NTHU STAT 3875 - Introduction to Mathematical Statistics (undergraduate level)

清華大學 統計所 數統導論 (大學部課程)

Sep 2018 ~ Jan 2019


Notes

(Jan 14) 作業總成績, 期末考成績, 學期總成績, 及成績統計
(Jan 14) 期末考考題解答
(Jan 02) 期末考考古題及其解答
(Jan 02) 期末考資訊及注意事項
(Dec 27) 下周二上課日(1/1),適逢開國紀念日放假,停課一次
(Dec 03) 期中考考題解答成績統計
(Nov 19) 期中考考古題其解答
(Nov 19) 期中考資訊及注意事項
(Sep 16) 有關助教及其office hour的資訊,請見Syllabus

 

Lecture Notes

Lecture Notes with Hand-Written Notices

Video

01

 Survey Sampling

Sep 11


(2191 views)

(532 views)
Sep 13

(431 views)
Sep 18

(406 views)

(295 views)
Sep 20

(295 views)
Sep 25

(302 views)

(244 views)
Sep 27

(266 views)
Oct 02

(510 views)

(279 views)
Oct 04

(240 views)
Oct 09

(227 views)

(190 views)
Oct 11

(196 views)
Oct 16

(208 views)

(176 views)
02

 Comparing Two Samples

Oct 16

(356 views)
Oct 18

(221 views)
Oct 23

(227 views)

(197 views)
Oct 25

(208 views)
Oct 30

(223 views)

(182 views)
Nov 01

(201 views)
Nov 06

(204 views)

(193 views)
Nov 08

(207 views)
Nov 13

(220 views)

(168 views)
Nov 15

(188 views)
Nov 20

(198 views)

(155 views)
03

 The Analysis of Variance

Nov 22

(406 views)
Nov 29

(250 views)
Dec 04

(225 views)

(195 views)
Dec 06

(228 views)
Dec 11

(243 views)

(199 views)
Dec 13

(227 views)
Dec 18

(247 views)

(190 views)
Dec 20

(192 views)
Dec 25

(193 views)

(172 views)
Dec 27

(203 views)
Jan 03

(263 views)

(255 views)
04

 The Analysis of Categorical Data

    
05

 Linear Regression Analysis

    
Homework Question Due Day Solution
1

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #1, #3, #4, #5, #10, #34, #36 [Hint. For a random variable Z, we have Var(Z)=E(Z2)-[E(Z)]2.], #37

Oct 02 sol
2

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #15, #16, #22, #23, #27, #28, #31, #32

Oct 11

sol

(revised)

3

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #41, #43, #44 [Note. Cxxx and Cyyy are coefficients of variation.], #45, #46, #47, #50 [Hint. For any two random variables W and Z, because |Cor(W, Z)|≤1, we have |Cov(W, Z)|≤Var(W)Var(Z).], #51

Oct 23 sol
4

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #52, #53, #55, #57, #61, #64

Nov 01 sol
5

Ch 11. #2, #3, #5, #6, #10, #15, #16, #19

Nov 13 sol
6

Ch 11. #8, #21(a)(b)(c)(d) [Note. Here is the data.], #23, #24, #25, #31, #32, #34

Nov 22 sol
7

Ch 11. #12, #27

Ch 12. #4, Only need to prove the analogues of Theorem A, No need to prove the analogues of Theorem B, #5, #21 [Note. Here is the data.]

Dec 18 sol
8

Ch 12. #6, #8, #9, #10, #32(a)(d)(e) [Note. Here is the data.]

Dec 27 sol
9

Ch 12. #11, #16, #18 [Note. Here is the data.], #19, #29 [Note. Here is the data.]

Jan 03 sol