Note. There are 6 problems in total. For problems 3 to 6, to ensure consideration for partial scores, write down necessary intermediate steps. Correct answers with inadequate or no intermediate steps may result in zero credit.

Some useful formula.

• Suppose that X follows a binomial(n, p) distribution. The probability mass function (pmf) of X is

$$p(x) = {\binom{n}{x}} p^x (1-p)^{n-x}$$
, for $x = 0, 1, \dots, n$.

The mean of X is np, and the variance of X is np(1-p).

• Suppose that X follows a hyper-geometric (r, n, m) distribution. The pmf of X is

$$p(x) = \frac{\binom{n}{x}\binom{m}{r-x}}{\binom{n+m}{r}}$$
, for $x = 0, 1, \dots, \min(r, n)$, and $r - x \le m$.

The mean of X is $\frac{rn}{n+m}$, and the variance of X is $\frac{rnm(n+m-r)}{(n+m)^2(n+m-1)}$.

• Suppose that X follows a $Poisson(\lambda)$ distribution. The pmf of X is

$$p(x) = \frac{e^{-\lambda}\lambda^x}{x!}$$
, for $x = 0, 1, 2, \dots$

The mean of X is λ , and the variance of X is λ .

• Suppose that X follows a uniform(a, b) distribution. The probability density function (pdf) of X is

$$f(x) = \frac{1}{b-a}$$
, for $a < x < b$,

and zero otherwise. The mean of X is $\frac{a+b}{2}$, and the variance of X is $\frac{(b-a)^2}{12}$.

• Suppose that X follows an exponential (λ) distribution. The pdf of X is

$$f(x) = \lambda e^{-\lambda x}, \text{ for } 0 < x < \infty,$$

and zero otherwise. The mean of X is $1/\lambda$, and the variance of X is $1/\lambda^2$.

• Suppose that X follows a gamma(α, λ) distribution. The pdf of X is

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \text{ for } 0 < x < \infty,$$

and zero otherwise. The mean of X is α/λ , and the variance of X is α/λ^2 .

- 1. (14 pts in total. for each question, 2 pts if correct; 0 pt if blank; -1 pt if wrong) For the following statements, please answer true or false.
 - (a) Suppose that X_1, \ldots, X_n is an independent and identically distributed (i.i.d.) sample from a Cauchy distribution. Let $\overline{X}_n = (\sum_{i=1}^n X_i)/n$. By the central limit theorem, \overline{X}_n converges in distribution to a normal distribution as $n \to \infty$.
 - (b) A random variable X with exponential distribution must obey the memoryless property, i.e., P(X > s + t | X > s) = P(X > t), for s, t > 0.
 - (c) Let X_1, \ldots, X_n be an i.i.d. sample from a distribution with cdf F, which has a finite mean and finite variance. When n is large, a histogram of the values in the sample will be approximately normal, even if F is not normal.
 - (d) Under regularity conditions, the variance of maximum likelihood estimator (MLE) can always reach the Cramer-Rao lower bound (i.e., the ratio of the MLE's variance to the Cramer-Rao lower bound converges to one) when the sample size tends to infinity.
 - (e) The minimum sufficient statistics contain no ancillary information in the data.
 - (f) According to the definition of MLE, it is impossible that the estimated value of MLE falls outside the parameter space.
 - (g) Because the likelihood has the same form as the joint pdf/pmf, the integration/summation of the likelihood over the parameter space should equal one.
- 2. (15pts, 5pts for each) For each of the random observations X given below,
 - determine the type of the joint distribution (e.g., normal, exponential, gamma, beta, uniform, Poisson, hyper-geometric, Bernoulli, binomial, multinomial, negative binomial, geometric, or others) that best models X, and
 - identify the known and unknown parameter(s) in the chosen distribution.
 - (a) A certain electronics company produces a particular type of vacuum tube. Suppose that, on the average, 100p tubes of 100 are defective, where p is unknown and 0 . Thecompany packs the tubes in boxes of 20. The company offers a money-back guaranteefor a box of tubes if the box contains at least 2 defective tubes. Suppose that thecompany manufactures and sells n boxes of tubes each month, where n is a fixed and $known number. Let <math>Z_i$, i = 1, ..., k, denote the number of boxes returned among the n boxes manufactured in the *i*th month. Set $X = (Z_1, ..., Z_k)$.
 - (b) Let Z equal the time (in minutes) between calls that are made over the public safety radio. On some days, and during a period of one hour on each day, the following observations of Z were made: Z_1, \ldots, Z_k , where k is a constant determined before the collection of the data. Suppose that the calls arrive randomly in accordance with an approximate Poisson process with an unknown constant occurrence rate λ (which represents the average number of calls per minute). Set $X = (Z_1, \ldots, Z_k)$.
 - (c) A biologist wants to estimate the size, N, of a population of turtles in a lake. She captures 20 turtles on her first visit to the lake, and marks their backs with paint. In the following k weeks, she returns to the lake once a week and captures 15 different turtles. Let Z_i , $1 \le i \le k$, denote the number of the turtles with paint on their backs in the capture of *i*th week. It is assumed that each turtle in the lake has the same chance of being captured. Set $X = (Z_1, \ldots, Z_k)$.

3. Let X_1, \ldots, X_n be i.i.d. random variables from uniform distribution $U(0, \theta)$ and set

$$Y_n = \max(X_1, \dots, X_n)$$
 and $Z_n = n(\theta - Y_n)$.

Notice that Y_n is the MLE of θ , but it always underestimates θ .

(a) (*Spts*) Prove that Y_n converges in probability to θ by showing that for any small enough $\epsilon > 0$,

$$\lim_{n \to \infty} P(|Y_n - \theta| < \epsilon) = 1$$

- (b) (*Spts*) Prove that Z_n converge in distribution to Z, where Z has the exponential(λ) distribution with parameter $\lambda = 1/\theta$. [Hint. (i) The cdf of exponential(λ) is $1 - e^{-\lambda x}$, for $x \ge 0$. (ii) $\lim_{n\to\infty} \left(1 + \frac{a}{n}\right)^n = e^a$.]
- 4. Let X_1, \ldots, X_n be i.i.d. random variables with the pdf

$$f(x|\theta) = (\theta + 1)x^{\theta}, \quad 0 \le x \le 1,$$

where $-1 < \theta < \infty$.

- (a) (2pts) Examine whether the pdf is a one-parameter exponential family.
- (b) (5pts) Find the method of moments estimator of θ .
- (c) (*6pts*) Find the MLE of θ .
- (d) (4pts) Show that the Fisher information contained in X_1, \ldots, X_n is

$$\frac{n}{(\theta+1)^2}.$$

- (e) (3pts) Identify the asymptotic sampling distribution of the MLE.
- 5. Consider the following method of estimating λ for a sample of i.i.d. Poisson random variables, i.e., X_1, \ldots, X_n are i.i.d. from Poisson(λ). Observe that

$$p_0 = P(X_1 = 0) = e^{-\lambda}.$$

Letting Y denote the number of zero from the sample X_1, \ldots, X_n , the λ might be estimated by

$$\tilde{\lambda} = -\log\left(\frac{Y}{n}\right).$$

- (a) (2pts) Show that $Y \sim \text{binomial}(n, p_0)$. [Hint. Use indicator functions $I_i = I(X_i = 0)$, i = 1, ..., n.]
- (b) (6pts) Use the δ -method to obtain approximate expressions for the variance and the bias of the estimator $\tilde{\lambda}$. [Hint. δ -method: if Z and W are random variables such that Z = g(W), then $E(Z) \approx g(E(W)) + \frac{1}{2}g''(E(W))Var(W)$ and $Var(Z) \approx [g'(E(W))]^2Var(W)$.]
- (c) (4pts) The MLE of λ is $\hat{\lambda} = \overline{X}$. Use the results of (b) to show that the relative efficiency of the estimator $\tilde{\lambda}$ to the MLE $\hat{\lambda}$ is

$$\frac{\lambda e^{-\lambda}}{1-e^{-\lambda}}$$

- (d) (3pts) Show that the relative efficiency in (c) is always smaller than 1. [Hint. $1 e^{-\lambda} \lambda e^{-\lambda} = P(X_1 \ge 2)$.]
- (e) (5pts) When the sample size n is large, which of $\tilde{\lambda}$ and $\hat{\lambda}$ is better in terms of mean square error? Explain.
- 6. Let X_1, \ldots, X_n be an i.i.d. sample from a uniform distribution on the interval $(\theta, 2\theta)$, where $\theta > 0$. Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of X_1, \ldots, X_n .
 - (a) (4pts) Use the factorization theorem to show that $(X_{(1)}, X_{(n)})$ is sufficient. [Hint. Use an indicator function of θ to write the joint pdf of X_1, \ldots, X_n .]
 - (b) (4pts) Show that $(X_{(1)}, X_{(n)})$ is minimal sufficient. [Hint. Express $X_{(1)}$ and $X_{(n)}$ as functions of the likelihood.]
 - (c) (4pts) Show that $X_{(n)}/X_{(1)}$ is an ancillary statistic. [Hint. Let $Z_i = X_i/\theta$, i = 1, ..., n. Then, $Z_{(n)}/Z_{(1)} = X_{(n)}/X_{(1)}$.]
 - (d) (3pts) Is $(X_{(1)}, X_{(n)})$ complete? Explain.