NTHU STAT 3875 - Mathematical Statistics (undergraduate level)

Sep 2018 ~ Jan 2019

 Notes (Jan 14) 作業總成績, 期末考成績, 學期總成績, 及成績統計。 (Jan 14) 期末考解答。 (Jan 02) 期末考考古題及其解答。 (Jan 02) 期末考資訊及注意事項。 (Dec 27) 下周二上課日(1/1)，適逢開國紀念日放假，停課一次。 (Dec 03) 期中考解答及成績統計。 (Nov 19) 期中考考古題其解答。 (Nov 19) 期中考資訊及注意事項。 (Sep 16) 有關助教及其office hour的資訊，請見Syllabus。

 Lecture Notes Lecture Notes with Hand-Written Notices Video 01 Survey Sampling (1351 views) (343 views) Sep 13 (283 views) Sep 18 (272 views) (202 views) Sep 20 (189 views) Sep 25 (200 views) (154 views) Sep 27 (160 views) Oct 02 (294 views) (174 views) Oct 04 (161 views) Oct 09 (148 views) (119 views) Oct 11 (126 views) Oct 16 (129 views) (114 views) 02 Comparing Two Samples Oct 16 (224 views) Oct 18 (136 views) Oct 23 (141 views) (116 views) Oct 25 (123 views) Oct 30 (126 views) (110 views) Nov 01 (124 views) Nov 06 (125 views) (112 views) Nov 08 (124 views) Nov 13 (142 views) (100 views) Nov 15 (116 views) Nov 20 (120 views) (95 views) 03 The Analysis of Variance Nov 22 (264 views) Nov 29 (163 views) Dec 04 (142 views) (126 views) Dec 06 (153 views) Dec 11 (169 views) (132 views) Dec 13 (158 views) Dec 18 (170 views) (130 views) Dec 20 (122 views) Dec 25 (126 views) (109 views) Dec 27 (134 views) Jan 03 (166 views) (157 views) 04 The Analysis of Categorical Data 05 Linear Regression Analysis
• Assignment and solution

 Homework Question Due Day Solution 1 (Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement")  Ch 7. #1, #3, #4, #5, #10, #34, #36 [Hint. For a random variable Z, we have Var(Z)=E(Z2)-[E(Z)]2.], #37 Oct 02 sol 2 (Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement")  Ch 7. #15, #16, #22, #23, #27, #28, #31, #32 Oct 11 sol (revised) 3 (Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement")  Ch 7. #41, #43, #44 [Note. Cx=σx/μx and Cy=σy/μy are coefficients of variation.], #45, #46, #47, #50 [Hint. For any two random variables W and Z, because |Cor(W, Z)|≤1, we have |Cov(W, Z)|≤Var(W)Var(Z).], #51 Oct 23 sol 4 (Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement")  Ch 7. #52, #53, #55, #57, #61, #64 Nov 01 sol 5 Ch 11. #2, #3, #5, #6, #10, #15, #16, #19 Nov 13 sol 6 Ch 11. #8, #21(a)(b)(c)(d) [Note. Here is the data.], #23, #24, #25, #31, #32, #34 Nov 22 sol 7 Ch 11. #12, #27 Ch 12. #4, Only need to prove the analogues of Theorem A, No need to prove the analogues of Theorem B, #5, #21 [Note. Here is the data.] Dec 18 sol 8 Ch 12. #6, #8, #9, #10, #32(a)(d)(e) [Note. Here is the data.] Dec 27 sol 9 Ch 12. #11, #16, #18 [Note. Here is the data.], #19, #29 [Note. Here is the data.] Jan 03 sol