NTHU STAT 3875 - Introduction to Mathematical Statistics (undergraduate level)

清華大學 統計所 數統導論 (大學部課程)

Sep 2018 ~ Jan 2019


Notes

(Jan 14) 作業總成績, 期末考成績, 學期總成績, 及成績統計
(Jan 14) 期末考考題解答
(Jan 02) 期末考考古題及其解答
(Jan 02) 期末考資訊及注意事項
(Dec 27) 下周二上課日(1/1),適逢開國紀念日放假,停課一次
(Dec 03) 期中考考題解答成績統計
(Nov 19) 期中考考古題其解答
(Nov 19) 期中考資訊及注意事項
(Sep 16) 有關助教及其office hour的資訊,請見Syllabus

 

Lecture Notes

Lecture Notes with Hand-Written Notices

Video

01

 Survey Sampling

Sep 11


(2159 views)

(527 views)
Sep 13

(427 views)
Sep 18

(401 views)

(293 views)
Sep 20

(293 views)
Sep 25

(301 views)

(243 views)
Sep 27

(265 views)
Oct 02

(508 views)

(277 views)
Oct 04

(239 views)
Oct 09

(224 views)

(187 views)
Oct 11

(193 views)
Oct 16

(205 views)

(173 views)
02

 Comparing Two Samples

Oct 16

(351 views)
Oct 18

(218 views)
Oct 23

(225 views)

(196 views)
Oct 25

(207 views)
Oct 30

(221 views)

(181 views)
Nov 01

(199 views)
Nov 06

(203 views)

(192 views)
Nov 08

(206 views)
Nov 13

(218 views)

(166 views)
Nov 15

(185 views)
Nov 20

(196 views)

(153 views)
03

 The Analysis of Variance

Nov 22

(404 views)
Nov 29

(247 views)
Dec 04

(221 views)

(190 views)
Dec 06

(225 views)
Dec 11

(239 views)

(196 views)
Dec 13

(225 views)
Dec 18

(244 views)

(187 views)
Dec 20

(189 views)
Dec 25

(190 views)

(169 views)
Dec 27

(200 views)
Jan 03

(258 views)

(249 views)
04

 The Analysis of Categorical Data

    
05

 Linear Regression Analysis

    
Homework Question Due Day Solution
1

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #1, #3, #4, #5, #10, #34, #36 [Hint. For a random variable Z, we have Var(Z)=E(Z2)-[E(Z)]2.], #37

Oct 02 sol
2

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #15, #16, #22, #23, #27, #28, #31, #32

Oct 11

sol

(revised)

3

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #41, #43, #44 [Note. Cxxx and Cyyy are coefficients of variation.], #45, #46, #47, #50 [Hint. For any two random variables W and Z, because |Cor(W, Z)|≤1, we have |Cov(W, Z)|≤Var(W)Var(Z).], #51

Oct 23 sol
4

(Note. In these problems, "simple random sample" is referred to as "s.r.s. without replacement") 

Ch 7. #52, #53, #55, #57, #61, #64

Nov 01 sol
5

Ch 11. #2, #3, #5, #6, #10, #15, #16, #19

Nov 13 sol
6

Ch 11. #8, #21(a)(b)(c)(d) [Note. Here is the data.], #23, #24, #25, #31, #32, #34

Nov 22 sol
7

Ch 11. #12, #27

Ch 12. #4, Only need to prove the analogues of Theorem A, No need to prove the analogues of Theorem B, #5, #21 [Note. Here is the data.]

Dec 18 sol
8

Ch 12. #6, #8, #9, #10, #32(a)(d)(e) [Note. Here is the data.]

Dec 27 sol
9

Ch 12. #11, #16, #18 [Note. Here is the data.], #19, #29 [Note. Here is the data.]

Jan 03 sol