NTHU STAT 3875 - Introduction to Mathematical Statistics (undergraduate level)

清華大學 統計所 數統導論 (大學部課程)

Sep 2018 ~ Jan 2019


Notes

(Jan 14) 作業總成績, 期末考成績, 學期總成績, 及成績統計
(Jan 14) 期末考考題解答
(Jan 02) 期末考考古題及其解答
(Jan 02) 期末考資訊及注意事項
(Dec 27) 下周二上課日(1/1),適逢開國紀念日放假,停課一次
(Dec 03) 期中考考題解答成績統計
(Nov 19) 期中考考古題其解答
(Nov 19) 期中考資訊及注意事項
(Sep 16) 有關助教及其office hour的資訊,請見Syllabus

 

Lecture Notes

Lecture Notes with Hand-Written Notices

Video

01

 Survey Sampling

Sep 11


(2262 views)

(561 views)
Sep 13

(458 views)
Sep 18

(418 views)

(308 views)
Sep 20

(310 views)
Sep 25

(310 views)

(252 views)
Sep 27

(275 views)
Oct 02

(524 views)

(288 views)
Oct 04

(246 views)
Oct 09

(233 views)

(196 views)
Oct 11

(202 views)
Oct 16

(216 views)

(182 views)
02

 Comparing Two Samples

Oct 16

(365 views)
Oct 18

(228 views)
Oct 23

(232 views)

(202 views)
Oct 25

(212 views)
Oct 30

(227 views)

(186 views)
Nov 01

(206 views)
Nov 06

(210 views)

(197 views)
Nov 08

(211 views)
Nov 13

(225 views)

(172 views)
Nov 15

(192 views)
Nov 20

(203 views)

(160 views)
03

 The Analysis of Variance

Nov 22

(414 views)
Nov 29

(256 views)
Dec 04

(231 views)

(200 views)
Dec 06

(235 views)
Dec 11

(250 views)

(204 views)
Dec 13

(233 views)
Dec 18

(253 views)

(194 views)
Dec 20

(196 views)
Dec 25

(199 views)

(176 views)
Dec 27

(207 views)
Jan 03

(271 views)

(261 views)
04

 The Analysis of Categorical Data

    
05

 Linear Regression Analysis

    
Homework Question Due Day Solution
1

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #1, #3, #4, #5, #10, #34, #36 [Hint. For a random variable Z, we have Var(Z)=E(Z2)-[E(Z)]2.], #37

Oct 02 sol
2

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #15, #16, #22, #23, #27, #28, #31, #32

Oct 11

sol

(revised)

3

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #41, #43, #44 [Note. Cxxx and Cyyy are coefficients of variation.], #45, #46, #47, #50 [Hint. For any two random variables W and Z, because |Cor(W, Z)|≤1, we have |Cov(W, Z)|≤Var(W)Var(Z).], #51

Oct 23 sol
4

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #52, #53, #55, #57, #61, #64

Nov 01 sol
5

Ch 11. #2, #3, #5, #6, #10, #15, #16, #19

Nov 13 sol
6

Ch 11. #8, #21(a)(b)(c)(d) [Note. Here is the data.], #23, #24, #25, #31, #32, #34

Nov 22 sol
7

Ch 11. #12, #27

Ch 12. #4, Only need to prove the analogues of Theorem A, No need to prove the analogues of Theorem B, #5, #21 [Note. Here is the data.]

Dec 18 sol
8

Ch 12. #6, #8, #9, #10, #32(a)(d)(e) [Note. Here is the data.]

Dec 27 sol
9

Ch 12. #11, #16, #18 [Note. Here is the data.], #19, #29 [Note. Here is the data.]

Jan 03 sol