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Thus, B le i (X : .
° ULS’L“J? 15 7 a/)’ JOh@|z)dd, in the continuous case
is S easonab
pnrsecc’td;mof arv|  decision functione 3" >0, 0i h(filz ), in the discrete case
Lt lnd (an estimator)

e In the case of squared error loss, the Bayes estimator (i.e., Bayes rule) is the
g/ o|ean of the posterior distribution.

Example 10.7 (Throw a coin once, Bayes estimator, 2" Ed., TBp. 584-585)

e A biased coin is thrown once. Estimate § = probability of heads.

e Suppose that we have no idea how biased the coin is
= for , can use uniform prior: g(f) =1,0 <60 < 1.

o Lot O Yague prior — {

1, if a head appears

s —
L 2.8 0, if a tail appears
Then the distribution of X given 0 is Ber noulli(6):
0, r=1
ThlSlStherfofx (51319) 1—0 =
in ‘g& Sg =Yy 2 —
e The posterior distribution is 76)
Bix e hfl) — i@l x1 T2 Jo 248
marginal x50 S0 < 18] | Frisgm =
B
<:I u 2nd Edition, Ch15, p.1lG

s The Bayes estimator of 6 is the posterior mean | e(’Zgr r:gf’:) ®:Which one is

a =

6 J L R | i

] 0 [6-20-6)9 — 15, 220

| B od enti 1., x=1 N_O_teWingl_e_
{§, x=0J* | observation ,

2 S %, CAFTies
Theorem 10.3 (Bayes rule for Estimation under Absolute Error Loss) [fl-3s% little information

about © = prior.

BV L(0,d) = 10— diwLnorm {SB2E P | | becomes very helpful
the Bayes estimator is the median of the posterior distribution. <« ¢F. Thmi0.2

2 50%- Quantile (LNp.15)

Definition 10.4 (dominate, strictly dominate, admissible, 2" Ed., TBp.585)

e Let di,d2 be two decision functions. rn‘sk Junction di is no worse than da

— Say d; dominates ds, if R(0,d1) < R(0,d>) for all 0 Bgt,;i;l,da c::'be,

r—e Say di strictly dominates da, if R(0,d1) < R(6,dz) for all 8, and the

:O:n ;leegzg inequality is strict for some 6.« ¢,: noworse than da, but better for some ©

e A decision function d_is called admissible if d is not strictly dominated by any

other decision function. I .y inadimissible (not adimissible)
e For estimation, an estimator is called admissible if it is not strictly dominated

by any other estimator. (Note: Admissibility is a rather weak property. There
could be many admissible estimators. )e<£s, GMVTUE 2> only one admissible est'or

e Note. The max1mum£kehhood estlmator is X.=

In the case of absolute error loss, i.e., median is the best
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VTR P RGRE NI VIO - true for any decision problem, not only estumation.

Suppose that one of the following two assumptions holds:

®

1@Q is discrete, d* is a Bayes rule w.r.t. a prior pmf g(#) such that@?qw) >0

— St el Sitbetites e ANE A

cqunt-I~— 11 0 € Q.

2@Q is an_interval (perhaps infinite) and d* is a Bayes rule w.r.t a prior pdf
e Y 2ayes THoe

'ﬂm'mf g(#) such that g(f) > 0 for all 0 € Q and@ R(6,d) is a continuous function of
ble 9 for all d. *risk function

Then d” is admissible.<¢ Tatuition : I d’ strictly dominates d™. d’ has smaller
Proof. We prove it under 2. The proof under 1 is similar. Bo.xes risk than é_
Suppose that d* is inadmissible. Then, there is another estimator d’ such that

/ * Risk
d' strictly \ o R(9,d") > R(6,d), for all § RE)
and with strict inequality for some 6, say 6p. € o]
Since R(0,d*) — R(A,d’) is a continuous function of 6, |

there exist an € > 0 and an A > 0 such that
R(0,d") —R(Q,d') >e>0 for g —h<0<6y+h

Then, (o Oo+h
/ R(O,d) — R(0,d)| g(0)do > / [R(0,d) — R(9,d)] g(0) db
- 3;0 all © 2>0al0 “J0—h X6
B(d®)-B(d’) v Bo+h ¢ .
T LN Bayes riSk El E/Go—h @dQE‘O B

2nd Edition, Ch15, p.18

But this contradict the fact that d* is Bayes rule
with respect to g(#), that is

B(d*)—B(d’):/oo [R(0,d") — R(0,d)] g(0)do < 0.

—00

The proof is complete.

The theorem can be regarded as both a positive and a negative result.

positive part: It identifies a certain class of estimators (i.e., Bayes estimators)
as being admissible. T-for estimation 4
(Note: In general, it could be difficult to examine whether a particular
estimator is admissible, since by definition, one have to check that the
estimator was not strictly dominated by any other estimators.)

distribution satisfying the hypotheses of the theorem.
=> admissibility is a rather weak property => can put more restriction .
% Reading: textbook (2™ ed.), 15.2.4 eg3. unbiased -+ UMVUE ‘-um—-%

[- negative part: There are so many admissible estimators — one for every prior

» The Subjectivist Point of View — where the prior distributions come from?

e Different viewpoints on probability. Ea distribution assgned on ﬂ
_ ) parameter : Fuxed value
how to interpret the statement: = random variable
:3?2:&3 “the probability that a coin will land heads up is 1/2”7 -—fden N
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Frequentists’ interpretation: the long run relative frequency a $ixed world (6)

of heads approaches %-«Iong-run awmg,ee' LLN]| 4-objed:iver:1? lpmbab'"éy that

Bayesian: the prior opinion (1/2) is such that they would as soon LS Shakespeare
wrote Homlet

guess heads or tails if the rewards are equal.q-subje_cﬁve

Bayesian View of Probability (Personal Opinion) (2" Ed., TBp. 587-588).
e Let A be an event (e.g., image that A C S: sample space). rf - edl “?_
e For a game in which if A occurs, the Bayesian will be rewarded $1, P(A) is the

maximum amount of money the Bayesian would be willing to pay to Freauentist
buy into the game.—» q fﬂgame, average rgmd:Pay, 1:p-B=0 e B=p. | approach
e Example: if the Bayesian is willing to pay at most 50 cents to buy in, P(A) = 0.5.

e Note: Bayesian probability is personal. P(A) may vary from person to person.¢S&
Ty ey
e Bayesians probability is a model for quantifying the strength of personal opinions

or personal beliefs. ﬂayesian:i,uc'!P‘;ﬂ ARG FIHR ,Fregueatist =5AIU1’§§M§M
W \_y prior disbribution. l_o_t-thl

Evolvement of Personal Opinion (2" Ed., TBp. 588).

in Exl0. 1

e Bayes Thm describes how personal opinions evolve with experience. | (ZNp.1)
—@® Suppose that the prior probability of © is P(#). {update |

On observation of an event A <-&tety person observe same.A P(A]0) 1

the opinion about © changes to: po#erior P ) A) = —
can result in consistent probability (IiSt- Je—a—— 1 P(A
with the long-vun average interpretation Bayes’ Thm (LN.CHI~b. p.23)]

2nd Edition, Ch15, p.20

Difference btw Frequentist and Bayesian Approaches — Point Estimation (TBp. 588)
e Data X (random) has a joint pdf/pmf f(x | 9)"}:————*[ “Ffeﬁv-dist. of X

Baye. :cond. disk. of X

e Frequentist: f has some fixed value that is unknown. Since 6 is not random,
it makes no sense to assign 6 a pdf/pmf. cf.

e Bayesian: The prior opinion is g(8) for @_’(?andom), and*f(x|9) — fxje(z]9).
Having observed the data X = z, the new opinion about © is ‘Eﬂ —‘ﬁ:;c‘?gﬁonal

Bpyes update — i
est'or! ,.E Fx[0)g(6)  [Sxor prior can reflect personal experience.
hOl2) =T og@ aa) | Px®, | [However, because it persondl, i
posterior—3 J— :marginal| | can be*biase
e Note 1: As a function of @, the posterior density h(@ |x) is proportional to
] —o 0= usu
|00, 10§10 o f(2]D) g(0) [Fragektiting | Bosterior (aapesian) o
icular prefe o A NIt
z;ziome specific Os if g16)=C.a cousl:ad:T (LpiS) m é&_ded (F'eg“w‘sﬁ'

e Note 2: If g(0) is'nearly uniform in the region of # where f(x|0), regarded
as a function of 6, has almost all its mass, then h(@ | ) is nearly proportional

to the likelihood function £(€) = f(x | 0). +Ia likelihood :5.: fixedhle—:l

. varia

Difference btw Frequentist and Bayesian Approaches — Interval Estimation (TBp. 588)

e Frequentist: The confidence interval is a random interval (67, (X), 6 (X)):
A 100(1 — a)% C.I. covers the true, fixed, unknown value of Q with proba-

bility 1 — a. Once X = z is observed, P(6 € (01(z),0y(z))) is 0 or 1. m‘éﬁ
s » ,.;)
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e Bayesian: A Bayesian 100(1 — )% confidence interval, also called a

I; credibility interval, iseg‘f the form (0L (z), fu(x)) where 0. (z) and Oy ()

: o Xl , gFixed ndom-, R
y St L Anse™ 2P B8 udy.buih)) o] Freguakis
6 / h(f|z)dd =1—a ._P(e € (6.(%),00(1)) | X=%) i
0

oix
%9 Peir) GIX—: random t-S=rxec|:1 cf
1.@dOnce X = zx is observed, the interval is fixed and 6 is random.

 S—  —

—

Difference btw Frequentist and Bayesian Approaches - Testing (2" Ed., TBp. 589)
e Frequentist: probabilities of Type I and Type II errors (a and f3)

e Bayesian: deciding between two hypotheses (i.e., two subsets of 2) in light
of data reduces to comparing their posterior probabilities. t No & Na

—» Check INp.32~35 AR(e|x), B€ No
% Reading: textbook (2" ed.), 15.3 R (6]x), € Na

* Bayesian Inference for the Normal distribution X 16

dist. of data in

Theorem 10.5 (2™ Ed., TBp. 590) F'feguen'bs“:
e Suppose that a single observation X is taken, and M
random data in

- X l i~ N(p,0?), where u is parameter and g2 known - Bayesian
fiked ¥ —

— 1~ N(po, 2) @= . implici
. 7 (0, 0p) +Bayesian r—assumd known for simplicity

e E g !_ ! F “ l F‘l' 2" Edition, Ch15, p.22
Let { = 1/0% and § = 1/03. prior = pest estimate of u F"G“mﬁs{:
The posterior distribution of p is | before observing dato. estimator of u)
normal with mean  bopo +Ex o ,_L £ ,_L.

Bayes estior of s — /1 = Mo + = z
and variance o7 = 1/¢£1, where &1 = € + &. sum=1 if €<<E,

Proof. The posterior dlstrlbution of u is TS—i"ﬁmﬁ
¥ _ .
h(plr) o f(z bt [N Clo. 58) 2nd- order polynomial of 1
This is i Nea,6*) { - 2  &°6e

a.pd;F X exp 6 =

of M 1,1 1 z
8 R TR [ o

That is. it is T

known 1 ‘L@"
§Rwindu=1 | < o |57 <H B 5) > It has the form of normal pd§-.

where a = 072 + 052 and b = zo~2 + pooy 2. Thus the posterior distribution of u

. - 0 0 o

is normal with mean B é B 2(1/0%) + Mo(l/US) B 2 €+ oo

B0 " 12+ 1/2 i+ &

1
and variance ¢~ = (0_*24— (_I_Q__Q> = (£+ &)™

02+65
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Notes (2" Ed., TBp. 590).

e For a normal distribution N(u,c?), 1/0? is called its precision.t when 62{
¢data—;, - prior & posterior_ —

e {(=1/c%), & (=1/03), and & (= 1/0}) are precisions of X |y, prior, and
posterior distributions, respectively. Notice that §; = £+ &o- -» combine
bigsed eskimator under XU 6:2< 6§ +— posterior—F gots 3 prior |information
e The posterior mean is weighted average of prior mean pg and data z, with

weights proportional to the respective precisions. e—

e If 02 < o} (the data is much more informative than the prior), then

: pdf of x Bayes estor
prior of ity of §>& and &= = u;;% z
. S~ S0 SL™S H1
Thus, h(u‘|‘?1:) ~ f(z|p), i.e., p|z is nearly distributed as N (z, 1/{)]
posterior—3 £ likelihood $ urdate
. Vhat if 02 >> 027 = prior dominates N(io, '/€o)

e If prior distribution is quite flat relative to f(x|u), as a function of u,

—%___likelihood |

1. the prior distribution has little influence on the posterior,

2. the posterior distribution is approximately proportional to

the likelihood function-g, — consistent ok i
Bayesian mference(ml ﬁuenl:.sl: inference

Such a prior is often called a vague, or noninformative, prior.
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