NTHU STAT 3875 - Introduction to Mathematical Statistics (undergraduate level)

清華大學 統計所 數統導論 (大學部課程)

Sep 2018 ~ Jan 2019


Notes

(Jan 14) 作業總成績, 期末考成績, 學期總成績, 及成績統計
(Jan 14) 期末考考題解答
(Jan 02) 期末考考古題及其解答
(Jan 02) 期末考資訊及注意事項
(Dec 27) 下周二上課日(1/1),適逢開國紀念日放假,停課一次
(Dec 03) 期中考考題解答成績統計
(Nov 19) 期中考考古題其解答
(Nov 19) 期中考資訊及注意事項
(Sep 16) 有關助教及其office hour的資訊,請見Syllabus

 

Lecture Notes

Lecture Notes with Hand-Written Notices

Video

01

 Survey Sampling

Sep 11


(2205 views)

(539 views)
Sep 13

(432 views)
Sep 18

(407 views)

(296 views)
Sep 20

(298 views)
Sep 25

(303 views)

(245 views)
Sep 27

(267 views)
Oct 02

(511 views)

(280 views)
Oct 04

(241 views)
Oct 09

(228 views)

(191 views)
Oct 11

(197 views)
Oct 16

(209 views)

(177 views)
02

 Comparing Two Samples

Oct 16

(359 views)
Oct 18

(223 views)
Oct 23

(228 views)

(198 views)
Oct 25

(209 views)
Oct 30

(224 views)

(183 views)
Nov 01

(202 views)
Nov 06

(205 views)

(194 views)
Nov 08

(208 views)
Nov 13

(221 views)

(169 views)
Nov 15

(189 views)
Nov 20

(199 views)

(157 views)
03

 The Analysis of Variance

Nov 22

(409 views)
Nov 29

(252 views)
Dec 04

(227 views)

(197 views)
Dec 06

(229 views)
Dec 11

(245 views)

(200 views)
Dec 13

(228 views)
Dec 18

(248 views)

(191 views)
Dec 20

(193 views)
Dec 25

(194 views)

(173 views)
Dec 27

(204 views)
Jan 03

(266 views)

(256 views)
04

 The Analysis of Categorical Data

    
05

 Linear Regression Analysis

    
Homework Question Due Day Solution
1

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #1, #3, #4, #5, #10, #34, #36 [Hint. For a random variable Z, we have Var(Z)=E(Z2)-[E(Z)]2.], #37

Oct 02 sol
2

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #15, #16, #22, #23, #27, #28, #31, #32

Oct 11

sol

(revised)

3

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #41, #43, #44 [Note. Cxxx and Cyyy are coefficients of variation.], #45, #46, #47, #50 [Hint. For any two random variables W and Z, because |Cor(W, Z)|≤1, we have |Cov(W, Z)|≤Var(W)Var(Z).], #51

Oct 23 sol
4

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #52, #53, #55, #57, #61, #64

Nov 01 sol
5

Ch 11. #2, #3, #5, #6, #10, #15, #16, #19

Nov 13 sol
6

Ch 11. #8, #21(a)(b)(c)(d) [Note. Here is the data.], #23, #24, #25, #31, #32, #34

Nov 22 sol
7

Ch 11. #12, #27

Ch 12. #4, Only need to prove the analogues of Theorem A, No need to prove the analogues of Theorem B, #5, #21 [Note. Here is the data.]

Dec 18 sol
8

Ch 12. #6, #8, #9, #10, #32(a)(d)(e) [Note. Here is the data.]

Dec 27 sol
9

Ch 12. #11, #16, #18 [Note. Here is the data.], #19, #29 [Note. Here is the data.]

Jan 03 sol