
NTHU MATH 2820 Final Exam Solution June 3, 2025

(A1, B1) (14pts, 2pts for each)

Exam A.
(a) False (b) True (c) False (d) True
(e) True (f) False (g) True

Exam B.
(a) False (b) False (c) True (d) False
(e) True (f) True (g) False

(A2, B2) (12pts, 6pts for each)

Exam A.

(a) (1) (X0, X1, . . . , X5) ∼
multinomial(100,
q0(p), q1(p), . . . , q5(p)),

where qi(p)’s are the functions of p
as defined in the question, and p is
the probability of getting head in
tossing a coin.

(2) Ω = {p : 0 < p < 1} .

(3) Ω0 = {p : p = 1/2}. If the null
is rejected, it would be concluded
that the coins are not fair.

(b) (1) The random variables XA and
XB are independent, and XA ∼
binomial(50, pA) and XB ∼
binomial(50, pB), where pA and pB
are the probability that a subject
judges automobile 1 to be more
expensive in groups A and B re-
spectively.

(2) Ω = {(pA, pB) :
0 < pA < 1, 0 < pB < 1}

(3) Ω0 = {(pA, pB) :
0 < pA ≤ pB < 1}

If the null hypothesis is rejected, it
would be concluded that a female
model can increase the perceived
cost of an automobile.

Other acceptable answers are:

(2) Ω = {(pA, pB) :
0 < pA < 1, pB = 1/2}

(3) Ω0 = {(pA, pB) :
0 < pA ≤ 1/2, pB = 1/2}

This formulation assumes that without
a female model, subjects have no prefer-
ence between the two automobiles (i.e.,
pB = 1/2).

Exam B.

(b) (1) (X0, X1, X2, X3) ∼
multinomial(88,
q0(p), q1(p), q2(p), q3(p)),

where qi(p)’s are the functions of p
as defined in the question, and p is
the probability of getting head in
tossing a coin.

(2) Ω = {p : 0 < p < 1} .

(3) Ω0 = {p : p = 1/2}. If the null
is rejected, it would be concluded
that the coins are not fair.

(a) (1) The random variables XA and
XB are independent, and XA ∼
binomial(80, pA) and XB ∼
binomial(80, pB), where pA and pB
are the probability that a subject
judges automobile 1 to be more
expensive in groups A and B re-
spectively.

(2) Ω = {(pA, pB) :
0 < pA < 1, 0 < pB < 1}

(3) Ω0 = {(pA, pB) :
0 < pA ≤ pB < 1}

If the null hypothesis is rejected, it
would be concluded that a female
model can increase the perceived
cost of an automobile.

Other acceptable answers are:

(2) Ω = {(pA, pB) :
0 < pA < 1, pB = 1/2}

(3) Ω0 = {(pA, pB) :
0 < pA ≤ 1/2, pB = 1/2}

This formulation assumes that without
a female model, subjects have no prefer-
ence between the two automobiles (i.e.,
pB = 1/2).

1



(A2, B2) (12pts, cont.)

Exam A.

(b) (2) Ω = {(pA, pB) : 0 < pB ≤ pA < 1}
(3) Ω0 = {(pA, pB) : 0 < pB = pA < 1}
This formulation reflects the assump-
tion that using a female model can-
not decrease the perceived cost of
the automobile (i.e., pA ≥ pB).

(2) Ω = {(pA, pB) :
1/2 ≤ pA < 1, pB = 1/2}

(3) Ω0 = {(pA, pB) : pA = pB = 1/2}
This formulation assumes that without
a female model, subjects have no prefer-
ence between the two automobiles (i.e.,
pB = 1/2). It further assumes that the
presence of a female model cannot de-
crease the perceived cost of the auto-
mobile (i.e., pA ≥ pB).

Exam B.

(a) (2) Ω = {(pA, pB) : 0 < pB ≤ pA < 1}
(3) Ω0 = {(pA, pB) : 0 < pB = pA < 1}
This formulation reflects the assump-
tion that using a female model can-
not decrease the perceived cost of
the automobile (i.e., pA ≥ pB).

(2) Ω = {(pA, pB) :
1/2 ≤ pA < 1, pB = 1/2}

(3) Ω0 = {(pA, pB) : pA = pB = 1/2}
This formulation assumes that without
a female model, subjects have no prefer-
ence between the two automobiles (i.e.,
pB = 1/2). It further assumes that the
presence of a female model cannot de-
crease the perceived cost of the auto-
mobile (i.e., pA ≥ pB).
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(A3, B3) (15pts)

Exam A.

(a) (2pts) Both hypotheses are simple.

(b) (4pts) By the Neyman–Pearson lemma,
the most powerful test for testing sim-
ple hypotheses rejects H0 when the like-
lihood ratio

Λ(x1, . . . , xn) =
f(x1, . . . , xn | θ = 1)

f(x1, . . . , xn | θ = 2)

is sufficiently small.

The joint density of X1, . . . , Xn ∼
i.i.d. uniform(0, θ) is

f(x1, . . . , xn | θ) =
1

θn
· 1{X(n)≤θ}.

Thus, the likelihood ratio becomes

Λ(x1, . . . , xn) =

{
2n, if 0 ≤ x(n) ≤ 1

0, if 1 < x(n) ≤ 2

Hence, the most powerful test at level
α = 0 is:

reject H0 if X(n) > 1

because under H0, α = P (X(n) > 1 |
θ = 1) = 0.

Under HA : θ = 2,

P (X(n) > 1 | θ = 2) = 1−
(

1

2

)n
= 1−2−n

Therefore, the power is 1− 2−n.

(c) (2pts) Under H0 : θ = 1, the significance
level is

α = P (a ≤ X(n) ≤ 1] | θ = 1) = 1− an.

Under HA : θ = 2, the power is

P (a ≤ X(n) ≤ 2 | θ = 2) = 1−
(a

2

)n
.

Exam B.

(a) (2pts) Both hypotheses are simple.

(b) (4pts) By the Neyman–Pearson lemma,
the most powerful test for testing sim-
ple hypotheses rejects H0 when the like-
lihood ratio

Λ(x1, . . . , xn) =
f(x1, . . . , xn | θ = 1)

f(x1, . . . , xn | θ = 3)

is sufficiently small.

The joint density of X1, . . . , Xn ∼
i.i.d. uniform(0, θ) is

f(x1, . . . , xn | θ) =
1

θn
· 1{X(n)≤θ}.

Thus, the likelihood ratio becomes

Λ(x1, . . . , xn) =

{
3n, if 0 ≤ x(n) ≤ 1

0, if 1 < x(n) ≤ 3

Hence, the most powerful test at level
α = 0 is:

reject H0 if X(n) > 1

because under H0, α = P (X(n) > 1 |
θ = 1) = 0.

Under HA : θ = 3,

P (X(n) > 1 | θ = 3) = 1−
(

1

3

)n
= 1−3−n

Therefore, the power is 1− 3−n.

(c) (2pts) Under H0 : θ = 1, the significance
level is

α = P (a ≤ X(n) ≤ 1] | θ = 1) = 1− an.

Under HA : θ = 3, the power is

P (a ≤ X(n) ≤ 3 | θ = 3) = 1−
(a

3

)n
.
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(A3, B3) (15pts, cont.)

Exam A.

(d) (3pts) Under H0 : θ = 1, P (X(n) > 1 |
θ = 1) = 0 and P (X(n) ≤ 1 | θ = 1) =
1, so the significance level of the ran-
domized test is

α = γ×P (X(n) ≤ 1 | θ = 1) = γ×1 = γ.

Under HA : θ = 2, we compute:

P (X(n) > 1 | θ = 2) = 1−
(

1

2

)n
= 1−2−n,

and P (X(n) ≤ 1 | θ = 2) = 2−n. There-
fore, the power is

1− 2−n + γ · 2−n.

(e) (4pts) The most powerful test of level
α ∈ (0, 1) is not unique. Consider the
following example. Let a = a(α) =
(1 − α)1/n. Then the non-randomized
test from part (c) that rejects H0 when
X(n) ∈ [a, 2] has significance level α. Its
power is

1−
(a

2

)n
= 1− 1− α

2n
= 1−2−n(1−α).

Now consider the randomized test from
part (d) with γ = α. Its significance
level is also α, and its power is

1− 2−n(1− γ) = 1− 2−n(1− α).

Therefore, both tests have the same
level α, and the same power, but differ-
ent rejection rules (non-randomized vs.
randomized). Thus, the most powerful
test is not unique.

Exam B.

(d) (3pts) Under H0 : θ = 1, P (X(n) > 1 |
θ = 1) = 0 and P (X(n) ≤ 1 | θ = 1) =
1, so the significance level of the ran-
domized test is

α = γ×P (X(n) ≤ 1 | θ = 1) = γ×1 = γ.

Under HA : θ = 3, we compute:

P (X(n) > 1 | θ = 3) = 1−
(

1

3

)n
= 1−3−n,

and P (X(n) ≤ 1 | θ = 3) = 3−n. There-
fore, the power is

1− 3−n + γ · 3−n.

(e) (4pts) The most powerful test of level
α ∈ (0, 1) is not unique. Consider the
following example. Let a = a(α) =
(1 − α)1/n. Then the non-randomized
test from part (c) that rejects H0 when
X(n) ∈ [a, 3] has significance level α. Its
power is

1−
(a

3

)n
= 1− 1− α

3n
= 1−3−n(1−α).

Now consider the randomized test from
part (d) with γ = α. Its significance
level is also α, and its power is

1− 3−n(1− γ) = 1− 3−n(1− α).

Therefore, both tests have the same
level α, and the same power, but differ-
ent rejection rules (non-randomized vs.
randomized). Thus, the most powerful
test is not unique.
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(A4, B4) (14pts)

Exam A.

(a) (10pts) The joint pmf of X1, . . . , Xn is

f(x, λ) = e−nλ · λ
∑n

i=1 xi ·

(
n∏
i=1

1

xi!

)
.

Therefore, the likelihood ratio is

Λ(x) =
f(x, λ0)

f(x, λ1)
= en(λ1−λ0)

(
λ0

λ1

)∑n
i=1 xi

.

Because λ1 > λ0 ⇔ λ0/λ < 1, Λ de-
creases as

∑n
i=1 Xi increases. A ran-

domized test function based on the like-
lihood ratio is then given by:

φ(x) =


1, if

∑n
i=1Xi > c

γ, if
∑n

i=1Xi = c
0, if

∑n
i=1Xi < c

.

Under H0 : λ = λ0, the c and γ are
determined by

Eλ0(φ)

= P

(
n∑
i=1

Xi > c

)
+ γ · P

(
n∑
i=1

Xi = c

)
= α,

where
∑n

i=1Xi ∼ P (nλ0).

(b) (4pts) By Neyman-Pearson lemma, the
test in (a) is the most powerful test for
any particular simple alternative HA :
λ = λ1, where λ1 > λ0. Furthermore,
because the rejection region, i.e., c and
γ, of the test does not depend on λ1,
the test is UMP for H0 : λ = λ0 versus
H1 : λ > λ0.

Exam B.

(a) (10pts) The joint pmf of X1, . . . , Xn is

f(x, λ) = e−nλ · λ
∑n

i=1 xi ·

(
n∏
i=1

1

xi!

)
.

Therefore, the likelihood ratio is

Λ(x) =
f(x, λ0)

f(x, λ1)
= en(λ1−λ0)

(
λ0

λ1

)∑n
i=1 xi

.

Because λ1 < λ0 ⇔ λ0/λ > 1, Λ de-
creases as

∑n
i=1Xi decreases. A ran-

domized test function based on the like-
lihood ratio is then given by:

φ(x) =


1, if

∑n
i=1 Xi < c

γ, if
∑n

i=1 Xi = c
0, if

∑n
i=1 Xi > c

.

Under H0 : λ = λ0, the c and γ are
determined by

Eλ0(φ)

= P

(
n∑
i=1

Xi < c

)
+ γ · P

(
n∑
i=1

Xi = c

)
= α,

where
∑n

i=1Xi ∼ P (nλ0).

(b) (4pts) By Neyman-Pearson lemma, the
test in (a) is the most powerful test for
any particular simple alternative HA :
λ = λ1, where λ1 < λ0. Furthermore,
because the rejection region, i.e., c and
γ, of the test does not depend on λ1,
the test is UMP for H0 : λ = λ0 versus
H1 : λ < λ0.
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(A5, B6) (28pts)

(a) (7pts) Because Ω0 = {θ0} and Ω = (0,∞),

Λ(x1, . . . , xn) =
max
θ∈Ω0

L(θ,x)

max
θ∈Ω
L(θ,x)

=

[
1

θ0

]n
· I[0,θ0](x(n))[

1

x(n)

]n
· I[0,x(n)](x(n))

=

[
x(n)

θ0

]n
· I[0,θ0](x(n)).

(b) (4pts) As a function of x(n), Λ increases from 0 to 1 when x(n) increases from 0 to θ0,
and Λ = 0 when x(n) is larger than θ0. Therefore, for 0 < s < 1,

Λ(X1, . . . , Xn) > s ⇔ X(n) < θ0 and

[
X(n)

θ0

]n
> s

⇔ s1/nθ0 < X(n) < θ0.

(c) (8pts) The rejection region of the GLR test is Λ < s, i.e.,

{X(n) < s1/nθ0} ∪ {X(n) > θ0}, (I)

where s is determined by

α = P (Λ < s|H0) = P
(
{X(n) > θ0} ∪ {X(n) < s1/nθ0}

∣∣H0

)
= P

(
X(n) > θ0

∣∣ θ = θ0

)
+ P

(
X(n) < s1/nθ0

∣∣ θ = θ0

)
=

∫ ∞
θ0

0 dx+

∫ s1/nθ0

0

nxn−1

θn0
dx = 0 +

xn

θn0

∣∣∣∣s1/nθ0
0

= s.

Therefore, for α = 0.05, we can substitute s = 0.05 into (I) to get the rejection region{
X(n) < (0.05)1/nθ0

}
∪
{
X(n) > θ0

}
.

(d) (4pts) The acceptance region is (0.05)1/nθ0 ≤ X(n) ≤ θ0, i.e.,

0.95 = P
(

(0.05)1/nθ0 ≤ X(n) ≤ θ0

∣∣H0

)
= P

(
(0.05)1/n

X(n)

≤ 1

θ0

≤ 1

X(n)

∣∣∣∣ θ = θ0

)
= P

(
X(n) ≤ θ0 ≤

X(n)

(0.05)1/n

∣∣∣∣ θ = θ0

)
Therefore,

[
X(n), 201/nX(n)

]
is a 95% confidence interval for θ.

(e) (5pts) Using the equality from (d):

0.05 = P

(
(0.05)1/n ≤

X(n)

θ
≤ 1

∣∣∣∣ θ) for any θ,

we can identify a pivotal quantity X(n)/θ, which is a function of data and parameter.
It is really a pivotal quantity because its pdf and/or cdf, which are respectively

fX(n)/θ(x) = nxn−1, for 0 ≤ x ≤ 1,

FX(n)/θ(x) = xn, for 0 ≤ x ≤ 1,

are irrelevant to θ. Alternatively, X(n)/θ = max{X1/θ, . . . , Xn/θ}, whereX1/θ, . . . , Xn/θ ∼
i.i.d. uniform(0, 1) have a joint distribution irrelevent to θ.
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(A6, B5) (17pts)

(a) (5pts) The posterior pdf is

h(θ|x1, . . . , xn) ∝ f(x1, . . . , xn|θ) · g(θ) =

[
n∏
i=1

f(xi|θ)

]
· g(θ)

∝

[
n∏
i=1

θe−θxi

]
· θα−1e−λθ

= θne−θ(
∑n

i=1 xi) · θα−1e−λθ

= θ(α+n)−1e−(λ+nX)θ,

which follows the form of the pdf of gamma distribution with shape parameter α+ n
and scale parameter λ+ nX, i.e., Θ|x1, . . . , xn ∼ Γ(α + n, λ+ nX).

(b) (5pts) Because Θ|x1, . . . , xn ∼ gamma(α + n, λ + nX), under squared error loss the
Bayes estimator is

θ̂B = E (Θ|x1, . . . , xn) =
α + n

λ+ nX
=

λ

λ+ nX
· α
λ

+
nX

λ+ nX
· 1

X
, (II)

where α
λ

is the prior mean, 1
X

is θ̂MLE, and sum of the weights is one, i.e., λ
λ+nX

+ nX
λ+nX

=
1.

(c) (3pts) Because X will converge in probability to a constant according to the law of large
number, when n is large, the weights in (II) will approximate 0 and 1 respectively,
i.e.,

λ

λ+ nX
≈ 0 and

nX

λ+ nX
≈ 1.

Therefore, θ̂B ≈ 1/X = θ̂MLE, which is a function of sample (data) only and is
irrelevent to the prior.

(d) (4pts) For some values of θ, especially those far from the prior mean α
λ
, the Bayes

estimator θ̂B may have enough bias such that its mean squared error exceeds that of
the MLE θ̂MLE. However, the θ̂MLE cannot strictly dominate the θ̂B across all θ > 0,
because Bayes estimators are admissible, i.e., there does not exist any estimator,
including the θ̂MLE, whose risk function is no larger than that of θ̂B at every value of
θ, and strictly smaller at some value of θ. Therefore, strict domination by the θ̂MLE

is impossible.
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