value

Decision theory and Bayesian Inference

2nd Edition, Ch15, p.1 決策理論

• Set forth a unifying framework for theory of statistic. -including estimation &

• Deal in a systematic way with problems that are <u>not amenable</u> to analysis by <u>traditional</u> methods such as <u>estimation</u> and <u>testing</u> e.g. classification

Example 10.1 (Sampling Inspection, 2nd Ed., TBp. 572)

- A lot of N items, n (n < N) of which are sampled randomly and determined to be either defective or nondefective. n, N: known
- <u>unknown</u> p: proportion of the N items that are <u>defective</u> (<u>parameter</u>) $0 \le p \le 1$
- $-\hat{p}$: proportion of the <u>n</u> items that are <u>defective</u> (<u>observed data</u>, the <u>distribution</u> of \hat{p} depends on p) $\stackrel{\bullet}{\searrow}$ # of observed defeated items $\Rightarrow \hat{p} = x/n$

For any lot, the manufacturer has two possible actions: depending on p.

facturer will pay a P penalty, return policy unknown factors will pay a P penalty, return policy unknown factors.

 $\begin{array}{c}
\text{junk it at a } \underbrace{\text{cost } \$C}.
\end{array}$

• The loss function is

i.e., minimize loss

 $\begin{array}{c|ccccc} & & & & & & & & & & \\ \hline unknown & & & & & & & & \\ when taking & & & & & & & \\ action & & & & & & & \\ \hline \end{array} \qquad \begin{array}{c|ccccc} & & & & & & & \\ \hline P & & & & & \\ \hline \end{array} \qquad \begin{array}{c|ccccc} & & & & & & \\ \hline SC & & & & \\ \hline \end{array} \qquad \begin{array}{c|ccccc} & & & & & \\ \hline & & & & & \\ \hline \end{array}$

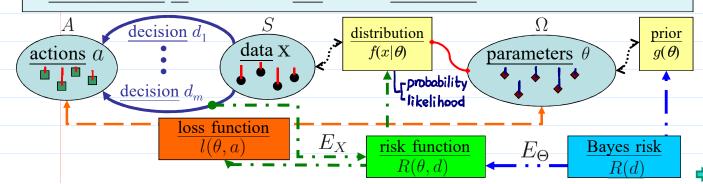
• Question: For best profit, how to make a decision (sell or junk) based on the observed data \hat{p} ?

Example 10.2 (Classification, 2nd Ed., TBp. 572) CF. hypotheses testing problem

- On the basis of several <u>physiological measurements</u>, a <u>decision</u> must be <u>made</u> concerning whether a <u>patient has suffered</u> a <u>myocardial infarction</u> (<u>MI</u>) and should be admitted to <u>intensive care</u>
 - patient status: {MI, no MI} (parameter) → unknown

actions: {admit, not admit}

- Question: How to make a decision (admin or not admin) based on the observed data X so that the loss can be minimized?



Q Question: how to confront the difficulties to make a good choice of d?

2nd Edition, Ch15, p.5

Definition 10.1 (Minimax Rule, 2nd Ed., TBp.573)

1. For a given decision function d, consider the worst that the risk could be a function of $\theta \to a$ single value $\longrightarrow \max_{\theta \in \Omega} \underline{R(\underline{\theta},d)}$. Largest average loss of d

2. Choose a decision function \underline{d}^* that minimizes this maximum risk

Why not taking average? or weighed average?

$$\min_{\underline{\underline{d}}} \left[\max_{\underline{\theta} \in \Omega} R(\theta, \underline{\underline{d}}) \right]$$

function 3. Such a decision function $\underline{d^*}$, if exists, is called a minimax rule

Notes (Minimax Rule)

• weakness: very conservative, places all emphasis on guarding against the

→ worst possible case, which may not be very likely to occur.

• A rigorous statement is to change $\max \rightarrow \sup$, $\min \rightarrow \inf$

0 (parameter) : unknown

-a decision

1. Consider Ex10.1 in LNp.1. What if there are many lots? Each lot has its own p, and these p's can be different. \Rightarrow The p of a randomly chosen lot is a random variable.

fixed value random variable.

2. Extra information. From past experience, we may know what value of p is more possibe to appear. How to include this information in analysis?

not observe when taking action

2nd Edition, Ch15, p.6

Definition 10.2 (Prior Distribution, Bayes Rsik, Bayes Rule, 2nd Ed., TBp.574)

1. Assign a probability distribution, called **prior distribution**, to $\underline{\theta}$ Frequentist

 Θ : a random element of Ω drawn according to the prior distribution

2. The **Bayes risk** of a decision function d is

a function of θ as a single value of \underline{d} \to $\underline{B(\underline{d})} = \underline{E_{\underline{\Theta}}} \left[\underline{R(\underline{\Theta},d)} \right]$ \Leftrightarrow average risk, with weight from

where the expectation is taken with respect to the prior distribution of Θ .

3. Bayes rule: a decision function d^{**} that minimizes the Bayes risk B(d).

Notes (Bayes risk)

- Bayes risk can be interpreted as the average of the <u>risks</u> with respect to the prior distribution of $\underline{\theta}$. \longrightarrow check the graph in LNp.2.
- Bayes risk is a <u>function</u> of decision d only, not depending on $\underline{\theta}$.

Example 10.4 (steel section of firm stratum, 2nd Ed., TBp. 574-575)

- Benjamin and Cornell (1970): As part of the foundation of a building, a steel section is to be driven down to a firm stratum below ground.
- <u>Two</u> possible <u>states of nature</u> (parameters):

 θ_1 : depth of firm stratum is <u>40 ft</u>; θ_2 : depth of firm stratum is <u>50 ft</u>

• Two possible actions:

 a_1 : select a <u>40-ft</u> section;

 a_2 : select a <u>50-ft</u> section

• loss function $l(\underline{\theta},\underline{a})$:

 a_2 \$0 unknown $\rightarrow \boxed{\frac{\theta_1}{\theta_2}}$ \$100 \$400\$0

2nd Edition, Ch15, p.8

may come from

past experience

			2 nd Edition, Ch15, p.	7
Data:				1
	X	$\theta_1 \ (\underline{40} \ \text{ft})$	$\theta_2 \ (\underline{50} \ \mathrm{ft})$	
$\underline{X} = \underline{\text{depth}}$ measured by a sonic test,	$6x_1 = 40$	0.6	0.1	
which has probability distribution:	$x_1 = \frac{10}{45}$	$\frac{0.3}{0.3}$	0.2	L
		0.5	0.2	
Sum = 1	$x_3 = \underline{50}$	0.1	<u>U. 7</u>	

 $x_1 = 40$ $x_2 = 45$ $x_3 = 50$

Consider the following four decision rules:

<u>decision rules.</u>		1 (2 ()	3 (==/
always 40-ft section -		a_1	a_1	a_1
do not use the information in data	$\underline{d_2}$	a_1	$\underline{a_2}$	a_2
information in data	d_3	a_1	$\underline{a_1}$	a_2
always 50-ft section-	d_4	a_2	a_2	a_2

• Risk functions: For $\underline{j} = 1, 2$, and *i*-th decision function $\underline{d_i}$, $\underline{i} = 1, \dots, 4$,

$$\underline{R(\underline{\theta_j},\underline{d_i})} \ = \ \underline{E_{\underline{X}}} \left[l(\underline{\theta_j},\underline{d_i(\underline{X})}) \right] = \sum_{\underline{k}=1}^{\underline{3}} l(\underline{\theta_j},d_i(\underline{x_k})) \, P(X = \underline{x_k} \, | \, \underline{\theta = \theta_j}).$$

• Thus
$$R(\underline{\theta_1}, d_1) = \underline{0} \times \underline{0.6} + \underline{0} \times \underline{0.3} + \underline{0} \times \underline{0.1} = \underline{0}$$

 $R(\underline{\theta_1}, d_2) = 0 \times 0.6 + 100 \times 0.3 + 100 \times 0.1 = \underline{40}$

$$R(\overline{\theta_1}, d_3) = 0 \times 0.6 + 0 \times 0.3 + 100 \times 0.1 = \underline{10}$$

 $R(\theta_1, d_4) = 100 \times 0.6 + 100 \times 0.3 + 100 \times 0.1 = \underline{100}$

Similarly,
$$R(\underline{\theta_2}, d_1) = \underline{400}$$
, $R(\underline{\theta_2}, d_2) = \underline{40}$, $R(\underline{\theta_2}, d_3) = \underline{120}$, $R(\underline{\theta_2}, d_4) = \underline{0}$.

• Minimax rule: d_2 is the minimax rule since

$$\frac{\max_{j} R(\underline{\theta_{j}}, \underline{d_{1}})}{\max_{j} R(\underline{\theta_{j}}, \underline{d_{3}})} = \frac{400}{120}, \quad \frac{\max_{j} R(\underline{\theta_{j}}, \underline{d_{2}})}{\max_{j} R(\underline{\theta_{j}}, \underline{d_{4}})} = \underline{100}$$

- θ (fixed unknown constant) $\rightarrow \Theta$ (random variable)
 - prior distribution: $g(\theta_1) = \underline{0.8}, g(\theta_2) = \underline{0.2}$
 - Bayes risk: $\underline{B(d)} = E_{\underline{\Theta}}[R(\underline{\Theta}, d)] = R(\underline{\theta_1}, d)g(\theta_1) + R(\underline{\theta_2}, d)g(\theta_2)$
 - Thus,

becomes
$$B(\underline{d_1}) = \underline{0} \times \underline{0.8} + \underline{400} \times \underline{0.2} = \underline{80}$$

Y. V. $B(\underline{d_2}) = 40 \times 0.8 + 40 \times 0.2 = 40$

$$B(\underline{d_1}) = \underline{0} \times \underline{0.8} + \underline{400} \times \underline{0.2} = \underline{80}$$
 $B(\underline{d_2}) = 40 \times 0.8 + 40 \times 0.2 = \underline{40}$
 $B(\underline{d_3}) = 10 \times 0.8 + 120 \times 0.2 = \underline{32}$
 $B(\underline{d_4}) = 100 \times 0.8 + 0 \times 0.2 = \underline{80}$
 $B(\underline{d_4}) = 0.2$

$$B(\underline{a_3}) = 10 \times 0.8 + 120 \times 0.2 = \underline{320}$$

 $B(d_4) = 100 \times 0.8 + 0 \times 0.2 = 80$

- Thus $\underline{d_3}$ is the Bayes rule corresponding to that prior. \blacktriangleleft reasonable?

Example 10.5 (sampling inspection, 2nd Ed., TBp. 576-577)

- A manufacturer produces items in lots of 21. One item is selected at random and tested to determine whether or not it is defective.
- Two possible actions: (1) sell the remaining 20 items at \$1 per item with a double-your-money-back guarantee on each item, or (2) junk the whole lot

at a cost of \$1. m: # of defeated items unknown ____ in the remaining 20 items

sell aunk loss -20 + 2m

2nd Edition, Ch15, p.9 parameter: $\underline{k} = \underline{\text{number}}$ of <u>defectives</u> in a <u>lot of 21</u> $\Rightarrow k = 0.1.2....21$

• $\underline{\text{data}}$: $\underline{X} = \left\{ \begin{array}{l} \underline{1}, & \text{if the } \underline{\text{tested item}} \text{ is } \underline{\text{good}} \\ \underline{0}, & \text{if the } \underline{\text{tested item}} \text{ is } \underline{\text{defective}} \end{array} \right. \Rightarrow m = \left\{ \begin{array}{l} \mathbf{k-1}, & \text{if } \mathbf{X=0}, \\ \mathbf{k-1}, & \text{if } \mathbf{X=1}. \end{array} \right.$

• For a given value of \underline{k} , the <u>distribution</u> of \underline{X} is Bernoulli(1 - k/21):

$$P(\underline{X} = 0 \mid \underline{k}) = \underline{k/21}, \quad P(\underline{X} = 1 \mid \underline{k}) = \underline{1 - (k/21)}.$$

• Consider the following two decisions: $d: S \rightarrow A$ d_1 : sell if tested item is good, junk if defective;

not use the information in data d_2 : sell in either case

• The <u>loss</u> are

$$l(\underline{k},\underline{d_1}(X)) = \begin{cases} \frac{-20}{\underline{1}} + \underline{2 \times k}, & \text{if } X = \underline{1}, \rightarrow \mathbf{m} = \mathbf{k} \\ \underline{1}, & \text{if } X = \underline{0}. \end{cases}$$

$$l(\underline{k},\underline{d_2}(X)) = \begin{cases} \frac{-20}{\underline{-20}} + 2 \times \underline{k}, & \text{if } X = \underline{1}, \rightarrow \mathbf{m} = \mathbf{k} \\ \underline{-20} + 2 \times \underline{(k-1)}, & \text{if } X = \underline{0}. \rightarrow \mathbf{m} = \mathbf{k} - \mathbf{k} \end{cases}$$

• The <u>risk functions</u> are $R(\underline{k}, \underline{d_i}) = E_{\underline{X}}[l(\underline{k}, d_i(\underline{X}))].$

$$\begin{array}{lll} R(k,\underline{d_1}) & = & (\underline{-20+2k})[\underline{1-(k/21)}] + \underline{1} \times (\underline{k/21}) \\ & = & \underline{-20+3k-(2k^2/21)} \blacktriangleleft \text{ quadratic} \\ R(k,\underline{d_2}) & = & (\underline{-20+2k})[\underline{1-(k/21)}] & \text{ polynomial} \\ & + [\underline{-20+2(k-1)}](\underline{k/21}) \\ & = & -20+(40/21)k \blacktriangleleft \text{ linear polynomial} \end{array}$$

why not using info in data is (slightly) minimax rule:di K 良率低

• Figure 15.1: the two risk functions. d_1 is the minimax rule.

• Suppose the prior distribution of \underline{K} is $\underline{\underline{Binomial(21, p)}}$. Then probability of generating a defective $\underline{E(K)} = \underline{21p}, \quad \underline{Var(K)} = \underline{21p(1-p)}, \quad \underline{E(K^2)} = \underline{21p(1-p)} + (21p)^2 \cdot \underset{\text{assume}}{\text{assume}}$ • The Bayes risks of d_1 and d_2 are - dı = 40p - 20 linear polynomial • Figure 15.2: Bayes risks versus p, $\underline{d_2}$ has a smaller Bayes risk as long as

Reading: textbook (2nd ed.), 15.1, 15.2, 15.2.1 5/20

• Posterior Analysis --- A simple method for finding Bayes rule

 $p \leq 0.5$. (If the product is fairly <u>reliable</u>, may prefer d_2 .)

Definition 10.3 (Posterior Distribution and Posterior Risk, 2nd Ed., TBp.578-579)

• In Bayesian procedures, we have

 $-\underline{\Theta}$: a random variable with a pdf/pmf $g_{\underline{\Theta}}(\theta)$ In estimation (CHB) and testing (CH9), the joint pdf/pmf of \times (data)

 $\frac{\mathbf{g}_{\mathbf{P}}(\theta)}{\mathbf{p}_{\mathbf{P}}(\theta)}$: prior distribution of $\mathbf{P} - \mathbf{p}_{\mathbf{P}}$ 方配

 $f_{X|\Theta}(\underline{x}|\underline{\theta})$: pdf/pmf of \underline{X} , conditional on the value $\underline{\theta}$ of $\underline{\Theta}$

Conditioned on $\Theta = 6$ random variable 0