MATH 2820, 2025, Homework 7

- (1) Let X_1, \ldots, X_n be an i.i.d. sample from $N(\theta, 1)$.
 - (a) Show that $\overline{X}^2 \frac{1}{n}$ is a UMVUE of $g(\theta) = \theta^2$.
 - (b) Examine whether the Cramer-Rao bound is attained for the UMVUE.
- (2) Let Y_1, \ldots, Y_n be an i.i.d. sample from Bernoulli distribution B(p). Find a UMVUE of p(1-p), which is a term in the variance of Y_i or $W = \sum_{i=1}^n Y_i$, by using the following steps:
 - (a) Show that W is a sufficient and complete statistic.
 - **(b)** Let

$$T = \begin{cases} 1, & \text{if } Y_1 = 1 \text{ and } Y_2 = 0\\ 0, & \text{otherwise} \end{cases}$$

Show that E(T) = p(1 - p).

(c) Show that

$$P(T = 1|W = w) = \frac{w(n-w)}{n(n-1)}$$
.

(d) Show that

$$E(T|W) = \frac{n}{n-1} \left[\frac{W}{n} \left(1 - \frac{W}{n} \right) \right] = \frac{n}{n-1} \overline{Y} (1 - \overline{Y})$$

and, explain why $\frac{n\overline{Y}(1-\overline{Y})}{(n-1)}$ is a UMVUE of p(1-p).

(3) Let Y_1, \ldots, Y_n be an i.i.d. sample from the pdf:

$$f(y|\theta) = \begin{cases} \frac{3y^2}{\theta^3}, & \text{if } 0 \le y \le \theta \\ 0, & \text{otherwise} \end{cases}$$

where $0 < \theta < \infty$.

- (a) Check whether the pdfs form an exponential family.
- (b) Show that $Y_{(n)} = \max\{Y_1, \dots, Y_n\}$ is a sufficient statistic.
- (c) Show that $Y_{(n)}$ has pdf:

$$f_{Y_{(n)}}(y|\theta) = \begin{cases} \frac{3ny^{3n-1}}{\theta^{3n}}, & \text{if } 0 \le y \le \theta \\ 0, & \text{otherwise} \end{cases}$$

- (d) Show that $Y_{(n)}$ is complete by definition.
- (e) Find a UMVUE of θ .