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Decision theory and Bayesian Inference EE¥$i:E-

o Set forth a unifying framework for theory of statistic -including estimation &
e Deal in a systematic way with problems that are not amenable te——si:l—fﬁ-
ng ic.g. classcfi-

cation

to analysis by traditional methods such as estimation and testi

at
Example 10.1 (Sampling Inspection, 2" Ed., TBp. 572)

e A lotof NV items, n (n < N) of which are sampled randomly and determined
| to be either defective or nondefective. n, N: known
@'m—g’_y proportion of the N items that are defective (parameterje-o0<p<1

— p: proportion of the n items that are defective (observed data,

knpwn—  the distribution of p depends on p) 3% # of observed defeated items > B= X/
= . — Y.V. ~l'fypergeometr. binomiel I rv.
For any lot, the manufacturer has two possible actions: depending on p. ’

D sell the lot, for a price $M with a guarantee that if p > py the manu-

. fact.urer will pay a $P penalty < return policy u enselljil: I o Fixed Enowr
junk it at a cost $C. — vo.iue

e function i —sState of Nature ‘ Sell  Junk
° e loss function is !!';,knom!__ v “SM $C
i.e., minimize loss :d_.?gn "9 p > po $P $C
o For best profit, how to make a decision (sell or junk) based on
the observed data p? 2
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Example 10.2 (Classification, 2" Ed., TBp. 572) q-Sf'-bhypab‘)eses feshng problem
e On the basis of several physiological measurements, a decision must be made
concerning whether a patient has suffered a myocardial infarction (MI) and
should be admitted to intensive care
do patient status: {MI, no MI} (parameter Je- unknown

X: physiological measurements (observed data, the distribution of X de-

pends on parameter)—‘:ﬁ‘—‘_' MI—, no MI
actions: {admit, not admit} X

e loss function: [__.patlent status | d,’ da admin not admit
unknown MI | correct subjective
no MI | economic costs correct
o How to make a decision (admin or not admin) based on the
observed data X“so that the loss can be minimized?
distributi Q )
istribution J > prior
f(z|0) parameters 0 9(9
? probobility ¢ | ¢ l ¢ 4
. Ulikelihood |
- —— b —— :
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Summary and Definitions (Decision Theory, 2" Ed., TBp.571)
e Making decisions in the face of uncertainty.

comes from data

dep” & 20 action 1 parameter
—-——— A: action space, the set of all possible actions gs:j to in Bayesian
| (/] ac
e The decision maker chooses an action based on £ mm PP
: _ an action
— observation of random variables, or data, X.
— X € 5 (S: sample space, set of all possible data values). d:S—=A

— d: statistical decision function (decision rule), a map from S to A_.—’
a transformation . 2 - _

oﬁ;'(“ (Note: d(X) is mnglom, given as a = d(X))

e The probability distribution of X depends on

— a parameter 0, called the state of nature < unknown

— 0 € Q (Q2: parameter space, the set of all possible values of )

e A loss function, [(0, a), is a real function defined on Q x A.

e Under a decision function d, by taking the action a = d(X),

the decision maker incurs a loss |random‘
random (** X is ramlom).-_.f l (Q’ @) o

e The expected loss of a decision d
is called risk function: R(0,d) = Ex {l(_&_, d(_X_))}
X

average
loss

(Note: the expectation is taken w.r.t. distribution of X, which depends on .)

Joint pdf §£(X]0)
Joint pmf P(219) B

e (Good decision function d should have small risk. T
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Example 10.3 (Estimation, 2" Ed., TBp. 573)

e X = (X1, Xo,...,X,): arandom sample, distribution of X depends ong.
Goal: estimate v(0) [~ %Esion d.S+A unknown
e Goal: estimate v(0) [T Saction ;

parameter

-
e d(X): an estimator’of v(0) (Note. A=, and d(X) : S — Q)

e quadratic loss function:

2
1(0,d(X)) = [y(e) —d(X)} .

e The risk function is then Recall UMVOE
o . 2 ecall, :
which is the mean squared error.-e- among d__uﬂég_a&d

Question 10.1
e A good decision function d is one that has a small risk smallest risk V€N

q R(9,d) = Ex[l(0, d(X))] on any O € ()

di— Difficulty 1: R(6,d) depends on 6, which is unknown.
"aze— Difficulty 2: There might be two decisions, d; and d2, and two values
, 02 ~ of 6, 61 and 0, such that R(ﬁ,ﬁ)<R(ﬁ,@)—1

gHim‘:. Transform o function of O R(62,d1) > R(f2,dy) =

RI

into a single value
Question: how to confront the difficulties to make a good choice of d?
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Definition 10.1 (Minimax Rule, 2" Ed., TBp.573)

1. For a given decision function d, consider the worst that the risk could be

a function of @ > & single value |— Tax R(0,d) =largest average loss of d

bea —=—
2. Choose a decision function d* that minimizes this maximum risk
Why not taking average? .

1] or weig/ned rag;emge 2 mdm[ %1635( R(0,4d) ] )

l-a de;:{z‘og
. . : . . : .. — ction
3. Such a decision function d*, if exists, is called a minimax rule.

Notes (Minimax Rule)

e weakness: very conservative, places all emphasis on guarding against the
—s worst possible case, which may not be very likely to occur.

© (parameter)
e A rigorous statement is to change max — sup, min — inf : unknown
(1. Consider Ex10.1 in LNp.I. What if there are many lots? Each lot Tixed value
has its own p . and these p's can be different. = The p of a random,
| randomly chosen lot is a random variable. - variable 4
2. Extrg information. From

rience , we may know what value of p
is more possibe to appear. How to include this information in analysis?

Definition 10.2 (Prior Distribution, Bayes Rsik, Bayes Rule, 2" Ed., TBp.574) —— :

»1. Assign a probability distribution, called prior distribution, to ¢ Fegetistd
©®: a random element of €2 drawn according to the prior distribution N
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2. The Bayes risk of a decision function d is

ﬁ*ﬁ‘“ﬁ?ﬁge%«e 5?8 = Fe [R(_@, d)]‘,—- average risk, with weight $rom

where the expectation is taken with respect to the prior distribution of ©.

Lons

3. Bayes .rule_:_f_i. decision function d** that minimizes the Bayes risk B(d).e—

e Bayes risk can be interpreted as the average of the risks with respect to the
prior distribution of . —e check the ngh in LNp.2.
e Bayes risk is a function of decision d only, not depending on 6.

Example 10.4 (steel section of firm stratum, 2" Ed., TBp. 574-575)

Benjamin and Cornell (1970): As part of the foundation of a building, a
steel section is to be driven down to a firm stratum below ground.

e Two possible states of nature (parameters):

60;: depth of firm stratum is 40 ft;
e Two possible actions:

ay: select a 40-ft section;

e loss function I(6, a):

02: depth of firm stratum is 50 ft

ay: select a 50-ft section

ai a2
01 ] $0  $100
unknown 6, | $400 %0
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e Data:
E—— X 40 f f
X = depth measured by a sonic test, Za—Ty 2! (()_g t) |9, (05_(1) t
which has probability distribution: Sefr, = 4__5 ﬁ 0:2
sum=1 x3 = 50 0.1 0.7
e Consider the following - z :
four decision rules: |21 (=40) x5 (=45) z3 (=50)
always 4o-ft section>d; | ai aj
do not use the dy | @ az a2 '
information in data | @ a = d-: S-—>,Al
always 5o0-ft sectionw»d, | ao a2 a2 {a"a’:[
e Risk functions: For j = 1,2, and i-th decision function d;, i =1,...,4,
R(O5,d) = Bx |10, d:(20)] = Sh, 185, dilzw)) P(X = ax ] 0= 0)).
e Thus  R(f,di) = 0x0.6+0x03+0x0.1=0
R(61,d2) = 0x0.6+4 100 x 0.3+ 100 x 0.1 = 40
R(#1,d3) = 0x0.6+0x0.3+100x0.1=10
R(01,d4) = 100 x 0.6 4 100 x 0.3 + 100 x 0.1 = 100
SHHﬂarlY? R(H_ dl) = 400, R(0_27 d2) = 40, R(_0_2_7 d&) = 120, R(_gz7 d4) = 0. b
<:I 2d Edition, Ch15, p.8

e Minimax rule: @ is the minimax rule since
max R(ewﬁ) = 400, max R(ijﬁ) = @7

J - J
max R(Hj, dg) = 120, max R(Qj, d4) = m
J - J -

e Bayes rules: 9 (§ixed unknown constunt) > @ (random variable) | may come f‘fom
— prior distribution: g(61) = 0.8, g(62) = 0.2 past experience
~ Bayes risk: B(d) = g [R(9.d)] = R(61,d)g(61) + R(6, d)g(62)

- Thus, rcomesy” B(d) = 0x0.8+400 x 0.2 = 80
Y-Ve | B(dy) = 40 0.8+ 40 x 0.2 = 40 r@:What if
& ‘E"' (8)=0.2
B(ds) = 10x0.8+120 x 0.2 =32 {3'--

=087
B(dg) = 100x0.8+0x0.2=80 $(62)=0.8 7
— Thus d3 is the Bayes rule corresponding to that prior. < reasonable ?

Example 10.5 (sampling inspection, 2" Ed., TBp. 576-577)

e A manufacturer produces items in lots of 21. One item is selected at random
and tested to determine whether or not it is defective.

e Two possible actions: (1) sell the remaining 20 items at $1 per item with a
double-your-money-back guarantee on each item, or (2) junk the whole lot

at acost of $1. m. Eo?d_efgaf_e_d items I sell  gunk
loss | =20+

unknown—j in the yemaining 20 items
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e parameter: k = number of defectives in a lot of 219 k=0,1.2,---.21
1, if the tested item is good k-1, if X=0,
X =4 7 > Mm=
o dafa: X { 0, if the tested item is defective { . If X=1.

For a given value of k, the distribution of X is Bernoulli(1 — k/21):
PX=0lk) = k/21, P(X=1|k)=1-(k/21).

e Consider the following two decisions: d: S=>A ;"‘;‘: Z:g:he information
dy: sell if tested item is good, junk if defective; da: sell in either case
o The loss are —20+2xk, if X =1-m=k
1k () = { T i
=20+ 2 x k, if X =1,—-m=k
680D = { S50 15 % (b= 1), 1 X =0~ makei
e The risk functions are R(k,d;) = Ex [l(k,d;(X))]. T M;I‘rs‘;g
Rik,di) = (=204 2K)[1— (k/21)] +1x (k/21)  |mms |
= —20+4 3k — (2k2/21)¢guadm{uc . , [ ey
R(k,dy) = (20%2k)[L— (kj21)] Polynomial = | /%
+[-20 + 2(k — 1)](k/21) |5/ minimax: rule:ds
= =20+ (40/21)k i i PO » = NPT
+ (40/21)k <~ linear polynomial b (& B
e Figure 15.1: the two risk functions. d; is the minimax rule. b
¢| 2nd Edition, Ch15, p.10
e Suppose the prior distribution of K is Binomial(21, p). Then ¢probability of
v___.fsener rgadgﬁc{m

B(K) = 21p, Var(K) = 21p(1—p), B(K2) = 21p(l — p) + (21p)”.0mee

known,

e The Bayes risks of dy and dz are s
EB (d1) = —20+3x E(K) - (2/21)E(K?)
= —20+3x 21p (2/21)[21p(1 —p) + (21p)?]
Qisgone|  _  _0+ 61p— 40p® < quadratic polynomial
UB(dy) = —20+ (40/21) x 21p A -
= 40p — 20 <~ finear polynomial da better s di bettor
e Figure 15.2: Bayes risks versus p, do has a smaller Bayes risk as long as
p < 0.5. (If the product is fairly reliable, may prefer ds.)

% Reading: textbook (2" ed.), 15.1, 15.2, 15.2.1 5/20

* Posterior Analysis --- A simple method for finding Bayes rule

Definition 10.3 (Posterior Distribution and Posterior Risk, 2" Ed., TBp.578-579)

e In Bayesian procedures, we have Tn eskimabion (CHB) and Festing (CHY),
g a| — ©: arandom variable with a pdf/pmf gg(0) (thedoit pdf/pms o

ixed| — gg(f): prior distribution of © -~ ;Eﬁ\ @a J Condd.-uod on @-— 3

< |th
}3
"

mndom variable @
> a Sivedvalue ©
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