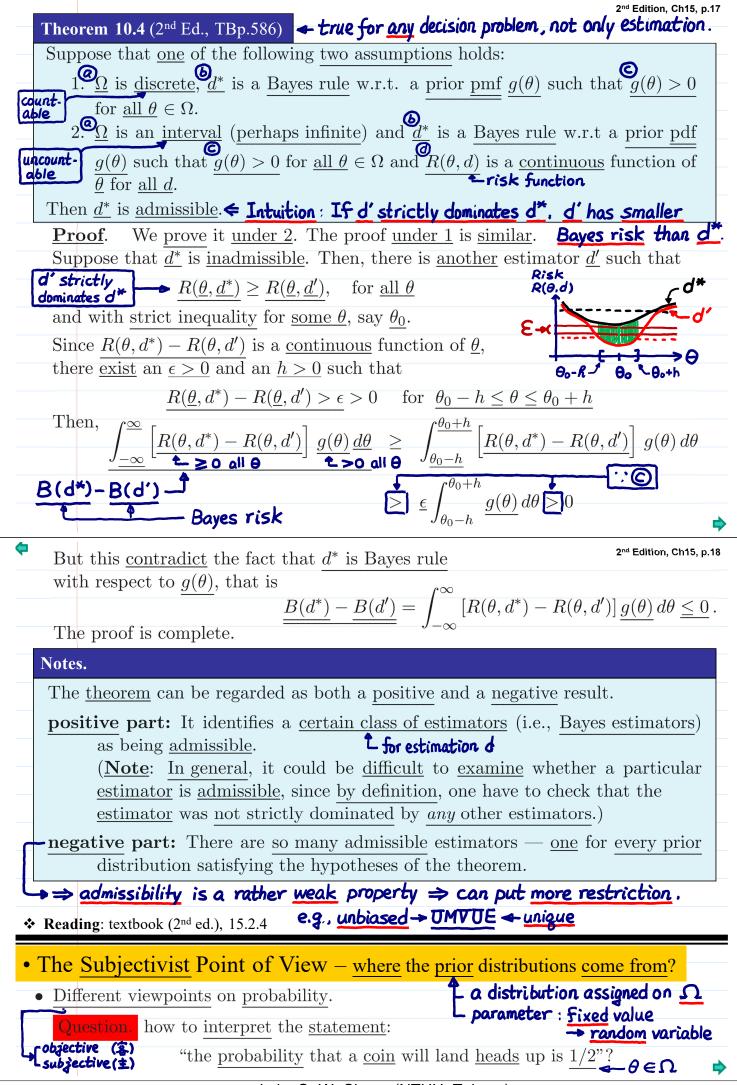
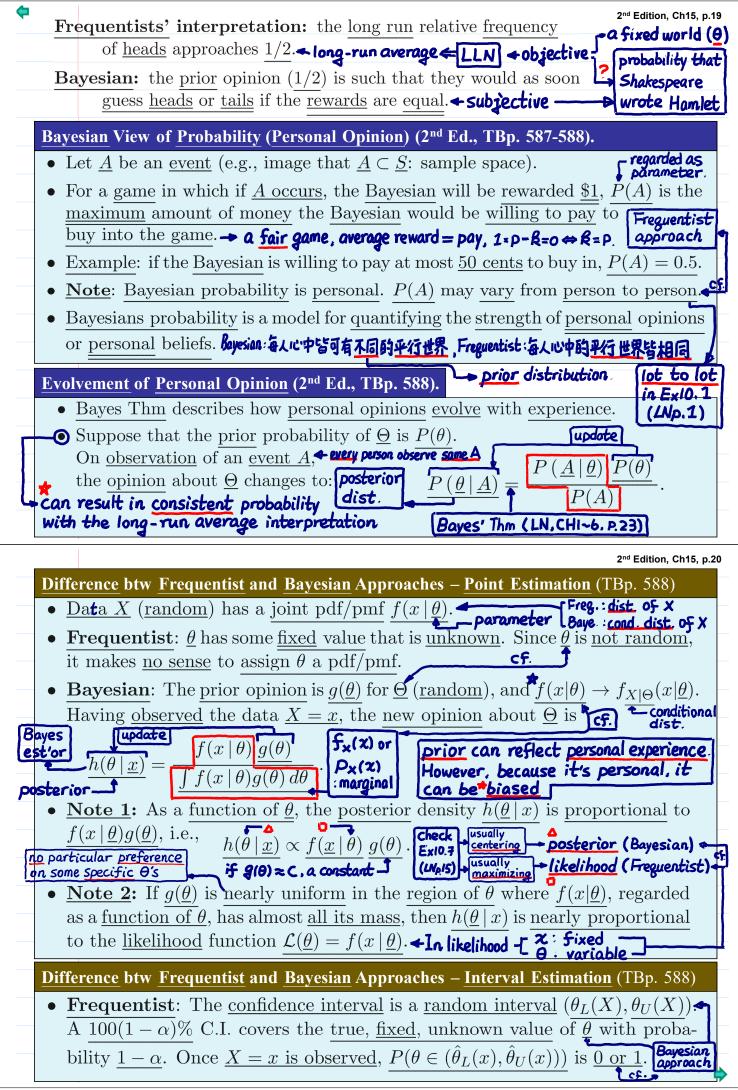


made by S.-W. Cheng (NTHU, Taiwan)

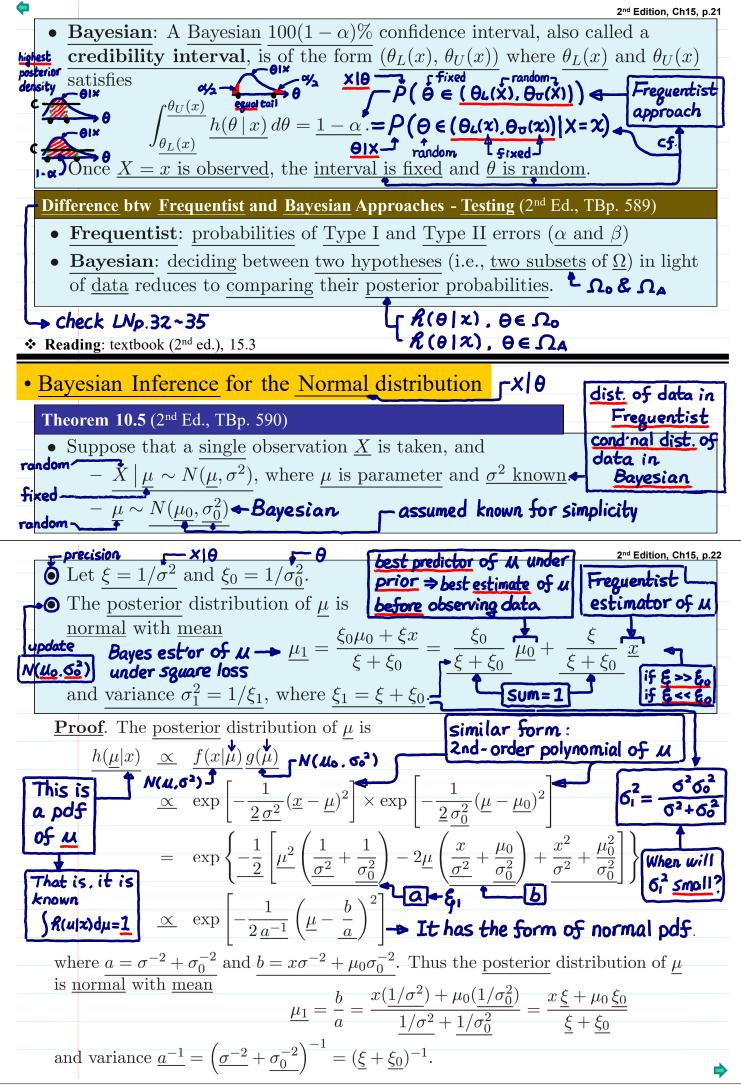


made by S.-W. Cheng (NTHU, Taiwan)

Lecture Notes



made by S.-W. Cheng (NTHU, Taiwan)



made by S.-W. Cheng (NTHU, Taiwan)

\	2 nd Edition, Ch15, p.23
	<u>Notes</u> (2 nd Ed., TBp. 590).
	• For a <u>normal</u> distribution $N(\mu, \underline{\sigma^2}), 1/\sigma^2$ is called its precision \uparrow when $\sigma^2 \downarrow$
	• $\underline{\xi} (= 1/\underline{\sigma^2}), \ \underline{\xi_0} (= 1/\underline{\sigma_0^2}), \ \mathrm{and} \ \underline{\xi_1} (= 1/\underline{\sigma_1^2}) \ \mathrm{are \ precisions \ of \ } X \mu, \ \mathrm{prior, \ and}$
	posterior distributions, respectively. Notice that $\xi_1 = \xi + \xi_0$. \therefore combine
bi	ased estimator under X/4 - Gi ² < Go ² - posterior - data J t prior (information)
	• The posterior mean is weighted average of prior mean μ_0 and data x , with
	weights proportional to the respective precisions.
	• If $\sigma^2 \ll \sigma_0^2$ (the data is much more informative than the prior), then
	prior of \mathcal{M} $\underline{\xi} \gg \underline{\xi}_0$ and $\underline{\xi}_1 \approx \underline{\xi}$, $\Rightarrow \underline{\mu}_1 \approx \underline{x}$
	Thus, $\underline{h(\mu x)} \approx \underline{f(x \mu)}$, i.e., $\underline{\mu x}$ is <u>nearly distributed</u> as $\underline{N(x, 1/\xi)}$.
	posterior likelihood
	Exercise: What if $\sigma^2 \gg \sigma_0^2$? -> prior dominates N(Uo, 1/E_o)
	• If prior distribution is quite flat relative to $f(x \underline{\mu})$, as a function of μ ,
	1 the prior distribution has little influence on the restarion
	1. the <u>prior</u> distribution has <u>little influence</u> on the <u>posterior</u> ,
	2. the <u>posterior</u> distribution is <u>approximately proportional</u> to
	the likelihood function Bayesian inference consistent Frequentist inference
	Such a prior is often called a vague, or noninformative, prior.