NTHU MATH 2820, 2025 Lecture Notes Ch9, p.52 • Is it appropriate to use the test statistic in Ex. 7.20 to test the H_0 and H_A in Ex. 7.24? How is the opposite? • For same data set, which of the tests in the two example would be expected to have smaller *p*-value? Why? \leftarrow (i) $\varrho \in \Omega_{7,24} \setminus \Omega_0$ (ii) $\varrho \in \Omega_{7,24} \setminus \Omega_0$ **Note**. If one has a specific alternative hypothesis in mind, better power can be obtained by developing a test against that alternative rather than against a more general alternative. 5/13 Reading: textbook, 9.6 pdf of Yn Some concerns about hypothesis testing Small sample Question : Suppose modeling is correct. For size Sma large - $H_0: \theta = \theta_0$ vs. $H_A: \theta \neq \theta_0$ ∽∕,⋕ 0/Jn when H_0 is not rejected, does it mean we accept $\theta = \theta_0$? $Y_1, \ldots, Y_n \sim N(\mu, \sigma^2), \sigma$ known, Ho 11=0 e.g.: $\hat{\mu} = Y_n$ $\overline{Y_{10}} = 10$, not reject Y10000 = 1, reject $\mu \approx 0$, but not zero, reject H_0 if 5 In ed on $\frac{c}{V} \Leftrightarrow \frac{|\overline{Y}|}{|\overline{Y}|} > \underline{c} \frac{\sigma}{\sqrt{n}} = c \sqrt{Var(\overline{Y})}.$ precision low power high power σ/\sqrt{n} 2nd expt: Sn ↓ when n↑ Consider the two cases: exd(t: $\overline{\mathbf{v}} = 10$ not reject (i) <u>n=10</u>, and (ii) <u>n=10000</u>. $\overline{\mathbf{v}} = 1$ De when of Þ <u>Ch9, p.</u>53 Note: this is why we prefer not to say "accept H_0 ", but rather "sample size is not large enough to reject H_0 ", or OHo is true (2) information not enough ______ "fail to reject H_0" When sample size n is large enough, it is very possible that almost every tests are significant (i.e., H_0 rejected). $\frac{\text{average temperature}}{\text{average temperature}} \quad \frac{\text{yesterday:}}{\text{today:}} \quad \frac{\mu_1}{\mu_2} = \frac{28^\circ C}{28.001^\circ C},$ example: $\mu_1 - \mu_2 = \underline{0.001^\circ C}.$ Test $\underline{H_0}$: $\underline{\mu_1 - \mu_2 = 0}$ vs. $\underline{H_A}$: $\underline{\mu_1 - \mu_2 \neq 0}$. The null $\underline{\mu_1 = \mu_2}$ will be easily rejected if n is very large. + MI & M2 are (statistically) significantly different. • Statistical significance may be inconsistent with practical/physical significance. (example?) Can you really "feel" the 0.001 °C difference? Q: what causes the inconsistency? To claim significance, precision of statistical standard different physical standard for datasets with large n, easy to get statistically significant results for $\underline{\theta_i}$'s (e.g., every $\underline{H_0}: \theta_i = 0$ rejected). But, the magnitudes of

made by S.-W. Cheng (NTHU, Taiwan)

some θ_i 's may be small (i.e., $\theta_i \approx 0$) \Rightarrow not physically important.

NTHU MATH 2820, 2025

made by S.-W. Cheng (NTHU, Taiwan)

NTHU MATH 2820, 2025

Lecture Notes

made by S.-W. Cheng (NTHU, Taiwan)