, TBp. 152-154)

e data: X and Y (example?)

e statistical modeling: assign (X, Y) a
(known) joint distribution (cdf F(z,y), pdf f(z,y), or pmf p(z,y))
e objective: Predict Y by using a function of X, i.e., g(X).

We consider the following three groups of g’s:
(i) G1 = {9(x) : g(x) = ¢, where c € R}

(ii) G2 = {g(2) : g(x) = a + bx, where a,b € R}, and
(iii) G5 = {g(x) : g is arbitrary}.
Note. G C Gy C Gs.

e question: Within each group, what is the “best” prediction?

e criterion: minimizing mean square error:

MSE = Exy{[Y — g(X)]*}.
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Example 3.2 (“best” constant prediction, TBp. 153)

Exy(Y —2)2 = Ey(Y —2)2 > By Y — Ey(Y)]? = Vary(Y)
The equality holds if and only if ¢ = Ey(Y).

Example 3.3 (“best” prediction of Yusing X, TBp. 153)

Exy[Y —g(X)P° > Exy[Y — Eyx(Y|X)]* = Ex[Varyx(Y|X)]

The equlity holds if and only if g(z) = Eyx (Y |x).

Notes for the best predictor in G;.

o Ly x(Y|X) is the best predictor of Y based on X, in the mean squared
prediction error sense.

e need to know the joint distribution of X and Y, or at least Eyx (Y |z)

o Ly x(Y|x) is called the regression function of ¥ on X.

Example 3.4 (“best” linear prediction of Y using X, TBp. 153-154)

ExylY —(a+bX)]> > Exy {Y — [W + pZ—;(x — m] }2 = oy (1-p°)
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Notes for the best predictor in G,.

o Eyix(Y|z) = py + p2-(z — px) if (X,Y) is distributed as
bivariate normal

e nceds to know only the means, variances and covariances

e 07 (1 — p?) is small if p is close to +1 or —1, and large if p
is close to 0

1. mibn E[Y — (a+ bX)]? < min E(Y — ¢)* and the equality holds
if and only if p = 0.
2. min B(Y — g(X))? < mibn E[Y — (a + bX)]? and the equal-
g — a,

ity holds if and only if By x (Y|z) = puy+p(oy/ox)(z—px).

What if the joint distribution of X and Y is unknown?
M

"~ omeos IR

Let Y = ¢g(X). Suppose we only know the mean px
and variance 0% of X, but not the entire distribution
(i.e., do not know cdf, pdf/pmf of X). Can we derive the
distribution of Y7 If not, can we “roughly” describe the
mean and variance of Y7 (Note. E[g(X)] # g[E(X)].)

Theorem 3.9 (& method for univariate case, TBp. 162)

Y = g(X) ~ g(ux)+ (X — px)g'(sx) (by Taylor expansion)

=  Elg(X)] = g(px)
Va?“[( )] ~ Var(X)[g'(px)]” 1
or = 9(X) = g(px) + (X = px)g (nx) + 5(X = px)"g" (1x)
= E[g(X)] = g(ux)+%fig”(ux)

Note. How good these approximations are depends on whether g can be
reasonably well approximated by the 1st or 2nd order polynomials in a neigh-

borhood of Hx and on the size of ox.
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Theorem 3.10 (& method for multivariate case, TBp. 165)

Function of two univariate random variables Z = ¢g(X,Y):
Let p = (px, py).

85(19%) Ly - My)ag(u)

~ g(p) + (X — px)

— L @ — | 9 or | | oy
o g gl + (X = ) B ) 2
+%(X — )’ Qagx(f + (X —px) (Y = My)a;z(ﬁl;)
_%(Y - MY)Qa;gy(f)

- 1, &g(p) Pg(p) | 1,
= E[Q(Xay)]Ng(M)'i‘iff_XwﬂL@ 0zdy 27 gy

Note. The general case of a function of n random variables can be worked
out similarly.

+ Reading: textbook, Chapter 4
¢ Further Reading: Roussas, 5.1, 5.3,5.4,5.5,6.1,6.2, 6.4, 6.5
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Some Commonly Used Distributions

(from Chapters 2, 3, 6)

Question 4.1

For a given random phenomenon or data, what distribution (or

statistical model) is more appropriate to depict it?

* discrete distributions

Definition 4.1 (Uniform distribution U(a,,...,a,,) )

Equal probability to obtain aq, as, ..., apy.

ST

B — By - oo 5 gy

0, otherwise U234

i .
e mgf: Z’:le . J_ J_u_l___L
o 1 2 3 4

i—=1 @j _
e mean: == =g e parameter: a, c R, m=1,2,...

e example: throw a fair die once
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Definition 4.2 (Bernoulli distribution B(p), sec 2.1.1)

A Bernoulli distribution takes on only two values: 0 and 1, with
probabilities 1 — p and p, respectively.

. _ px(l—p)(l_x), frz=0o0rx=1
* pmf: pl) = { B otherwise

e mgf: pe! +1—1p

e mean: p

e variance: p(1l —p)

e parameter: p € [0, 1]

e example: toss a coin once, p=probability that head occurs

Note: If A is an event, then the indicator random variable 4
follows the Bernoulli distribution.
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Definition 4.3 (Binomial distribution B(n, p), sec 2.1.2)

Suppose that n independent Bernoulli trials are performed, where
n is a fixed number. The total number of 1 appearing in the n
trials follows a binomial distribution with parameters n and p.

n
(1 _ ) (n—x) —
pmf: p(zx) = (x>p(1 p) , v=0,1,...,n
Otl+le..-+O=mX

0, otherwise 712 oo
e mgf: (pe' +1—p)", t € R. %

® Imear: np

e variance: np(l —p)
e parameter: p € [0,1], n=1,2,...

e example: # of heads, toss a coin n times

n=10andp=.1

n=10andp=3

Note:

0 _
D123 4567890 ' 012345678090 (a—l—b)nzzzzo(n)aa’bnx.

Z
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Note.

1. binomial distribution is a generalization of bernoulli distri-

bution from 1 trial to n trials
2. Let Xy,..., X, beiid. B(p),thenY = X; +---4+ X, ~

B(n,p).
3. Let X; ~ B(n;,p),i = 1,...,k, and Xy,..., X} are inde-
pendent. Then, Y = Xy + -+ Xp ~ B(ny + - -+ + ng, p).

A % %

g h%t 4 el

12 M2 -l lz M

W Xoo + ~-- + Xk =Y=:t{—o%1'5 m,(vtw»-W\&\_)JCY?oJ

Definition 4.4 (Geometric distribution G(p), sec 2.1.3)

The geometric distribution is constructed from an infinite se-
quence of independent Bernoulli trials. Let X be the total num-
ber of trials up to and including the first appearance of 1. Then,
X follows the geometric distribution.

b % % 5% %o

0 0 ©O oI

—— — >

123 Xl %X

1 —p)eVp, z=1,23,...
f — ( 9 9 .7 Y
e pmf: p(z) { 0, otherwise
1—(1-pkl 1< 2] < 1
o cdf: F(z) = (1=p)* 1< o] <o <[o]+
0, r<l1
e mgf 1_(11"3_10)6“ t < —log(l—p)
e mean: =
p
e variance: p;f
e parameter: p € [0, 1]
e example: lottery, # of tickets a person must purchase up
to and including the first winning ticket
.. . Note:
Note: a memoryless distribution Z(;oe o o
r=n T 1-t
for —1 <t < 1.
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Definition 4.5 (Negative Binomial distribution NB(r, p), sec 2.1.3)

An infinite sequence of independent Bernoulli trials is performed
until the appearance of the rth 1. Let X denote the total number
of trials. Then, X follows negative binomial distribution.

S KXok %% SoX K%
0o 0100 ol 90 of
S —
# of triaks %
r—11Y\ ,
1—p)En, g = 1,...
ot ) — 4 (221 )P A=pe w=nr,
0, otherwise
T ,Tt
mgf: W, t < —log(1l—np).
mean: %
r(1-p)

variance: 2
parameter: p € [0,1], r=1,2,...
example: lottery, # of tickets a person

must purchase up to and including the Note: o 1
rth winning ticket D e ()T = =R
for —1 <¢ < 1.
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Note.
1. negative binomial distribution is a generalization of geo-

metric distribution from 1st success to rth success

2. Let X5, Xo,..., X, beiid. G(p),thenY = X;+---+ X, ~
NB(r,p).

3. Let X; ~ NB(ry,p),i=1,...,k, and Xy,..., X} are inde-
pendent. Then, Y = X;+-- -+ Xp ~ NB(ri+ -+ 4+ 1, p).

Definition 4.6 (Multinomial distribution Multinomial(n, P1> Py o5 P ), TBp.73-74)

Suppose that each of n independent trials can result in one of
types of outcomes, and that on each trial the probabilities of the
r outcomes are py, pa, ..., pr. Let X; be the total number of out-
comes of type i in the n trials, i = 1,...,r. Then, (X,...,X,)
follows a multinomial distribution.
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e joint pmf:

n - . x;=0,1,...,n, and
_ by Dyt r _
p(®1, .., @) = Ly L D1 Ti =1
0, otherwise

e joint mgf: (pie + -+ +p.e) ty,...,t. € R.

e marginal distribution: X; ~ B(n,p;),i=1,...,r
e mean: F(X;)=np;, i=1,....n

e variance: Var(X;) =np;(1 —p;), i=1,...,n

e covariance: Cov(X;, X;) = —npipj, @ # j

e parameter: p; € [0,1], and > _;pi=1. n=12,...

e example: randomly choose n people, record the numbers
of people with different religions

Note: (a; + -+ ap)" = z (az " x)afl---aik.
1yt Tk

Tt FTp=n

Notes: multinomial distribution is a generalization of the binomial distri-
bution from 2 outcomes to r outcomes.
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Definition 4.7 (Poisson distribution P(A), sec 2.1.5)
Limit of binomial distributions X,, ~ B(n, p,), where p,, = 0 as

n — oo in such a way that A\, = np, — A.

T

_ n(n—l)--:-n!(n—x—i-l)<%>x<l_%>nz
= n(n—l)...(n—x+1)l)\x<1_ﬁ)ﬂx

n< "

(n>pﬁ(1 — pp)) Note: if a, — a, (1 + %")n — e,

n
1 — 1.2 A\ A\ Y : ATe=A
= 11--) Q-T2 (122 7.0 er 1 =28
n n x! n n @l z!
explanations.

1. if n large, the pmf of B(n,p) is not easily calculated. Then,
we can approximate them by pmf of P()\), where A = np.

oooopog - - - 000

e




. . Ch1~8, p.2-67
2. Let X be the number of times some event occurs in a given

time interval /. Divide the interval into many small subin-
tervals Iy, k = 1,...,n, of equal length. Let Nj be the
number of events occurring in fp. When we can assume
Ny, ..., N, are independent and approximately ~ B(p), X
has a distribution near P(\), where A = np.

MA g
'pmf=p(x)_{5!e —2=0,1,2,...

otherwise
e mgf: MU ¢ eR.
e mean: A\
e variance: )\
e parameter: \ > ( eN*Oie.Zj"_o x

e example: number of phone calls coming into an exchange
during a unit of time
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Note: Let X; ~ P(\;)),i=1,...,k, and X,..., X} are independent.
Then, Y = X1+ -+ X~ P(A1 4+ -+ - + Ap).

i + Xo +

~— ——
AP -
t t 43 €y

0 13 i 0113 495 012345678900 RBMUISIEITIBIN 012345678 910N12103M1516171581920

= 0 OHHHH HHHHHH_.— ‘OZ

Suppose that an urn contains n black balls and m white balls.

Let X denote the number of black balls drawn when taking
r balls without replacement. Then, X follows hypergeometric
distribution.

m
r—X x=0,1,...,min(r,n),
n Y

n
i
e pmf: p(z) = < ( —|—m) r—x<m
r Note:

0, otherwise (ntm) = Z:c (Z) (rTx)




Ch1~6, p.2-69
e mgf: exist, but no simple expression

rn

® Inearnmn.:
n+m

rnm(n+m—r)
n+m)?(n+m—1)

e variance: (
e parameter: r,n,m,=1,2,...., r<n+m

e example: sampling industrial products for defect inspection

Notes. a relationship between hypergeometric and binomial distri-
butions: Let m, n — oo in such a way that

n

7’)’L’I’LE _> Y
Pm, m-+n P

where 0 < p < 1. Then,

(2)L7)
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e continuous distributions

Definition 4.9 (Uniform distribution U(a, b), sec 2.2)

Choose a number at random between a and b.

I

— a<z<bh f@)
df: R

ki f(z) { 0, otherwise bia
0, T <a a b

o cdf: F(z)=4¢ 7=, a<x <D
1, x>0

€bt—€at
e mgf: Hh—a) t e R.
e mean:

2
(b—a)?

e variance: T

e parameter: a,b € R, a <b

Note: U(0, 1) is useful for pseudo-random number generation
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Definition 4.10 (Exponential distribution E(A), sec 2.2.1)

e ™M x>0
o pdf: f(x) = D *r Exponential densities
\ s i
l—e ™ x>0 ':
o cdf: F(z) = T Bt A =.5 (solid
(z) {o, z <0 > (solid)
R A =1 (dotted),
e mgf: 2, t <\ S A=2(dashed)
® Inearn: %
ot, -
-] 10
e variance: 4 :
e parameter: A > 0
e example: lifetime or waiting time
Notes: Ch1~6, p.2-72
1. memoryless (future independent of past): Let T~ F(\), then
PP >tsand- P> T >i45)
P(T >t T > = -
Ll S SIL> s) P(T > s) P(T > s)
'd: 2"ldlL e—A(t_FS) \
.ﬁ ? 1‘: N — Tze_t:P(T>t)
0 s € st €
e (<) If a continuous distribution is memoryless, it is exponential.
e It does not mean the two events T' > s and T' > t+s are independent.
2. relationship between exponential, gamma, and Poisson distributions
Let T1,15,T3,... be i.id. ~ E()\) and Sy =T1+ -+ Tk, k=1,2,....
Let X; be the number of Si’s that falls in [t;_1,%;], i = 1,...,n, then
X1,...,X, are independent, and X; ~ P(A(t; —t;—1)). The reverse state-
ment is also ture. —— P(Tirt)=P{POBI=0)= e™0e)h =™t
. Xyt # of events occur < )7:2_-‘ |—->|7_ - To~EQ)
Poisson durmg Téo, ] = I - N? Ty metC Lo
Process 5, P( A -t I - Y e SkAT(KN)
Binow . @
_ how to interpret A? Negative

Binowmia\

3. Sometimes, the pdf is written as %e‘% In the case, how to interpret A?




Ch1~6, p.2-73

Definition 4.11 (Gamma distribution I'(a, A), sec 2.2.2)

AY a—1_-)\x s
x* e x>0
o pdf: f(z)=2< L@ L
0, x <0
wH o=, A=|
e mgf: ()% t <\ "I\ a=2, A
0.25 o‘f_',,A‘:i)"':‘
e mean: g )
R T ST apEE S B
. « [t
e variance: 3
L0-
e parameter: a, A > 0 o %=ZLAZZ

Notes.

1. a: shape parameter; \: scale parameter (_ how to inter-
pret a;, A from the view point of Poisson process?)

2. properties of gamma function I'(«): Ch1~6, p.2-74

o I'(a) = [, y* e ¥dy (which is finite for a > 0)
e'()=1landI'(3) = /7

e I'(a) = (@ —DI'(a =1

e I'(a) = (o —1)!'if v is an integer

o I'(5) = % if a is an odd integer

3. gamma distribution can be viewed as a generalization of exponential
distribution, i.e., I'(1, \) = E()).

4. Let Xy,..., Xy beiid. ~ E(\), then Y = X5 +--- 4+ X ~ T'(k, ).
5. Let Xi,..., Xy be independent, and X; ~ I'(a;, A), then Y = Xy +

o X~ T(ag + - 4 ag, N).

6. Let X ~I'(a,\),, then ¢X ~ I'(a, A\/c), where ¢ > 0.

I'(a+k)
MeD(ar) 2

7. X ~ D(a,)\) = B(X*) = for 0 < k and () = 21# for

0<k<a.
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Definition 4.12 (Beta distribution beta(a, B), sec 15.3.2)

M a—1 o f—1 o
e pdf: f(a;) — F(a)F(,B)x (1 m) , 0<z <1
0, otherwise

%) k—1 k
mgf: 1+ > ;- ([, ai-g:r)%

&
a+p

® Inear:

of
a+f+1)(a+pB)?

variance: (

parameter: o, > 0

Notes:

1. Beta function: B(a, ) = fol te (1 — )B-1d¢ = TF(?OE(;))

2. B(1,1) = U(0,1)

3. Let X1 ~T'(ag, ), Xo ~ T'(ag, \), and X7, X5 independent.

Then, Xﬁlxz ~ beta(aq, az).
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Definition 4.13 (Normal distribution N(l, 0?), sec. 2.2.3)

([
(
e mean: [ j.to=1
. . 2 A \o=2
e variance: o L

e parameter: € R,0 >0

Notes:

1. bell-shaped pdf (symmetric about p, where it has maximum, and falls
off in the rate determined by o)

2. play a central role in probability and statistics (e.g., CLT, Chapter 5)

3. X ~ N(u,0%) = fora,b € R, aX +b~ N(ap+b,a*c?). In particular,
X;“ ~ N(0,1).

4. Let Xy,..., X} be independent, and X; ~ N(u;,02). Then Y = X, +
s X~ NOTE i 2y 0F)

5. by 3 and 4, let X3,..., X} be iid ~ N(u,0?), then X; ~ N(i, %).
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Definition 4.14 (Chi-square distribution X?,, TBp.177)

nl %$§—1€—§7 T Z 0 8 7
o pdf: f(z) = ['(3)2 0 4
0, r <0 |
o mgf: (115)° SN
e mean: n TR AN
. ‘\\\\N‘g\ R
e variance: 2n ° 9 5 10 R 2

e parameter: n=1,2,3,...

Notes:
1. n is called degree of freedom

2. X, =15 3)

3. Let Xy,..., X be independent and X; ~ X%w then Y =
Xi+ .o+ Xi~ Xo i,

4. Let Z ~ N(0,1), then X = Z? ~ x3.

5. By 3 and 4, let Z3,...,4, be iid. ~ N(0,1), then ¥ =
Zi+ -+ Zy ~ X
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Definition 4.15 (¢ distribution ¢

TBp.178)

n+1

df: L) (1 )_T R. ts (long dash), t,, (short dash),
* pdf: f(2) = Zag (115  EE ., (dot), N(0.1) (solid)

71’

e mgf: not exist, except at t =0
e mean: 0, (n > 1)

e variance: -5, (n > 2)

e moments:

DT(egh)
E(Xk):{ VAT(g)

0, k < n and odd s :
e parameter: n =1,2,3,...

Notes:
1. Let Z ~ N(0,1) and U ~ x? be independent, then

2~ t,.
\U/n -
2. f(z) = f(—x), i.e., t, distribution is symmetric about zero
3. as n — o0, t, tends to N(0,1). (by LLN, Chapter 5)

4. t,, has heavier tail than N(0,1)
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Definition 4.16 (F distribution F,, ,, TBp.179)

r(™3™) (m\~% 21 m — g
e pdf: f(z)— | T () TorT (L) T, @20
0, x <0
e mgf: not exist, except at t =0 g2 10
e mean: 5, (n > 2) /
. . 2n%(m+n—2) ! \-\,ﬁ
e variance: ;[ o5er g, (0> 4 ‘
mt2k ) (n=2k =1,2,..,10 & n=10
+ moments: B(X") =" gy () b<d o
ERRY m=10
e parameter: m,n =1,2,3,... ‘\

Notes:
1. Let U ~ x2, and V ~ x2 be independent, then

2. Let X ~ t,, thenY:X2~££.

3. X ~ Fpn= X'~ Fym
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Theorem 4.1 (distributions of sample mean and sample variance of 1.1.d. normal, sec. 6.3)
Let Xy, Xo,..., X, be 11d ~ N(p,0%). Define

(called sample mean)

— =1

n

1 _
1 Z(Xz — X)) (called sample variance)
n — Aj = Ap
i—1

|2
[

1. X, ~ N(u, 2) and v/n(X,, — p) /o ~ N(0,1).

2. (I'Bp.195) The random variable X, and the random vector (X; —
X, Xo—X,,..., X, — X,,) are independent.

3. (TBp.196) X,, and ﬁ are independently.

4. (TBp.197) The distribution of (n—1)S2/0? is the chi-square distribution
with n — 1 degrees of freedom.

5. (TBp.198) V(X — 1)
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Proof of 2. The joint mgf of X,, and (X; — X, Xo — X,,, ..., X, — X,,) is

M(s, ti,to,... t,) = E {e[sy_"JrZ?zl @]} — B {6[23?1 (%“i—t))ﬁ]} ,

Leta,=2+t;—t,i=1,2,...,n. Then

n
=S
a, = — i .
. A 1=1

E a; = S,

n n
1=1 1=

1

Now we have

M(s,ty,ta, ... ty) = ]:[MXZ-(C%'> = Hexp (,uai 4 ?a?>
i=1

1=1

= exp (/uzn:ai + U;En:a?) = exp
i=1 i=1

Lo o zn:(t £)?
= ex s+ —s° |exp | — . —
p(ps+ st Jexp |5

1=1

2 .2 2 N

g~ S (o2
——+ =) (t;—1)?
Y 3]

Thus, the joint mgf factorizes into product of the mgf of X,, and the mgf of
(X1 —Xp, Xo— X, ..., X, — X)),
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_ Are (X1—X,,..., X,—X,) independent? [Hint: Z(Xi—yn) = 0]

i=1
Proof of 4. First note that

n n o 2
% > (Xi—p?=3 (XZU “) ~ X

— =1 =1

Also, ; . L )
N DI TS SUERN CLUCEy
i=1 i=1 , P
- w v v ‘
Since V and U are independent, 5 —
My (t) = My (t) My (t) t—3 2 (Xi = Xn) (X — ) =
and then Mol (1 2t)_ﬂ
- 2
Myt) = Mvvv(t) C(1-20"F -2 7,
which is the mgf of a x2_; distribution. Thus (”_U—QSQ ~ X2,

_ Why degree of freedom = n — 1, rather than n?
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Definition 4.17 (Cauchy distribution C(l, 0), TBp.95)
o pdf: f(z) =25+, v €R.

w24 (x—p)2?
e cdf: {4+ Ltan'(u+ox), z € R.
e mgf: not exist, except at £ =0
o chf: e+l

e mean: not exist e S

e variance: not exist
e parameter: p € R,0 >0

Notes:
1. a heavy tail distribution
2. C(0,1) =t
3. Let X,Y beiid. ~ N(0,1). Then, X/Y ~ C(0,1).
4. X ~C(p,0) = fora,b e R, aX + b~ C(ap + b, |alo)
5. Let Xi,..., X} be independent, and X; ~ C(u;,0;). Then Y = X; +

s X~ Oy 305, 04) B
6. by 4 and 5, let X;,..., Xy beiid ~ C(u,0), then X ~ C(u, o).
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Some other distributions

Log-normal (TBp. 69)

Weibull (TBp. 69)

Double exponential (TBp. 111)
Logistic

Pareto (TBp. 323)

Maxwell (TBp. 121)

In this chapter, you should learn
1. random phenomenon behind each distribution
. statistical modeling (assigning a distribution) of data
relationship among distributions
meaning of parameters in each distribution
HOW to derive cdf/mgf/chf/mean/variance from pdf/pmf

(optional)
but you are not necessary to

1. memorize their pdf/pmf/cdf/mgf/chf/mean/variance/...

W o

e

()]

+ Reading: textbook, 2.1.1~2.1.5, 2.2.1~2.2.4, chapter 6
Roussas, 3.2,3.3,3.4,52,6.3,7.3
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Geometric Discrete * Adapted from Berger and Casella P
® ) iff ..
Gx ‘Yl = B (2002), Statistical Inference, 2" Ed., p.627
1o woes Xy X
Xt X0)  min X, ”f\‘ Negative a=B=1"\|Beta-binomial
binomial (n,a,B)
Multinomial (r,p) .
X; = Hypergometric
(n’mvpla ey pm) v p G+B
= N, B
A=r(—D) XX || o8 o0 (N, B)
\ r —= 00 A=np P
(X o X [ZX7n) Poisson N0 Binomial] _---~ p=R/N
. N = o
0\)‘ (n, p) | X
A= /u=np ~ Bernoulli
IX, A= / \
nxi ndzmnp(l—p) n=1 )
N\ eX Normal
., o) [S_a=p-w
Lognormal / Lol \‘Oi\ g
log X X—p \ ‘~\\\ Beta
g =X, \\,,,:1’)\ N2 | (a B)
Normal pt+oX \3 riroo
©,1) $X. \ Continuous
X, * Y| Gamma F(X) / distribution
YA " - 1 X( ) / with cdf F
X, // U é x v/2 Uniform 1
/ Chi-squared 5 ) re1 ©.D FH(X)
1 ! X,/v, ) e M X
- ( Cauchy / X
X o, 1) / UA Vs :
Ve ylx A=1/2 —(logX)/}\
Exponentlal
ll - 0
(Y
—()l/X min X
-X
X2 Weibull Double
N exponential

(v)

Relationships among common distributions. Solid lines represent transformations and
special cases, dashed lines represent limits. Adapted from Leemis (1986).

Chapter 5 Chi~6, p.2-86

Outline
» 3 types of convergence » law of large number

*a.s., in prob., in dist. » central limit theorem

Question 5.1

1. repeat flipping a fair coin 2 or 3 times. Can you accurately
predict the average appearance of heads?

2. repeat flipping a fair coin many many times. What will
you predict the average appearance of heads?
Note.
1. Some deterministic patterns emerge from random phenom-
ena when more and more data are collected, i.e., more and
more information is gathered.

2. In the following, n — oo can be interpreted as sample size
of data is large enough.

* three types of convergence
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Definition 5.1 (converge almost surely, TBp. 178)

A sequence of random variables {Z, : 2 — R} is said to converge
almost surely to a random variable Z : 2 — R, and denoted as

Zna;S&Z, if for any € > 0,

P ({ge Q: lim |Zn(w) - Z(w)| < e}) =1

n—aoo

Definition 5.2 (converge in probability, TBp. 178)

A sequence of random variables {Z,, : 2 — R} is said to converge
in probability to a random variable Z : {2 = R, and denoted as

Z, LN Z, if for any € > 0,
lim P({w € Q:|Z,(w) — Z(w)| <€}) =1.

n—oo
a.s, P
Z, — a, «:a constant. Z, — «a, o :a constant.
A A A A - (e

SR
00 02 04 06 08
4

| e

00 02 04 06 08 10
p
h&___~
“1
B A
||

00 02 04 06 08 0
[

ol
A

'-__--—-—-

00 02 04 06 08 0
00 02 0 0 08 0
T e—————
| —————

00 02 04 06 08 0
o

S5 U SananUll Bliies. S IS Te o d e S MEESC D Sl
I R Ly LN kP R PPt I e S
2& 26 T-=---_.--~2¢ | ’ _2€T -7 2& 2&
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e Q= (0,1

e P: uniform probability measure on {2
e For k =1,2,..., divide (0,1] into 2* subintervals
of equal length. These intervals are given by
T = (% 5
for j =1,2,...,2%
Let Z1,Z5,---: 2 — R be a sequence of r.v.’s
7,  defined as follows:

1, ifwe Ik:,j;

Z an — N
o ( ) O, ifw&‘[k,j,

7,  where n =2F +j — 2.
Z : 2 — R such that Z(w) =0 for w € Q

o /7, i Z, because for 0 < € < 1,

=]

5050 07 100

d P €0 2,(u) 2 Z()}) = PO) =0
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Definition 5.3 (converge in distribution, TBp. 181)

Let Zy,Z,,... be a sequence of random variables with cdf’s
Fi, F,, ... and let Z be a random variable with cdf F'. Then

Z, converges in distribution to Z, denoted as Z, N/ , if

lim F,(2) = F(2)

n—o0

at every point z where F' is continuous.

Theorem 5.1 (some properties about the 3 types of convergence)

1.2 2% 7 o 7z £ 7
2.2 2z = 7z Y7

d P
3. Z, — ¢, c: aconstant = Z, —c¢

4. (convergence of transformation) Let g : R — R be a
continuous function. -
(a) z0) 25 Z0) k= gzV,...,Zz8) &5 gz, ... z®),
(b) z¥) L z6) j = k= gzW,... “”)é (Z<1>,...,Z<k>).
(c) (Z2&,... Z”“)) (Z<1> Z(k)):>g(Z(1) L2 L g2, .., ZW),

v
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5. (Slutsky’s theorem) If X, 4 X,Y, R a, where a is a
constant, then

(a) Y, X, - aX

®) X, +Y, 5 X+a

X, X
(c) v 4y 2 provided that P(Y, # 0) = 1 for all n and
" a

6. (limit theorem for § method) Suppose

VXn —0) a, N(0,1).

o

For a given function g, suppose that ¢’(f) # 0 exists. Then

Vlg(Xn) — g(0)] 4

alg'(6)]
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Theorem 5.2 (Continuity Theorem, TBp. 181)
Let F,(x) be a sequence of cdfs with the corresponding mgfs

M,(t). Let F(x) be a cdf with the mgf M (¢t). If M, (t) — M (t)
as n — oo for all £ in an open interval containing zero, then
F.(z) — F(z) at all continuity point of F'.

Notes.
1. The reverse of the continuity theorem also holds.
2. The continuity theorem still holds when the moment gen-

erating function is replaced by characteristics function (chf
always exists). |

(for your information)

Fy, Focdfs fo, fopdfs po, p:pmf;

FWR < F implies nh_)n(;lo fu(z) = f(2)?
or 7}1_)1’1(;10 pn(x) = p(x)?

Ans: In general, NO.
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Example 5.2 (Convergence of Poisson to Normal, TBp. 181-182)

Let X, ~ P(\,), n = 1,2,... with A, — co. We know that
E(X,) = Var(X,) = A\, and Mx (t) = (=D, Let

é - (Xn — )\n)/\/A_na

Then My, (t) = e~V My, < : ) “tVAuha(@2" 1) Because

Vn
hm logMZ = lim —t\/ A\ + A t/*/_ 1)=—

n—o0 2’

My (t) — €72, which is the mgf of N(0,1). By continuity the-

orem, Z, AN (0,1), i.e., when \ is large, we can approximate
the distribution of P(\) by N(\, \).

e LLLN and CLT
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Theorem 5.3 (Weak Law of Large Numbers (WLLN), TBp. 178)

Let Xy, Xs,...,X,,... be a sequence of independent random
variables with E(X;) = u and Var(X;) = o°.
Let X, = % S Xi. Then X, L (.

Proof: E(X,) =pu, Var(X,) = o*/n
By Chebyshev’s inequality,
- Var(X, 2
P(| X, —pul>¢ < ar(2 ):02 > 0 as n — 00
€ ne

Notes. Under the same assumptions, a strong law of large
numbers (SLLN), which asserts that X, a5 (L, can be proved.

Example 5.3 (Monte Carlo integration, TBp. 179)

To calculate I(f) fo x)dz, we can generate X1, Xo,..., X,
iid. ~U(0,1) 1) and compute I( ) =15"" , f(Xi). By the LLN,

@WIH be close to E[f(X;)] fo )X 1de = I(f) as n is
lar
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Example 5.4 (Repeated Measurements, TBp. 179-180)

Let Xi,..., X, be ii.d. with mean p and variance o, then
X, 5 p

Let -

1=1

Because g(z) = x° is continuous, 7721 5 42 Next, the r.v.’s
X2, ..., X2 are i.i.d. with mean % + p?. By WLLN

1 2 P 9 2

Therefore,
S2 5 (0% + ) — piP = o>

(Note.

in S? can be replaced by ﬁ)

1
n

If X, ~ t,, then X, = N(0, 1).

(Ec) If X, ~ F,,,, then mX, % y
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e Let Xl’ ..., X, be 1.1.d. ~ Exponential(1),
then yy=FE(X))=1, 0, *=Var(X =1, fori=1, ..., n, and

nX, => 1, X;~ Gamma(n,1) = X,, ~ =Gamma(n, 1).

= EBE(X,) =pux =1 Var(X,) =0k /n=1/n
LLN
n=> n=10 n=20 n=100
mean=1 - mean=1 - mean=1 - mean=1
df var=1/5 var=1/10 var=1/20 var=1/100
p

S CLT
ox/v/n

Normal Normal Normal - Normal
df (1, 1/10) . (1, 1/20) . (1, 1/100)
p v v v
Normal Normal Normal
of ©. 1) ©. 1) ©. 1)
Yn — KX
Ox /\/ﬁ
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Theorem 5.4 (Central Limit Theorem, TBp. 169)

Let X, X5, ... be i.i.d. with mean p and variance o2. Let
X (: n Diet X;) and T, (=nX, =3, Xi)

be the average and the sum of data, respectively. Then,

Tim P (%JE—MSQE) — lim P (ﬁ(z’_“) < x) = d(x),

for —oo < x < 0o, where ®(x) is the cdf of N(0,1).

Proof. Let W; = %, then E(W;) =0 and Var(W;) = 1. Let
Zn = TZ\_/%M = @Z?ﬂ Wi.
Let M (t) be the mgf of W;’s and M (t) be the mgf of Z,,, then

va ) = [ (5] = [uo + @+ o () o )]

= {l+ % +o (%)]n — /2 [because if a,, = a, (1 + a;")n — €]

Notes.

1. When mgt’s do not exist, we can use chf’s to prove it instead.

2. This is one of the simplest versions of CLT.
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Example 5.6 (Normal approximation to Binomial distribution, TBp.187)

Let Xy, Xs,..., X, beiid. ~ B(1,p), then T,, ~ B(n,p). Note

that F(X;) = p,Var(X;) = p(1—p) and E(T,) = np, Var(T,) =
np(1 —p) . By CLT,

Tn_@ d
np(l — p)

i.e., when n is large enough, we can approximate the distribution
of B(n,p) by N(np,np(1—p)).

Note: 1. how about those distributions that can be generated from

a sum of some i.i.d. random variables? (example?)
2. (cf.) Poisson in Def. 4.7 (LNp.66) and Example 5.2 (LNp.92)

Example 5.7 (measurement error (or called sampling error), TBp. 186)

e Suppose that you want to know the average income of fam-
ilies living in Taipei.

e If you can ask every families their incomes, you will get the
exact value of the average, denoted by p.
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e However, what if you only take a random sample of, say,
1000 families?

e The average income of the 1000 families, denoted by X 190,
is a random variable. It has an error X gy — ¢, which is
called measurement error or sampling error.

e By CLT, the error will be distributed normally, and we can
approximate P(|X 1900 — | < ¢) using normal distribution

no matter what the distribution of incomes is.

Example 5.8 (experimental error)

e It is usually true that an experimental error € is a function of
a number of component errors €4, ..., €,.

e for example, errors in the settings of experimental conditions,
errors due to variation in raw materials, and so on.

e If each individual component error is fairly small, it is possi-
ble to approximate the overall error € as a linear function of

independently distributed component errors
€ A1€1 + ... T Ap€y.
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e By CLT, the distribution of € will tend to normal as the number
of component errors becomes large.
ers a good just]
statistical methods, such as in ANOVA or linear regression, the

error part is assumed to be distributed normally.

Example 5.9 (cont. Ex.5.4 in LNp.94, Repeated Measurements)

Let X1, Xo, ..., X, beii.d. with mean p and variance 0. Then,
by LLN, CLT, and Slutsky’s theorem,

V(X — 1) d

> N(0,1),

2
. N(0,1) and 52 - o (:% Ll).

because

% Reading: textbook, chapter 5
% Further reading: Roussas, chapter 8




