NTHU STAT 3875 - Introduction to Mathematical Statistics (undergraduate level)

清華大學 統計所 數統導論 (大學部課程)

Sep 2018 ~ Jan 2019


Notes

(Jan 14) 作業總成績, 期末考成績, 學期總成績, 及成績統計
(Jan 14) 期末考考題解答
(Jan 02) 期末考考古題及其解答
(Jan 02) 期末考資訊及注意事項
(Dec 27) 下周二上課日(1/1),適逢開國紀念日放假,停課一次
(Dec 03) 期中考考題解答成績統計
(Nov 19) 期中考考古題其解答
(Nov 19) 期中考資訊及注意事項
(Sep 16) 有關助教及其office hour的資訊,請見Syllabus

 

Lecture Notes

Lecture Notes with Hand-Written Notices

Video

01

 Survey Sampling

Sep 11


(2297 views)

(570 views)
Sep 13

(465 views)
Sep 18

(426 views)

(313 views)
Sep 20

(314 views)
Sep 25

(314 views)

(255 views)
Sep 27

(278 views)
Oct 02

(532 views)

(291 views)
Oct 04

(248 views)
Oct 09

(235 views)

(198 views)
Oct 11

(204 views)
Oct 16

(219 views)

(183 views)
02

 Comparing Two Samples

Oct 16

(368 views)
Oct 18

(229 views)
Oct 23

(234 views)

(204 views)
Oct 25

(213 views)
Oct 30

(228 views)

(187 views)
Nov 01

(209 views)
Nov 06

(211 views)

(198 views)
Nov 08

(213 views)
Nov 13

(226 views)

(173 views)
Nov 15

(193 views)
Nov 20

(205 views)

(162 views)
03

 The Analysis of Variance

Nov 22

(422 views)
Nov 29

(257 views)
Dec 04

(232 views)

(201 views)
Dec 06

(237 views)
Dec 11

(251 views)

(205 views)
Dec 13

(235 views)
Dec 18

(255 views)

(195 views)
Dec 20

(197 views)
Dec 25

(200 views)

(177 views)
Dec 27

(208 views)
Jan 03

(276 views)

(263 views)
04

 The Analysis of Categorical Data

    
05

 Linear Regression Analysis

    
Homework Question Due Day Solution
1

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #1, #3, #4, #5, #10, #34, #36 [Hint. For a random variable Z, we have Var(Z)=E(Z2)-[E(Z)]2.], #37

Oct 02 sol
2

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #15, #16, #22, #23, #27, #28, #31, #32

Oct 11

sol

(revised)

3

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #41, #43, #44 [Note. Cxxx and Cyyy are coefficients of variation.], #45, #46, #47, #50 [Hint. For any two random variables W and Z, because |Cor(W, Z)|≤1, we have |Cov(W, Z)|≤Var(W)Var(Z).], #51

Oct 23 sol
4

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #52, #53, #55, #57, #61, #64

Nov 01 sol
5

Ch 11. #2, #3, #5, #6, #10, #15, #16, #19

Nov 13 sol
6

Ch 11. #8, #21(a)(b)(c)(d) [Note. Here is the data.], #23, #24, #25, #31, #32, #34

Nov 22 sol
7

Ch 11. #12, #27

Ch 12. #4, Only need to prove the analogues of Theorem A, No need to prove the analogues of Theorem B, #5, #21 [Note. Here is the data.]

Dec 18 sol
8

Ch 12. #6, #8, #9, #10, #32(a)(d)(e) [Note. Here is the data.]

Dec 27 sol
9

Ch 12. #11, #16, #18 [Note. Here is the data.], #19, #29 [Note. Here is the data.]

Jan 03 sol