Survey Sampling

» What is survey sampling? (cf. census survey)

e understanding the whole by a fraction (i.e., a sample)

Q: What 1s the

population > population
to survey?

r I L L L} L} L}
quantity of interest I / é | N: population size
z, =1, ..., N. @ ©) |
] |
@ @ I a sample of size n:
y | | a subgroup of n members
* x,; can be numerical or | ¢ o o (n < N)
categorical o o o | T
) w ) e e - -4 Q: Which n members should
Tit> Liz> +> Ly be included in the sample?
i=1, ..., N. a unit/member = e

i.e., how to produce a
representative sample?

(each labeled
by an integer)
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Definition 1 (survey sampling)

A technique to obtain information about a large population by examining
only a small fraction of that population.

Example 1 (Applications of survey sampling)

e Governments conduct health survey of human populations.

e In agriculture, estimate total acreage of wheat in a state
by surveying a sample of farms.

e Sample records of shipments of hoursehold goods by motor carriers to
evaluate the accuracy of preshipment estimates of charges, claims for
damages, and other variables.

e To control quality, the output of a manufacturing process may be sam-
pled in order to examine the items for defects.

e During audits of the financial records of large companies, sampling

techniques may be used when examination of the entire set of records
is impractical.




 Population and population parameters

Formulation and some notations.

e N : size of the population (assumed known)

® Iy,%9,...,xy: values associated with members of the 1 ¢ 4 Z I
population (x;: value of the member labelled by ) | b o & |
— example of numerical x: age or weight | R é |

— example of categorical z: values 1 and 0 denote the presence and
absence, respectively, of some characteristic such as gender

(Note. x1, s, ...,xy may not be distinct values)
e Suppose that there are m distinct values in 1, s, ..., zn. Denote these
distinct values by (i, (o, .- ., Gn (WLOG, assume (§ < (o < -+ < ().
e Denote the number of population members
that have the value ¢; by n;, 7 =1,...,m. | | ‘ ‘
e The proportion of population members G GG - Gn

with value ¢; is n;/N  (cf., a distribution of a random variable).

e Let Fy be the distribution that assigns probability n;/N on G, for

j = 1,...,m, called population distribution. (Note. F{ can be
known only in a census survey. It is unknown in a sample survey)

Example 2 (A survey of hospital discharge, [Herson, 1976])
e population: N = 393 short-stay hospitals

e x; = the number of patients discharged

from the ith hospital during January 1968

NccY |

ey |
o~ & o

e A histogram of these x1,xs,...,zy is given
in Figure 7.1 of textbook. sof
(Note. x1,xs,...,zy are known here)

60

e A histogram is a convenient graphical
representation of (the pmf of) F%.

Count
B

— For example, this histogram indicates &
about 40 (40/393~10%) hospitals .
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Definition 2 (population parameter)

A population parameter 6 is a value that describes some numerical charac-
teristic of the population distribution Fy (e.g., @ = mean or variance of Fp).
When Fy is unknown, the parameter 6 is a fixed but unknown value.

0 can be estimated from a sample of data
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Definition 3 (Some population parameters that are often of interest)
e population mean (mean of Fy): p = (Zf\il z; )/ N = (Z;”:l n;¢; ) /N

e population total: 7 = Zf\il T Z;n:l n;GG=Np | = Z;”:l (nj/]\f)g“_J

e population variance (variance of Fp):

1 N m T -
= gd monP =3 HG-w
— a useful identity: w

1 N N
o= N (Zi:l TP — 2> i T + N/J»2>
11

N N “l) 500 000 1500 2000 25‘()() 3000 35'(]0
1 Z 1
_ % 2 21 2 2 .
= N x; — 2N/J, + N,u, = N E Z; — 'u,_ mean=814.6
=1

=1

(Note. X ~ Fy , Var(X) = E(X?) — [E(X)]?)

¢ population standard deviation (st.d. of Fp): 0 = Vo2
— o is a measure of how spread out, dispersed, or scattered the x;’s are

(Note. o2 also measures the spread of z,’s)

— o is given in the same units as are the x;’s and mean u

(cf., o? is expressed in unit squared)
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Note 1 (Some notes about dichotomous z,’s)

e In the dichotomous case, x; takes on the value 1 or 0 to denote the
presence or absence of some characteristic. In this case,

— Fy is Bernoulli(p) distribution, where p is the proportion of mem-
bers in the population having the particular characteristic

+ Reading: textbook, 7.1, 7.2

e Simple random sampling | Q: Which members should be included in a sample,
1.e., how to choose a representative sample?

Definition 4 (random sampling)

Each member of the population has a specified probability of being included
in the sample, and the actual composition of the sample is random.




(cf.) Non-random sampling schemes: particular population —
members are included in the sample because the investigator I oG I
4

thinks they are typical in some way. Such a scheme | & &
e may be effective in some situations, but L SO I
e cannot (1) guarantee unbiasedness, or I -————
(2) estimate the magnitude of any error committed | : sampling probability

Consider a parameter 6§ and an estimator 6 of 0, where 6 is a fixed but unknown

value, and é, a function of sampled data, is a random variable (r.v.).

e estimation error: 6 — 0
e bias of an estimator 0: E(0) — 0 = E(f — 9)

° é is an unbiased estimator if E(é) ie.,
e mean squared error (MSE): E(f —0)2 (= Var( ) + [E(é) 0]2)
MSE = variance + bias?

Note 2 (Advantages of random sampling)

e Unbiasedness of estimators can be guaranteed
e Probabilistic bounds on errors can be calculated.
e Other advantages:

— guard against investigator biases

— a small sample costs less than a complete enumeration
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— quality of a small data can be more easily monitored and controlled

— random sampling makes possible the calculation of an estimate of the
error due to sampling

— it is possible to determine the sample size n necessary to obtain a
prescribed error level

Definition 6 (simple random sampling, s.r.s)
e For a population of size NV, each particular sample of size n (n < N)

has the same probability of occurrence.
(Recall. random process of drawing balls sequentially from an urn)

e Two versions of s.r.s.: | 3 (!D- (19-'
— with replacement: duplicate members are allowed I 54l
* number of all possible samples: N” L IR § I
% occurence probability of each sample: 1/N" ——
— without replacement: no duplication is allowed
x number of all possible samples: @ nl = (N%'n),
% occurence probability of each sample: 1/ ((]Z Jn!) = %

(Note. When the n! permutations of a specific set of n members

are considered identical, we say there are (JT\Z ) possible samples)
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Some probabilities in s.r.s. scheme.

e Random variables Iy, Io, ..., In: Let Iy, k =1,...,n, be the
integer label on the kth member drawn from the population

e s.r.s. with replacement
— marginal distribution of I;: P(I =) =1/N, for i =1,..., N.
— conditional distribution:

P([E:ik‘Il:il,...,lk;l:z'k_1> _ 1N = P(I = i)

= It can be proved that I,..., [, are independent.

— joint distribution of Iy, I, . . ., In: I i i i I
P(li=in,....Tn=in) = [ P =ix) = /N7 1 ¢ |
e s.r.s. without replacement Lo .

— marginal distribution of Iy: P(I =iy) = 1/N, for iy =1,...,N.
— conditional distribution: for distinct 7;’s,
P(IE:ik‘Il:il,...,fk;lzik_1> —1/(N—k+1)
= I1,...,1I, are not independent.

— joint distribution of Iy, I, ..., I,,: for distinct i’s,
P(hi=d1,. s In = in)
= P(h=4u)Pla=ih=4)  Plpn=tn|hh =%, ,In1=1n_1)
= (/N)Q/(N-1))---(1/(N=-n+1))= (N —n)!/N!
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— Similary, the joint distribution of I, and I}, 1 < k <[ < n, is
1
N(N —-1)

P(ly = ig, | = 3) = P(Ip = ix) P(Ly = 01| I = ix) =

if ik 75 il, and zero if ik = il.

Note 3 (Some notes about s.r.s.)

e When n < N, s.r.s. with replacement ~ s.r.s. without replacement

— Recall. In dichotomous case, when n < N,

binomial distribution ~ hypergeometric distribution

e The actual composition of an s.r.s. is usually determined by using a ta-
ble of random numbers or a random number generator on a computer.

Statistical modeling of data collected from an s.r.s. of size n.
o Data X, Xy,..., X,. Let X, k=1,...,n, be the quantity of interest

observed on the kth member in the sample. We have

T
X = Ty, 1 & 45
— I
and Xq,...,X,, are random variables. — _d)..

e Recall. The population distribution Fy assigns probability n;/N on ¢
for j =1,...,m. (Note. Fj is unknown in a sampling survey)
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e Statistical modeling of X7, ..., X,, under s.r.s. with replacement

— marginal distribution of Xj:
x X} can take values only on (1, ..., (., and

« P(Xp=G) =P (L {iloy = G}) =ny/N,j=1,...,m.
Hitthme o That is, Xy ~ Fy, k=1,...,n.
— Because [4, ..., I, are independent, X1, ..., X,, are independent.

— joint distribution of Xi,...,X,: Xi,...,X, are independent
and identically distributed (i.i.d.) random variables with the
distribution Fp, denoted by X, ..., X,, 2% Fy.

e Statistical modeling of X, ..., X,, under s.r.s. without replacement

— marginal distribution of X;: X ~ Fy, k= 1,...,n (same marginal
distribution as in the with-replacement case)

— Xy,..., X, are not independent.
— joint distribution of X and X, 1 <k <[l < n:
P(Xg = (s, Xi = ) = P(Xg = ) P(Xi = G| Xk = §)
= P((TiT) € {(in) | 7, = Gov 24, = G ik £ )
o = G A G (e s A D),

Ns ns—1 m . )
EXM:M’ if ¢, = ¢ (ie., s=1).
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— joint distribution of X5, ..., X,, is more complicated,
but its derivation follows the same rule.

 Estimation of population mean (and population total)

e population mean: mean p of Fy (unknown parameter)

e data: Xy,..., X, (random variables) with distribution related to Fy

e estimation of population mean: use (a function of) the data to estimate u

Definition 7 (statistic, sampling distribution, estimator, estimate, standard error)

e A statistic is a function of data only, not involving any unknown pa-
rameter. Any statistic is a random variable.

e An estimator é of a parameter 0 is a statistic used to estimate 0, and

an estimate is an observed value (an observation, a realization) of ¢

computed based on a specific sample.

e The distribution of é is called sampling distribution, denoted by Fj.

e The standard error (st.e.) of an estimator 0
is the squared root of the variance of 0, i.e., \/V(l’f’g (é)

e An estimate of the standard error of é is

called an estimated standard error of QA




Definition 8 (sample mean) Ch7, p.13
>

— k=1

I3

S|+

The sample mean of X, X,,..., X, is X =

Note 4 (Some notes about sample mean)

e X is clearly a statistic, and
hence a random variable. 1 Fo

40

° z is an intuitive estimator of y.

e In the dichotomous case, we have u = p and

0 500 |nm 1500 2000 2500 3000 3500

p = X is the sample proportion.

Example 3 (sampling distribution of sample mean, cont. Ex.2 in LNp.4)

e Consider the population of N=393 hospitals.

e Suppose we want to know the sampling distribution of X
of a s.r.s. without replacement of sample size n=16.

e There are (31963

) possible samples. Note that () is of order 10% |

e Sampling distribution of X is formed by the (sample) mean of each of
the possible samples along with their probabilities.
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ST
<:| ° (393) = 10?8 is too large i [u=3146 ]

16 100 . :\

80

e To reduce computation, we can use the ol 191 (a)n=38
technique of simulation to understand a0 ’_rr{ ,
the sampling distribution of X . Hine ‘ ‘ .

200 400 600
140

Count

~1.\ "
>

— randomly draw many (say, 500)
s.r.s. of size n 100 F
i 1
— compute the mean of each sample ol A b (b) n =16
— form a histogram of the collection ol r .

of these sample means oA | T
200 400 600 800 1000 1200 1400 1600 1800

Count

This histogram will be an approxima- ool a0,
. . . . ; = _ 8ok 1
tion to the sampling distribution of X . = ol e (c) n = 32
e PFigure 7.2 (textbook) shows the results | © 4of ‘AL‘V
for sample size n=8, 16, 32, or 64. AL Al ke,
- - 200 400 600 8]0 1000 1200 1400 1600 1800
— All the four histograms are cen- 140 - ! :
tered at ©==814.6. I 1l i InCreases
100 !
— As n increases, the histograms be- . [k (d) n = 64
come less spread out. ] \
— Although shape of Fy (population 20} J \
distribution) is not symmetric about 200 400 600 800 1000 1200 1400 1600 Lxloo
4, these histograms are nearly so. sampling distribution of X
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Theorem 1 (expectation of sample mean)
(1) Under simple random sampling, with or without replacement,

E(Xy) =p and Var(Xg) = o’

(2) Under simple random sampling, with or without replacement,

E(X)=p.

So, X is an unbiased estimator of i, 1.e., the sampling distribution of

X is centered at 1.

Proof: Under simple random sampling, no matter with or without replace-
ment, the marginal distribution of X is Fy. Thus, we have

B = 3 GP(Xe=6) = LGN = 5 SomsG =
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Theorem 2 (variance of sample mean, s.r.s. with replacement)

Under simple random sampling with replacement, we have
Var(X) = o?/n,
and the standard error (st.e.) of X, denoted by 0%, 18 a/\/n.

Proof: Under simple random sampling with replacement,

we have y
Xy oo X, 228 B

Thus, Cov(Xy, X;) =0 forany 1 < k <l <n, and

Var(X) =Var [ - 3 X | = 2 S Var(i) = - (me?) = T

Note 5 (Some notes about the st.e. of sample mean, with replacement)

B =

e o 0/+/n (a measure of how spread out X is)

X
measures the precision of the estimator X .
*

(]
UX

*

(]
UX

order to double the accuracy, n must be quadrupled (the contribution

is determined by n and o, but not V.

is inversely proportional to y/n, i.e., in

of each observation to the accuracy of X decays with the increase of n)

Theorem 3 (variance of sample mean, s.r.s. without replacement)
Under simple random sampling without replacement, we have

— 2 —1
Var(X) = % (1—;_1),

and the standard error of X, denoted by o, is (0/y/n)4/1 — &=L,

N—-1

Proof: First, for 1 < k <[l < mn,
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Then, n

— k=1

= > Var(Xe) + 5> > Cov(Xi, Xy)
= k=1 T k=1 l=k+1
1 5 2 nn-1 —o? o? n—1
nQX(ﬂU_)+n2X 92 N1 n \~ N-1

Note 6 (Some notes about the st.e. of sample mean, without replacement)

e The variance of X in s.r.s. without replacement differs from that in

s.r.s. with replacement by the factor (1 — N—) which is called the
finite population correction. (Note l— %5 —1when N — oo)
e n/N: sampling fraction (% =L in most cases)

® 0y ~ 0% = 0/+/n if the sampling
Wlonls very small (i.e., n < N).
® ox also depends on n and g, i.e.,
oxdasnl and oxfasof,

and ox depends on NN only through the sampling fraction.

Example 4 (st.e. of sample mean, cont. Ex.2 in LNp.4)

e N = 393 hospitals. Consider s.r.s. without replacement of size n = 32.

e Because g = 589.7 (of 393 hospitals), we have
0'7 = 1-—

\/_

where finite population correction 1 — 33912 ~ 0.92 makes little difference.

n—l
~ 100
—1 ’

e Most of sample means differ from the
population mean 814 by less than
2 X 0% = 200 (see graph (c) of Figure 7.2 in LNp.15).

Theorem 4 (mean and variance of sample mean for dichotomous x,’s)

In the dichotomous case, z = p (sample proportion), and I _. g g |
e under s.r.s. with or without replacement, £(p) = p |] © o o |
1 - ° .0 . )
e under s.r.s. with replacement, Var(p) = u, == 2l
__n
and np = Zi_lX » follows binominal(n, p) distribution
1 = =1
e under s.r.s. without replacement, Var(p) = p(l —p) (1 W 1),
\P) n _

and np = Zz X}, follows hypergeometric(n, Np, N(1 — p)) distribution




Example 5 (st.e. of sample mean, dichotomous case, cont. Ex.2 in LNp.4)

e In the population of 393 hospitals, a proportion of p = 0.654
had fewer than 1000 discharges.

e y;, = 1if x; < 1000 and y; = 0 if z; > 1000

e For an s.r.s. without replacement sample
Y1,..., Y, of size n = 32, the estimator of p is p =Y and

|
(1—p) 1 654 x .346 31 , |
p(l—p n — . X . s
Y S 2y - 1— —— =0.08. ..
% n N-1 \/ 32 \/ g0 ~ U8 L oL

Definition 9 (estimator of population total)

Because 7 = ZZM: , Z; (population total) equals N p,

an intuitive estimator of 7 is T=NX.

Note. T'isnot » 7, Xy =n X .

Theorem 5 (mean of population total estimator)

Under simple random sampling, with or without replacement, we have
E(T) =1.

That is, T" is an unbiased estimator of 7.

o
>
N
o

N
N

Theorem 6 (variance of population total estimator)

2
e Under simple random sampling with replacement, Var(T) = N2 (U—) :

e Under simple random sampling without replacement,

o= (3) (- 124)

Note. The precision of the estimator 7' does depend on population size N.

 Estimation of population variance

Recall. When Fj is unknown, the o in the stan-

dard error of X is a parameter, i.e., it is unknown.

Q: how to estimate o or 027

Definition 10 (sample variance)

I — —
The sample variance of X, X5, ..., X, isdefined as 6% = — Z (X, — X)2
n =
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Proof. From the identity

n n

D X—p) = Y (X -XP+nX —p? (D)

by taking expectation on the both sides of (A), we have

SB[ -] B | Y0 -XP| +nE[X-w?], ()

which leads to

Thus, we have E(62) = ((n — 1)0?)/n.

Theorem 8 (expectation of sample variance, s.r.s. without replacement)

—1
Under s.r.s. without replacement, we have E(5%) = o° (n ) <

)

Proof: The identities (A) and (7) in the above proof still hold, and (77)
leads to

2 (-3

After some algebra, this gives the desired result.

ng® = Eng’) +n
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Note 7 (Some notes about the expectation of sample variance)

wn
(¢)

e No matter under s.r.s. with replacement or without replacement, the sample

variance 62 is a biased estimator of o2.

1 n—1 N
<_1and( " )(N_1><_1(note. n < N), we have

e Since
n

E(6%) < o2
2

That is, &_2 tends to underestimate o~°.

Theorem 9 (unbiased estimators of 02 and the variance of sample mean)

e Under s.r.s with replacement,

— an unbiased estimator of o2 is

£ = (21)8 = 5

— an unbiased estimator of Var(X ) = g?/n is s2. = s2/n.

e Under s.r.s. without replacement,

— an unbiased estimator ofa_2 is (%) (L) 52 = (% ) 52,




Theorem 10 (unbiased est’ors of 02 and variance of sample mean, dichotomous z,’s)

In the dichotomous cases, X = p and % = p(1 — p).
e Because n

2= (%~ X) (Zﬂ) X —p— = p(l—p),

k=1

; n \.o .
s (n_l)a_ — b1 D)

e Under s.r.s. with replacement, an unbiased estimator of Var(p) =

i = /n=[p( —p)/n 1.

e Under s.r.s. without replacement, an unbiased estimator of Var(p) =

1— n—1\ : A A
p(np)_<1—N—_11)IS 82_3_2<1_2)_M<1_ﬁ)
I N) n-—1 N/

Theorem 11 (unbiased estimator of the variance of population total estimator)

An unbiased estimator of Var(T) = N2Var(X) is s2 = N2 52 -

we have,

e The quantities sy ( = s%), st ( = \/s%), and s; ( = sg) are

called estimated standard errors.

Example 6 (estimate population mean, cont. Ex.2 in LNp.4)

e Ans.r.s. without replacement of size n=>50 of the N=393 hospitals was taken.

e From this sample, X = 938.5 (recall, p=814.6), s = /52 = 614.53
(recall, ¢ = 590), and an estimate of Var(X) is

2 2
_ n\ _ 614.532 50
2 =2 (1-2) === (1- = ) =65%.
°X n< N) 50 393

e The estimated standard error of X is s+ sy = = 165 .19,
(cf. the (true) standard error of X is o = \5/&2 1— 52 = E)

which gives a rough idea of how accurate the value of X (938.5) is. In this
case, the magnitude of the error is of the order 80, as opposed to 8 or 800.

e The error ofz is 938.5 — 814.9 = 123.9, which is about 1.5 x s+.

Example 7 (estimate population total, cont. Ex.2 in LNp.4)

e For the same sample in Ex.6, the estimate of the total number of discharges T
in the population of hospitals is 7= N X = 393 x 938.5 = 368, 831
(cf. the true value of 7 is 320,139).

e The estimated standard error of T 1S =

st=N
(cf. the (true) standard error of 7' is o7 = N o = 393




Example 8 (estimate population proportion, dichotomous z,’s, cont. Ex.5 in LNp.21)

o p=0.654: (true) proportion of hospitals in the population that had fewer
than 1000 discharges (= o2 = p(1 — p) = 0.2263).

e For the same sample in Ex.6 (LNp.26), 26 of 50 hospitals has fewer than
1000 discharges. The estimate of p is p = 26/50 = 0.52, and an estimate of

Var(p) is
, _ pA=p) ([ _n) _ (BDA8) (50
B (1 N) — T 49 1= 393 ) = 00045

e The estimated standard error of p is Sp = 1/ 0.0045 = 0.067,

(cf (true) standard error of p is op = \/ —7— (654 346) A/ f992 =30} 064)

which tells us that the error of p is in the 2nd or 1st decimal place — we are
probably not so fortunate as to have an error in the 3rd decimal place.

e The true error of p is 0.52 — 0.654 = —0.134, which is about —2 x sp.

e Note. Examples 6-8 show how, in s.r.s., we can not only form estimates

of unknown population parameters (e.g., use X, T, p to estimate p, 7, p,
respectively), but also gauge the likely size of the errors of the esti-

mates, by estimating their standard errors (e.g., s, s, s3) using the data
in the sample.

Note 8 (A summary of parameter estimation in s.r.s.)
e A summary table:

population variance of

parameter estimator(" ostimatorH®) estimated variance(®)
a? §2
’ x=15x e e
" F a? n— 52 n
2 w-E(om)  ws-2(-y
(a) 02 = p(1=p) (a) s2 = p(1=p)
P n P n—1
P p = sample proportion — - o = = :
(0) 3 =22 (1-g7) () = P (1)
’ et % =N o £ —HEE
2 1 ¢ 2
(a) 82 = (Xx — X)
o2 n—1 —

b) (1-%) &
e (f): (a) and (b) obtained under with and without replacement, repectively.

e (x): the square root of entries in the 3rd column are standard errors, the
square root of entries in the 4th column are estimated standard errors.

- Nl F
population census {0 parameters

fixed — —_— 9 unknown

e L1, T2,..., TN FO;,UJapaT7O—7 Y

! random sampling | similar? t estimate :
T v N ﬁ, T
v sample hp ©0 estimators v

> S
random X1,X5,..., X, ﬂ”ﬂm Fo, X,p, T, 82, ... known
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* Normal approximation to the sampling distribution of sample mean

e Q: without knowledge of the population distribution Fy,
how to further characterize the sampling distribution F~

of X in addition to its mean and variance?

o Advantages if we (almostly) know the shape of F7?

— accurately evaluate P(error € (a,b)) =~ ?

(Note. error = X — p) /_\
— construct confidence interval for I

Theorem 12 (central limit theorem, CLT, for i.i.d. case)

Suppose that X, Xo,...,X,, are i.i.d. r.v.’s and have common mean g and vari-
ance 0 < 02 < co. For the sample mean X, = % > i—1 Xk, we have E(X,,) = p,
02Y = Var(X,) = 02/n, and for any fixed value 2,

<z| — ®(2) _A_

as n — 00, where @ is the cumulative distribution function (cdf)

— D
of the standard normal distribution N (0,1). That is, X, & N(u,0?/n).

(cf.) Law of large number (LLN) guarantees that X, = p and s £, 52

as n — 00, i.e., X, and f are consistent estimators of 4 and 0_2, respectively.

Theorem 13 (central limit theorem, CLT, for s.r.s. without replacement)
In s.r.s. without replacement, (1) Xy, Xs,..., X, are not independent, and

(2) there is no reason to have n — oo while /V remains fixed. But other CLTs
are still appropriate, e.g.,

If n is large, but still small relative to /V,

then X, is approximately normally dis-
tributed with mean p and variance o~ (check graphs in Ex.3, LNp.15).

Application 1 (CLT application on estimation error of population mean)

A use of CLT for estimation error X, — pis .
— — ) X, — )
P([Xn—pl<8)=P(=8<Xp-p<d)=P(-—— < 22—t < )

O'Yn
= ) o))
‘ D

n—1 _580.7 [ 63

1— = 9.
N -1 8 392 T

°
5
=
S

I

o

=

Q

=

|
Sle
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e Apply CLT to approximate the probability that the sample mean X differs
from g by more than § = 100:

P(|X = 1| > 100) =2 x P(X — > 100) = 2 x P(

X — 1
[ - 00)
’x ’x
~ 2|1-®(100/67.5) | =2 x 0.069 = 0.14.

e Among 500 samples of size 64 (Ex.3, LNp.15), 82 samples (or 16.4%)
differed from p more than 100.

Example 10 (estimation error more than 0, dichotomous z,’s, cont. Ex.8 in LNp.27)

e sample size n = 50, true p = 0.654, standard error of p is o5 = 0.064.

e From the sample in Ex.8, estimate of p is p = 0.52 and [p — p| = 0.134, the
probability that the estimator will be off by an amount this large or larger

18 P(|p—p| > 0.134) = 1-P (|p — p| < 0.134)
— 0.134
= 1—P(‘p Pl - )gg[1—®(2.094)]=0.036.
75 4
e We see that the sample was rather “unlucky” — an error

this large or larger would occur only about 3.6% of the time.

Note. In a sampling survey, o2 (or 02Y ) is not available because Fj remains
g . o

unknown. We can substitue s? for o2, Xn—pu
SRR, p b,
and a similar CLT still holds, i.e., — B

— ®(2) asn— 0.

Syn
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Definition 11 (interval estimator, coverage probability, interval
estimate, confidence interval, and confidence level)
e For a random vector X = (X1,...,X,,), an interval estimator of a param-
eter § with coverage probability 1 — «a is a random interval
) (X).0:(X Repeated construction of
(LX), 0y(X)), 95% confidence intervals
where
True value of u
2 A . Interval
1. 01(X), 0y (X) are functions of data only, number R
. . Q) — — -
2. 0.(X) < 0y(X), and, ) S —
——t—
. A (5) et
3. P(0 € (0.(X),0u(X))=1—a. © R
& —
e If X = x is observed, the interval (10) ————d——
- 1 it

(01(x),0u(x))
is called an interval estimate.
e The term “100 x (1 — )% confidence interval” (C.1.)

is used to denote either an interval estimator with coverage
probability 1 — a or an interval estimate.

e The 100(1 — a)% is also referred to as confidence level.

e Note. The « is usually assigned a small value, e.g. 0.1, 0.05, or 0.01.




Application 2 (CLT application on the construction of confidence interval for [)
e For 0 <a <1, let z(a) be the (1 — a)-quantile of N(0,1), i.e., 2(a) is the

number such that the area under the pdf of N(0,1) to the right of 2(a) is «
and ®(z(a)) =1 — a. Notice that z(1 — a) = — z(a).

e For Z ~ N(0,1), E(—z(a_/Z) = = Z(OC_/Q)) = ®(2(a/2))—

P(—2(a/2)) =2 x ®(2(a/2)) —1=1—qu.

— D
e Because X, = N(u, ) by CLT, we have
X, —
P(=20/2) < ==L <s(0/2) ) m1-a
—\%/4) 0.

& P (Yn —z2(a/2)ox, < p < X, +2(a/2) 07n> ~l—«a

e The probability that u lies in the random interval formed by data:
X, =+ 2(a/2) 0%,

is = 1—q,ie., it is a 100(1 — a)% (asymptotic) confidence interval of p.

e Recall. A function Q(X, 0) of the data X and a parameter, say ¢, of interest

is called a pivotal quantity for 6 if the distribution of Q(X, 0) is irrelevant
to all parameters.
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Note 9 (Some notes about confidence interval)

e In a sample survey, o5 is unknown. In the case, sx (or 52, respectively)

can be substituted for o (or o2,

respectively) if the sample size n is large
enough, say n > 25 or 30 by a rule of thumb.

e Recall: duality between confidence interval and hypothesis testing.

— Suppose for every parameter value 6y, there is a level-a test for
Hy:0=00 vs. Hp:0#bh.

Denote the acceptance region of the
test by AR(6p). Then, the set

C(X)={0|X € AR(9)}
is a 100(1 — a))% C.I. for 6.

X (data)

- 1 confidence interval ‘

— Suppose C(X) isa 100(1 — a)% C.I. acceptance
for . Then, an acceptance region e [E )

o : Hy: =6, vs.
for a level-a test of Hy: 0 = 0 is H, 66,

AR(6y) = {X|bp € CX)}-

e In a sample survey, for the population mean p and the hypotheses
Ho: = pg vs. Ha: pn # o, a test at (aymptotic) significance level o

rejects H if (X

n — fo)/ox, | > #(a/2)
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e Many confidence intervals have the form:

estimate + [critical value] x [(estimated) standard error]

= C.I. combines information of estimate and (estimated) standard error
e The width of a confidence interval often depends on:

— n : sample size For example,

n T, width] consider the C.I.:
— o: population standard deviation -
— X, 2 =
o1, width t Ko 2 20/2) X 7%, ;
— 1 — a: confidence level = X +2(a/2) X %

(1—-a)7, width 1
o If o is fixed and o is (approximately) known, n can be chosen so as to obtain

confidence intervals close to some desired length.
= a common way to determine an adequate survey sample size n

Example 11 (repeated construction of confidence intervals, cont. Ex.2 in LNp.

e 20 samples each of size n =25 were drawn from the
population of hospital discharges (N = 393).

e From each of the samples, an (approximate) 95% con-
fidence interval for 1 was computed and displayed in
Figure 7.4 (textbook)

e On average 5%, or 1 out of 20, would not include p.

814.6 [+

Example 12 (construction of confidence intervals for 4, 7, p)

e A particular area contains 8000 (population size N) condominium units.

e To understand the numbers of motor vehecles owned by the units, a s.r.s.
without replacement of size n = 100 was drawn.

e The sample yields that
— the average number of motor vehicles per unit is X = 1.6,

— with a sample standard deviation s = 0.8.

- So, s n 08 100
S% = [E— .08.
°X \/_ N /100 T 8000
e When a = 0.05, we have z(a/2) = 2(0.025) = 1.96. Therefore, a 95% confi-
dence interval for the population average p is

X +1.96 X s¢ = (1.44,1.76).

e For the population total 7 = N p (i.e., total number of motor vehicles owned
by the 8000 units),

— an estimate of 7 is T' = N X X =8000 x 1.6 = 12, 800,
— with an estimated standard error sy = N x s% = 640.

e So, a 95% confidence interval for 7 is

T +1.96 x sp = (11,546, 14, 054).
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e In the sample, 12% of the 100 (n) respondents said that they plan to sell
their condos within the next year.

e For the proportion p of 8000 (/V) units whose owners were planning to sell

the units in next year,
V n—-1_ 1 \/ N

e So, a 95% confidence interval for pis p £1.96 X sp = (0.06, 0.18).
e A 95% confidence interval for the total number (=N xp) of owners planning
to sell is (Np) £1.96 x (N s5) = (451,1469).

— an estimate of pis ]_5 =0.12

— with an estimated standard error s; =

Example 13 (sample size determination, cont. Ex.12 in LNp.36)
e Suppose a 95% C.I. of Np with a half-width of 200 is desired

(cf., original half-width: (1469 — 451)/2=>509).
e For a sample of size n*, half-width of 95% C.I. of Np, neglecting the finite
population correction (i.e., treated as s.r.s. with replacement), is

P —P) 5095
1.96 x (N x N = .
x ( Sp) A2 Lol X 40 n Jn*
e Setting 5095/v/n*=200 and solving for n*,
we have n* = (5095/200)% = 649 (cf., original sample size n: 100).

+ Reading: textbook, 7.3
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» Estimation of a ratio populatlon
Some notations of the population _ —

r=

o (z4,vi),i=1,...,N: values associated with I
the members labelled by 7 in the population. | |
|

|

|

e Suppose that there are m, distinct values in
r1,T2,...,xN. Denote these distinct values

by (17 g2a D C@

e Suppose that there are m, distinct values in
Y1,Y2,...,yn. Denote these distinct values quantity of interest

’ ,/

______J

BY 171, 12, - - s T, - (f’f’zayz)
Yy m, 12 Thmy i=1, ..., N.
e Denote the number of population members N
that have the value ({5, ny) by ngu, s =1, ..., R -
Mg, u=1,...,my.
e The proportion of population members with "
value (Cs, 1) 1S Ny /N. 4
P
o Let Fy(z,y), called population distribu- Fo
tion, be the joint distribution that assigns >

probability ng,/N on ((s,n,) for s = 1,...,

Mg, U= 1,...,my. E>
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e marginal distributions of Fy(x,y): Let

My mg
Ng. = — Ng, and n., = T Ny
- u=1—= - s=1—=
— Foz(z): assigning probability ns. /N on (s, s = 1,...,m,.
— Fyy(y): assigning probability n.,/N on 9y, u =1,...,m,.

Definition 12 (Some population parameters that are often of interest for F)

e population mean, total, variance, and standard deviation of Fj, and Fp,

similarly defined as in Definition 3 (LNp.5). Denote them respectively by

2
y7

2
s Tay Ogs Ox for Fp ,, and Hy; Ty, Tys Ty for Fo,y.

e population covariance (covariance of Fp):

1 N n
T DOMCEVRUEVRED D Dt TR

e population correlation coefficient (correlation of Fy): pry = 0zy/(0z 0y).

Note. p;, is a measure of the strength of the linear relationship between
the x and y values in the population, and —1 < pgyy < 1.
N

N
e a population ratio: 15y = —w— = — = —. <Note Toy 7 — )
— LTSN n e Ag
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Example 14 (Applications of ratio estimation)

e survey of households
— y: weekly food expenditure = — z: number of inhabitants

— Ty — Ty Tt weekly food! cost per inhabitant

e survey of households
— y: number of unemployed males aged 20-30
— z: number of males aged 20-30
— Tzy = Ty/Tz: proportion of unemployed males aged 20-30

e survey of farms
— y: acres of wheat planted — x: total acreage
— Tay =Ty / Tz proportion of harvested acreage planted to wheat

Statistical modeling of (z, y)-data collected from an s.r.s. of size n.

e Define I1,...,I, as in LNp.9. The joint distribution of Iy, ..., I, is still as

that given in LNp.9-10.
e Data (X1,Y1),...,(Xpn,Yn). Let (X, Yx), k=1,...,n, be the (z,y) quan-
tity of interest observed on the kth member in the sample

We have . Igéf_@ﬂ

(Xe Yi) = (21, y1,) 1 5 U o
and (X1, Y1),...,(X,,Y,) are random variables.




(exerciy

(exercis
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u=1,...,my. (Note. Fp is unknown in a sampling survey)

e Statistical modeling of (X1, Y1),...,(X,,Y,)
under s.r.s. with replacement

| distribution: (X, Y:) ~ F

(T‘ mna
8 C\A L DULLUMULULL \1).[{: LK

se) mia 9 it
ise) — the n pairs of data (X1, Y1), .. ( Yn) e independent.

— joint distribution: (Xi,Y7),...,(X,, Y, ) —~ Fo(x Y).

e Statistical modeling of (X1, Y1),...,(Xn,Yn)
under s.r.s. without replacement

ise) — marginal distribution: (X, Y%) ~ Fo(z,y), k=1,...,n

(same marginal distribution as in the with-replacement case)
— the n pairs (X1,Y7),...,(Xy, Y,) are not independent.
— joint distribution of (Xy,Y%) and (X;,Y7), 1 <k <l < n:

P((Xkﬂyk) = (Csﬂ?u)a (Xlayl) = (Ctanv))

e Recall. Fy(z,y): assigning probability ng,/N on ((s,n.) for s =1,. ..

= P((Xk,yk) = (Csfnu)) X P((Xla}fl) (Ct;nv) | (XImYk:) = (Cs;”u))

= P({(e) | (@i Yi) = (o) (Tis Yir) = (G o), e # a3)

n nt Nyt .
2 X e = ——— otherwise.

N N—1 N(N-1)’

Nsu gy —1 Nsu(Nsu—1 .
N X N1 T NEN—I))’ if (Cs, ) = (Gt Mw) (i, 8 =1,

H:

y My,

v),
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derivation follows the same rule.

— joint distribution of (X1,Y7),...,(X,,Y,) is more complicated, but its

(exercis

(exercige

Definition 13 (some intuitive estimators of parameters of F(x, y))

e population mean (g, fy): X Spand Y S Uy

e population variance (02 05):
() e
— With replacement, s _é % 02, and 5.13 - 05

— Without replacement, (thl) s2 5 02 and (NNl) &= a .

e population covariance o,: Define sample covariance
1 1

n

e) — With replacement, s;, is an unbiased estimator of o,.
N

) — Without replacement, (T) Szy is an unbiased estimator of o,.

sy = = [T (K - D)%) = —— (T Xi%) -2 X 7]

. . o (0] .
e population correlation coefficient pg, = ””Jy : Define sample correlation

Ox0y

. & e
coefficient p,y, — pzy, where

R s IR e Y S
b vy Z( k )( k
—= 848y n—1 Sy

(FYI. p.y is not an unbiased estimator of p,, in general)

S
= e 4

).
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e the population ratio 7, Tay = f-:fi = ;2 : a natural estimator of 7, is
R = —z— = —T—y—
L T,

Note 10 (Some notes about the mean and variance of R)

e To study the estimation properties of R, we wish
to derive expressions for E(R) and Var(R).

e Since R is a nonlinear function of X and Y
we cannot always do this in closed form.

(Cf' X = %Zkzl Xk
— —3
52 = mog 2ope (X — X)? = 349 [(EZ:lﬁ) _”X_] :

52y = 77 St (X = D) (% = V) = 715 [(Thy Xale) —n X 7] )
)?

e Q: How can we derive approximate expressions for £/ (R) and Var(R)

e Consider the problem.

— 7= g(_U_ ), where U is a random variable and g is a known function.

— Suppose we know only the mean py and variance 012] of U,
but not the exact distribution Fy of U
(i.e., do not know the cdf or pdf/pmf of U).

- g: Can we derive the exact distribution of Z ?

— If not, can we “roughly” characterize the mean and variance of Z7 e
(Note. E(Z) =E [9(U)] ig[g@] in general.)
Theorem 14 (d-method, propagation of error)
e univariate case Z = g(U):
Z = M ~ g(py)+ U - u_U)g'(_U) (by Taylor expansion)
= E(Z) = g(uw)
Var(2) ~ Var(U)lg'(w)l? = og lg'(w))?
or Z=g(U) = g(uu)+ U~ pv)g'(ww) + (1/2)U - pw)* 9" (pv)

= E(Z) ~ g(pu)+(1/2)0t ¢" (pv)

Note. How good these approximations are depends on whether g can be
reasonably well approximated by the 1st- or 2nd-order polynomials in a
neighborhood of py and on the size of oy .

e case of 2 random variables U,V and Z = g(U,V): Let

Z=9(UV) = ¢

= E(Z) X~ g
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oo Z=g(UV) ~ g(p)+U—pu )5‘98<5>+(V_M )%
A N
O = ) = ) T
> 20~ o ot g A TGP e R

e Note. A function g of kK random variables can be worked out similarly.

o Let Z=g(U,V)=V/U. Then, for g(u,v) = v/u,

dg  —wv dg 1 0%g v 0%g _0 0%g -1
du W v w w2 WP Qv T Qudu W
e By d-method, after substituting (uy, pv) for (u,v), we have
1 2 1 —1 1
E(Z) ~ 'u—v-l-— (2] MV-I— O'V0+0'UV M—V+—2((2J*M—V—UUv>
== Ty 270 T2 Ko MU BN MU
e Similarly, by §-method,
1 —py 1 1 d
Var(Z)wa%/ NX-FUV — 12 Uv#—:—2<012]u¥ +0V 2UUV'M—V)-
K Ky = Ky HU Ky K —  HU
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Theorem 15 (Covariance of the two sample mean)

e Under s.r.s. with replacement

oxy =Cov(X,Y)=

O-xy

n

e Under s.r.s. without replacement
ovv =Cov(X,Y)= — [1-— .
oxy = CovlX,Y) = — < N—1)

Proof: First, under s.r.s., no matter with or without replacement, we have

Co(X,Y) = E|X - p)¥ - )| = E (Z n )(Z )}

- é(;éﬁ[(&@)%— w])

= é zn?g[_(xk — ) (Vi — )] + é ééE [(Xk = 1) (Y — 1y)]

= %Téilzn;cov(xﬁ,n) - ()
Tk

e Under s.r.s. with replacement, when k # [, X, and Y are independent. Thus,
for k # I, Cov(Xg, Y}) = 0, and () equals ozy/n.




e Under s.r.s. without replacement, for k # [, (X Xk, Y}) are correlated, and " P4

Cov(Xi, Y1) = E(XiY) — E(Xe) E(Y) = E(XiYD) — ps iy

where mg My
P - S enpecyio RS

= ZI:ZCS% iip((éai):(:&@):(ﬁ7ﬁ):(_2)2))]
s=1 v=1 t=1 u=1

= ZZ%P((X@%) (o). (XuY) = (Gomn) )

s=1v=1
+ ZZ Cs"?v Z Z ( Xk,YE) — (Csang)a (Xb YD = (CL? 77'0) )]
L=k (Comu)#(Ce nv)
= Nsv\Nsy — i NsuNty
- 33 e[l )] 22@42 > (s )|
8 1 v=1 _ s=1v=1 #(Ct 7) ;
= s NsuNty il Nsy
- _122@42 ) - g 23 ()
s=1v=1 t=1 u= 1 s=1v=1
Ty 1
- e 2 () (F) - = 2O
M[E(Xk) E(Yz)] Oay + Hally 1
N-—1 N -1 N -1 —
Thus, Cov(Xy,Y;) = — ]\7my1 if k+# 1, and on. pag
Oxy 1 ( Oy ) Oy < n—1 )
— -1 - _
)=t et =) = U v
Theorem 16 (approximate mean of R)
e Under s.r.s. with replacement,
_ Hy 2 Hy 1 2
pr = E(R) = + — (a———a——):r + = X =5 (Tey 05 — Oxy)
=TT s 'uX X s XY 2T (12 yZx 7Y
e Under s.r.s. without replacement,
- 1 n—1 1 9
pr=BE) ~ 1oyt (1= g—y) X 5 (e ok - om) |
—_— AL e with replacement,
1 n—1 1 9 b = by By =ty
B @+Z<1_N—1> 7 (Tey0s = Paydaoy) A A
— Lt} - XY =
4 PI'OOf: From 5_meth0d’ EX15 e without replacement,
< Hx = Ha, Hy = My
O (LNp.45), and Theorem 15 (LNp.46), | o2 -2 (1-22), o2=%(1-22)
> the results follows. oxy =% (1-33).

Note 11 (Some notes about the approximate mean of R)

e strong correlation ps, of the same sign as ry, = 1, /1, decreases the bias

e the bias is large if || is small
e the bias is of the order 1/n, denoted by “bias ~ O(n~1),” and its contribu-

tion to the MSE is of the order 1/n?, i.e., bias® ~ O(n"2)
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Theorem 17 (approximate variance of R?)

e Under s.r.s. with replacement,

(ray 92 + 0y = 2Tay Tay) -

2
1 12
U%EV&T(R)%—2<U2Y—2Y+O-2?_QUY? ):

1
W \TX gz YT RIRY o 2

e Under s.r.s. without replacement,

1 = 1l 1
0% =Var(R) ~ —(1 _ ) X 2 — (2,02 -I—U — 2Ty Oay)

I _ ry-x
n L az e with replacement,
1( n—1 1 X =l py = Hy
2 2 2 2 2 2 _
= —|1- )x—r O, G, e D s ) - F=T Y=
n N -1 M%( e Y — ) oxy = St
4 O 4 PI‘OOf: From 5_meth0d, EX15 e without replacement,
Hx = l’"xa Hy = /‘gw
O N (LNp.45), and Theorem 15 (LNp.46), | o2 -2 (1-22), o2=%(1-22),
. , | the results follows. oxy =% (1- #2)

e strong correlation p,, of the same sign as r;, = p, /. decreases the variance

e the variance is large if |u,| is small (Note. small values of X in the ratio
R =Y /X cause R to fluctuate wildly)

e the variance is of the order 1/n, i.e., “Var ~ O(n_1)”

e the contributions of the Var and the bias® to the MSE (=Var+bias?) are of

the order 1/n and 1 /n , respectlvely = for samples of large n, the bias is
negligible compared to the standard error of the estimator

Definition 14 (an intuitive estimators of the standard error of R)

e Under s.r.s. with replacement, an estimator of the 02R = Var(R) is
= e Ao 9 — Y 4TVY

=1

T (L X . - n M:z:

The quantity sg ( = \/8%) is an estimated standard error of R.
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L 9 9 2 T 1
—3 (B85 + 8y = 2R say).  |od m = x — (12,02 + 02 — 214y 0ay)

e Under s.r.s. without replacement, an estimator of the 012% = Var(R) is
1 —1\/N-1 1
3%:—(1— o )( ) —2(R232—{—3 — 2R sgy)
_ X

n N -1 N
1 n 1
= o) g @y 2R

The quantity sg ( = \/s%> is an estimated standard error of R.

Theorem 18 (asymptotic sampling distribution of R)

For samples of large size n,

e truncating the Taylor series (in Thm 14, LNp.44) to the 1st order provides a

good approximation, since the deviations X, — Mz and & — py are likely to
be small (by LLN) |
e to this order of approximation, R~ ~% — ~2(X,, — uz) + — (Y, — py) (from
e /J} _—

D D
Ex. 15, LNp.45), where X_Qﬂ(_ o2 ) and Y, = N(,uy,a— ) (by CLT).
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e an argument based on the CLT can be used to show that R is approximately

D
normally distributed, i.e., R~ N (,LL_R, 012%), when sample size n is large.

e Applications

R— rmy

> 8) ~ 2[1 = 9(9)]

— approximate 100(1 — )% confidence interval of ry,: R+ 2(a/2) sg

— probability of estimation error € [a, b], e.g., P(

Example 16 (estimate population ratio r,, )

e Suppose that 100 people who recently bought houses are surveyed, and

y: mortgage payment T: gross income

are observed. The 1, = 7,/7, is the percentage of the total mortgage
amount to the total gross income of all people who recently bought houses.

Suppose that the population size IV is missing, but it is known that 100 << N.

Suppose that X = 3100, s, = 1200, Y = 868, Sy = 250, pgy = 0.85.

We have R = 868/3100 = 0.28.

Neglecting the finite population correction, the estimated standard error

of R is
R = 1073100

Note that sg is small because x and y are highly positively correlated,

(12002) + 2502 — 2(0.28)(0.85)(250)(1200) = 0.006.

Tzy > 0, and X is large.
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An approximate 95% confidence interval for ry,, is

0.28 +1.96 x 0.006 = 0.28 £ 0.012 = (0.268,0.292).
Again, neglecting the finite population correction, an estimated bias of R
using Thm 16 (LNp.48) is
11, 11
- X ?(Rsx — DSy = 10 X T
which is negligible relative to sg (=0.006). Note that the large p, (=0.85)

and the large value of X (=3100) cause the bias to be small.

[(0.28)(250?) — (0.85)(250)(1200)] = —0.00025,

» Ratios used for estimating population means (and totals)
e Suppose p; is known, e.g., the example of 393 hospitals in Ex.2 (LNp.4),

— y: number of discharges,

= I number of beds.

Suppose the average (or total) number of beds p, (or 7;) in the 393 hospi-

tals is known (before a sample has been taken).

e Q: how to take advantage of this information in the estimation of u,,?

e Select a random sample, and collect the data: (Xg,Yx), k=1,...,n. For

the parameter Py = P Tzy, an intuitive ratio estimator of f, is

é Pz R = Y ( X ) (<i> Y; Q: which estimator of p,, is better?).
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the case of s.r.s. without replacement. The case of s.r.s. with replacement
follows analogously.

Example 17 (Comparison of sample mean and ratio estimator, cont. Ex.2 in LNp.4)

e Consider the example of hospital discharges. For the
population of 393 (N) hospitals and 1 < i < N, let

— x;: number of beds in the ith hospital (known before sampling)

— y;: number of discharges in the ith hospital

814.6
e In this population, f — v
fiz = 274.8 (known), |
0y = 213.2 (known), LS
py = 814.6, o, = 589.7, Lt j ]h "

e To compare the preformance of Y and &, it was simulated (check Ex.3,

LNp.15) 500 samples of size 64 (n) from the population of hospitals.

e The histograms of this result are shown in Figure 7.6 of textbook.
— The histograms show that the ratio estimator & of puy is less variable
than the sample mean z

— The comparison shows the ratio estimator Y g is effective at reducing

variability = Y i is a more accurate estimator than Y .

—— = Ch7, p.54
e Q: Why is Y better than ¥ in this case? %000}
e An explanation. Check the scatterplot of 2500}
(x;,1;) for the 393 hospitals in the popula- 2000 -

tion (Figure 7.5 of textbook) and consider a
random sample (X, Y%), k=1,...,n.

1500

Discharges

1000 |

— the population correlation p;, = 0.91 is| 8146

(unknown)|500 |

high = a hospital with a large x; tends

to have a large Yi 0 - 200 200 600 500 1000
J— - : 2748 | %
— if X > u,, the sample over-estimates the (known)

number of beds i, and probably the number of discharges as well, i.e.,

probably Y > Ly

— for this sample, multiplying z by decreases Y to &, which

Ha
X

might be closer to u, than Y.

Theorem 19 (approximate mean, bias, and variance of the ratio estimator)
Since Y g = pz R, we have E(Yg) = pz E(R) and Var(Yg) = u_ﬁVar(R). Under

s.r.s. without replacement,

e the approximate bias of the ratio estimator E of puy is

1 n—1
E(YR) — pty = ta | B(R) — 1ay| ~ — (1 - ) X o (Tay0s = Poy0u0y)
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e The approximate variance of the ratio estimator & of pu, is

_ 1 n—1
02 =Var(Yg) = u_iVar(R) R~ - (1 — ) X (T§y02+05_2rxy Pzy0z0y) -

Proof: The results follows directly from the formulas for the approximate mean
and variance of R given in Thm. 16 (LNp.48) and Thm. 17 (LNp.49).

Q: When will the ratio estimator Y r be better than the

/47 ordinary estimator Y, ie, Var(Yg) < Var(Y)?

— - —
, ® The ordinary estimator Y has variance 027 =Var(Y)= —= <1 -~z ) :
= n
(Thm. 3, LNp.18) and
— 1 =L
= ~a— Var(Yg)—Var(Y) ~ - (1 =z ) X (riyag—erypxyamay).

_Yr N -1
e The ratio estimator 73 has a smaller variance than z if
f xy Op — 2TpyPry0z0y <0 & 7“2y g 2@@@
V

N =

( g—‘g) > 0, provided that 7z, > 0,

1( ry Iz ) _

T >2(_&w_)(&)

Pxy

B il Hy Oz _
<‘2‘<£)(?‘_y)—

where CV, = 0, /1, and CV,, = o,/ are the coefficients of variation.

( ‘g‘%) 0, provided that 74, < 0.

DNO|—

Definition 15 (estimated standard error of ratio estimator; C.I. based on ratio estimator)
e By Thm. 19 (LNp.55) and Def. 13 (LNp.42), the variance of Y g can be

estimated by 9 1 9 9

— Sy, = n(l_ﬁ) (R sy +s — 2R say),

The quantity SV & ( = 52? ) is an estimated standard error of Y p.
e R

e Since Y = pz R, by Thm. 18 (LNp.51), an approximate 100(1 — a)% con-
fidence interval for piy (= pa ray) is Y £ 2(a/2) S7

(cf. the C.I of py basedon Y: Y & z(a/2)sy in App. 2, LNp.33.
Q: which C.I. of u,, has a shorter width? under what condition?)

For a distribution /' with mean p # 0 and variance _0__2_ , its ‘ o
coefficient of variation is defined as C'V = o /u, which /y\ A
gives o as a proportion of p.

Note 14 (Some notes about coefficient of variation)

e In some cases, C'V is more meaningful in explaining
variation than o, e.g., communication systems.

e CV = o/p is sometimes called noise-to-signal ratio.

e The value of CV is free of unit.




Example 18 (Comparison of sample mean and ratio estimator, cont. Ex.17 in LNp.53)

e In the population of 393 hospitals,
Mz = 274.8, 04 = 213.2, py = 814.6, oy = 589.7, 14y = 2.96, pgzy = 0.91.
e For a sample of size n = 64,
— the standard error of the ratio estimator Y g is (by Thm.19, LNp.55)

1 63
- Ny — (1— — 2.962)(213.22 589.72 — 2(2.96)(0.91)(213.2)(589.7) = 30.0
o, \/64( 2 ) x Jese@nm + (2.96)(0.91)(213.2)(559.7) = 30.0

— the standard error of the ordinary estimator Y is (by Thm.3, LNp.18)

1 63
oy =4/ — (1 - —) X 589.7 = 67.5
Y\ 64 392

The comparison of oy to oy . 1s consistent with the substantial reduction
in variability shown in the graph of Ex.17 (LNp.53).
— the bias of the ratio estimator 73 is (by Thm.19, LNp.54)

_ 1 63
E(YR) — puy = I <1 — @) T ——[(2.96)(213.2%) — (0.91)(213.2)(589.7)] = 1.0,

which is a slight and negligible bias compared to the variation reduction.

e An alternative interpretation of a / 0— Neglecting finite population cor-

rection, an ordinary estimator Y, from a sample of size n; will have about

the same variance as a ratio estimator Y g, from a sample of size ny if E;f

Ch7. n.58
<:' (1/n1) x 589.72 ~ (1/ns) x [(2.96%)(213.2%) + 589.7% — 2(2.96)(0.91)(213.2)(589.7)]
Thus, na/n1 ~ (30.0/67.5)2 = 12/ /0% = 0.198, i.e., we can obtain same

n

precision from Y i using a sample about 80% smaller than the sample of Y .

Note that this comparison neglects the bias of Y g, justifiable in this case.
e This is a case in which a biased estimator performs

substantially better than an unbiased estimator.
e In this case, the biased estimator is better because

the bias is quite small and the reduction in variance is quite large.

Definition 17 (ratio estimator of population total T,)

Since Ty = E My = ﬂ PaTzy = Tz Ty, a0 intuitive ratio estimator of Ty 18

Tr=m(Y/X)=NY (4/X) = NYr.

Note 15 (Some notes about the ratio estimator of population total)
e Since E(Tg) = N E(YR) and Var(Tg) = N?Var(YR), the approximate

bias and variance e of Tg can be derived from Thm. 19 (LNp.54).

e The condition for Var(Tg) to be smaller than Var(L), where T = NY , is
same as that given in Note 13 (LNp.55).

e An estimated standard error of Ty is ST = E SV o and an approximate

100(1 — )% C.I. of 7, is Tg + 2(/2) s1,, (following from Def.15, LNp.56)

+ Reading: textbook, 7.4
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* Stratified random sampling

e Recall. In the discussion of ratio estimator, extra information is used to
adjust the sample mean of a biased sample and increase accuracy.

e Q: Is it possible to exclude some biased samples in s.r.s.”

Some notations for stratified random sampling

o Let Q ={1,2,..., N} be the population. population

o Let S, L = 1,..., L, be a subset of , and r_'l'__l__|
S1,...,Sz form a partition of €2, i.e., | @ | é | I
S;’s are disjoint and S; U---USg = Q. | : : I
e Each §; is called a stratum of €2, and the num- | @ | @ | @ I
ber of strata is L. I .| o I.
e Denote the number of members in S; by Ny | ® |. ) | (™) I
(subpopulation size), [ = 1,..., L. Then, — e e e = e o
N =N;y+No—+---+ Ny. a stratum:
— L 2 L a sub-population (subset)
o Let W; = N}/N, 1l =1,...,L, be the fraction of the N members in the
of the population in the [th stratum. population
o Let Ty, 1=1,... ,ﬂ, l=1,...,L, denote the the population is
value associated with the ¢th member in the partitioned
stratum S;. into L strata

Ch7, p.60

e Let Fy denote the population distribution of the whole population (2.

o Let Fp;, Il =1,...,L, denote the population distribution of the subpopula-

tion &
Q Sy =N
xi,s wﬁ;é,s 60 ?
: i
distinct distinct é?é
G| |
= !
l l 0 "4"
nj /N nj.1/N; |
! y
Fo £,

Definition 18 (Some population parameters that are often of interest for F{y and F;)

e For (2, population mean, total, variance, and standard deviation of Fp, de-

noted by u, 7, 0_2,

o, respectively, are defined as in Def. 3 (LNp.5).

e For each §;, subpopulation mean, total, variance, and standard deviation of

Fy,;, denoted by py, 7, 012, oy, respectively, are similarly defined as above.
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Theorem 20 (some relations between the parameters of population and subpopulation)

e The two sampling schemes are equivalent:

[a]. Perform an s.r.s. from 2 to get one observation X
[b]. (1) Randomly select a stratum Z, say Z = [, with probability propor-
tional to the stratum size INVj; (2) Perform an s.r.s from S; to get an X
e Thus, we have the distributions of X, Z, and X|Z as follows:
— X ~ Fy (from [a]) -
~ Ze{l,....L}and P(Z =
- X|Z=1~Fy,; (from [b].

1 L Ny 1 L L
(Recall. E(X)=Ez [EX|Z(X\Z)] )
L N, L L
o total: 7 =Npu= lel Zi:l il — Ny = =1 L
1 L N
. L2 = 2
e variance: g- = Ezlﬂ Zz_l ( il — ﬂ)_
1 L 2 1 L 2 L 2 L 2
:E_ l:1&ﬂ+ﬂzl:1&u o Zl:l ma_l+2121%(u)_

<Recall. Var(X) = Ez [Vcw“)qz(l’Z)} + Varg [EX|Z(£‘Z)} >
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Definition 19 (Stratified random sampling)

In a stratified random sampling, to obtain a sample of size n, a simple random
sampling (either with replacement or without replacement, but consistent in
all strata) is taken independently within each stratum S; to draw a subsample

of size n, [=1,...,L, where p —pn;+ny+---+ng.

Results from the strata are combined to estimate the population parameters.

Theorem 21 ( : how many different possible samples? how many s.r.s are excluded?)

e Under with replacement, the number of all possible stratified random sam-
ples of size n is

NIt X Ng? x -+« x NP < N™,

where N = number of all possible s.r.s. of size n with replacement.

e Under without replacement, the number of all possible stratified random

samples of size n is Ny Ny Ni N
()% () xx (01) < (3),
n1 no nr w

where (],’\{ ) = number of all possible s.r.s. of size n without replacement.

e Q: What is a good way of partitioning the population € into strata?

e Q: How to choose a good sampling schemne? = How to
allocate the sample size n to each stratum, i.e., how to determine ny,...,ng?
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Example 19 (Applications of stratified random sampling)

e In auditing financial transactions, the trnasactions may be grouped into
strata on the basis of their nominal values, e.g., high-value, medium-value,
and low-value strata.

e In human populations, geographical area often form natural strata.

Note 16 (Advantages of stratified random sampling)
e It provides information about each subpopulation S; in addition to the pop-

ulation €2 as a whole, e.g., in an industrial application,
— population = all items produced by a manufacturing process;

— subpopulations = items produced from different shifts or lots.

e It guarantees a prescribed number n; of observations from each §;.

e Stratified sample mean can be considerably more precise
than the mean of a simple random sample (shown in later slides), expecially

if the partition of the population into strata
— is homogeneous within each stratum, and

— has large variation between strata.

L L
(Recall. @ = lelwl 0_12 + lelm (e — E)Q )

Statistical modeling of data collected from a stratified random sampling.
(] %: (Xl»LXg,l? 500 ’Xﬂ,l)7 500 (Xl,L7X2,L> 500 ?Xn_L,L)>

Gél Eé&
where (Xl,b . 'aan,i)a Il =1,...,L, is the data collected from the s.r.s.

(either with or without replacement) taken within the lth stratum §;.

7

e distribution of data

— (X14,...,Xp,): since a s.r.s. is taken within each stratum,

the joint distribution of the data from the stratum §; is as
that given in LNp.11-12, with Fp replaced by Fg
— data from different strata are independent

Definition 20 (some intuitive estimators of the parameters of population and stratum)

e subpopulation §;: since a s.r.s. is taken within each stratum,

— 1
— mean u;: estimated by the subsample mean X = — %1 Xk
HICall fo L= p L= TR
— total 7;: estimated by subsample total 1; = N; YL
— variance o?: estimated by s = —— " (Xk,; — X;)? under with

1
replacement, and by (1 — E)i under without replacement
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e (whole) population : under a stratified random sample,

— mean u: estimated by the stratified sample mean

L 1
ENZZ— N X, = Z Wi X, N =1 (ny/Ny) (ZX’”>

since y = lelﬁﬂ.

(Note. X # % Zle Z—f:l Xp1 = ZlL:l ZL X in general,
n N,
they are equal only when -t = i, l=1,...,L. )
— total 7 (=N p): estimated by Ts = N X5
— FYI. An intuitive estimator of the population variance o can be devel-
oped, based on the relation between 0 and py’s, a (Thm 20, LNp.61),

2

by using the estimators X;’s and sl s (or (1 — —) %’s).

Theorem 22 (mean and variance of the stratified estimator of population mean)

e Under stratified random sampling, with or without replacement, £ (&) = [
e Under stratified random sampling,

_ L
— with replacement, Var (X ) = N W?(Z).

. g n; — 1
without replacemen M Zzzl—l n Ni—1

Proof: The expectation of the stratified estimator Xg is Gl 56

EXy) = E(3, X)) =3, WMEE) = Wim=p

Since the data from different strata are independent of one anther, the

subsample means X1, X2, ..., X, are independent random variables, and

Var(Xe) = Var(3, WiK)) = 30, WP Var(Ky)

Since s.r.s. is taken within each stratum, the results follows from Thm.2
(LNp.17) and Thm.3 (LNp.18) respectively for with and without replacement.

Note 17 (Some notes about the mean and variance of the stratified estimator of L)

e Under stratified random sampling, Xg is an unbiased estimator of j2

o If the sampling fractions (i.e., (n;//N;)’s) within all strata are small, then

with replacement =~ without replacement,

L o2 L o
o i - 2 ( i _ omy—1
Zl:1Wl <”l ) — lelwl ("l ) (1 Ni— )
Definition 22 (estimated standard error of the stratified estimator of population mean)

e Under stratified random sampling with replacement, since 312 is an unbiased

estimator of o7, the Var(Xs) can be estimated by

2
2=, W (=) (D)

and
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e Under stratified random sampling without replacement, since (1 — 7;1]—1-)512 is

an unbiased estimator of o7, the Var(Xs) can be estimated by

2
5]

% - ZLm )0 5) (- F )
= Zf:1ﬁ<i—i)(l~%) (‘QS_YS)

Since Ts = N X§, we have E(T5) = N E(Xs) and Var(Ts) = N?Var(Xs).

o F(Is) = Np=r1,ie., 15 is an unbiased estimator of 7

L 9 O'l2 . .
21—1 N; (n_z>’ if with replacement,

L 2 0'12 n;—1 . .
Zl_l N; (n_z> (1 — Nll_l), if without replacement,

o Var(Ts) =

Note. The Var(Ts) can be estimated by S%g = MS%S ( \/—_> ST, = MSYQ

Example 20 (stratified random sampling, cont. Ex.17 in LNp.53)

e Consider the population of 393 hospitals.

e Assume that the number of beds in each hospital is known, and 4 strata are
determined by the number of beds from small to large:

Ch7, p.68
Stratum NN W L4 o]
A 98 0.249 182.9 103.4
B 98 0.249 526.5 204.8
C 98 0.249 956.3 243.5
D 99 0.252 1591.2 419.2

e For a without-replacement stratified random sample of size n, suppose we
choose n; = ne = ng = ng = n/4. Neglecting the finite population correc-

tion, we have

2O, 4 4 268.4
9X%s =\ E : Wi o = '
ES) n_ =1 \/ﬁ

e For a without-replacement s.r.s. of size n, neglecting the finite population
correction, we have (see Ex.4, LNp.20) 589.7

o = .
e vn

e Note that the stratification has resulted in a tremendous gain in precision:

0% 0.455 x ox = a%_s/é = 0.207. The stratified estimator Xg based

on a total sample size of n/5 is as precise as X based on a s.r.s. of size n.

(cf. the reduction in variance due to stratification is comparable to that
achieved by using a ratio estimator given in Ex.18, LNp.58).

» Methods of allocation in stratified random sampling

e Q: Why and when can a stratification produce
a dramatic improvement in precision?




e In the following discussion of this topic, we consider Chi, p.69
the without-replacement case, but neglect the finite population correction.

Actually, this is equivalent to the with-replacement case.

Theorem 24 (optimal allocation of the sample size n in a stratified random sampling)
Neglecting the finite population correction, the subsample sizes ny,...,ng,

that minimize Var(&) subject to the constraint n; +no + --- +ny = n are

Wioy Wioy
I=N X —7F =nXx —/@ , 1=1,2,...,L,
- = i Wi — T
where o = ZZL/=1 Wyop is a weighted average of o1,...,07.

Proof. Introduce a Lagrange multiplier A, and minimize

—_— L L Wigs L
L(ny,--- g, ) = Var<Xs>+a(Zm' —”) - Zn—‘+é<2 w”) |
ny

l'=1 l'=1 l'=1

Setting the partial derivatives equal to zero

oL Wio? oL L
Q— nl—— nl2 —|—é, 1—17...7L, and a—le:lnl/—n_

Ch7, p.70

Note 18 (Some notes about the optimal allocation scheme)

e This theorem shows that those strata with large W o; should be sampled
heavily. This makes sense intuitively because

— W, is large = S; contains a large fraction of ) = sample more

— oy is large = z;;’s in §; are quite variable = a relatively large n; is re-
quired to obtain a good determination of yy

e This optimal allocation scheme depends on the within-stratum variances 0%,

e 0%, which generally is unknown before sampling.
e If a survey measures several attributes, it is usually impossible to find an
allocation optimal for all attributes.

Definition 23 (optimal stratified estimator)

e This optimal allocation scheme is called Neyman allocation.

e Denote the stratified estimator under this optimal allocation scheme by
X5, o-

Theorem 25 (variance of the optimal stratified estimator)
Neglecting the finite population correction, and substituting the optimal val-
ues of 7;’s in Thm. 24 (LNp.69) for the variance of the stratified estimator Xg
of u presented in Thm. 22 (LNp.65) gives us

Wioi 72

— I o? L 1 L 2
Var®eo) =3 W oy ) = s wiiyys ~ o~ 2\ 2amt™?)
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Definition 24 (Proportional allocation and its stratified estimator)

e Proportional allocation. A simple and popular alternative method of
allocation is to use the same sampling fraction in each stratum, i.e.,

ny N2 ny, (_n)
Y

Ny Ny, N N
which holds iff n; = n(Ni/N) =nW; for [ =1,--- , L.
e Denote the stratified estimator under the proportional allocation scheme by
YS,p-

(Note. Yg,o and YS,p are the estimator & under two different allocation

schemes (different n;’s, different possible samples (LNp.62), different joint
distribution of data (LNp.64)). They are not different estimators.)

Note 19 (Some notes about the proportional allocation)

e Compared to the optimal allocation schemes, the proportional allocation
neglects the difference in within-stratum variances o;’s.

o If 0y =09=---=01 = 7, proportional allocation = optimal allocation,

and Xs, and Xg, have same variance (accuracy).

e Under the proportional allocation,

Xep =2, W= () (5 X, Xer) = 5 o, S

which is the unweighted mean of the sampled data.
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Example 21 (optimal and proportional allocations, cont. Ex.20 in LNp.68)

Consider the population of 393 hospitals. The sampling fractions of the 4

strata are Sl A B @ D
optimal allocation [{0.106 | 0.210 0.250 |0.434 | < W, 0,/(3>_; Wioy)

proportional allocation |]0.249| 0.249 0.249 [0.252| < W,

Theorem 26 (variance of the stratified estimator under proportional allocation)

Ignoring the finite population correction, and substituting the proportional

allocation, n; = nWj, for the variance of the stratified estimator Xg of /4 pre-
sented in Thm. 22 (LNp.65) gives us

v~ () - 5 M - ()
Var(Fop) ~ 3, WE(IL) = 3, 0=~ (3 Wiot

Theorem 27 (variance difference between the optimal and proportional allocations)

Ignoring the finite population correction, from Thm.25 (LNp.70) and Thm.26,

L
_ o 1 _
Var(XS’p) Var i(zl 1Wl(7[> - — 0 = i;%(ﬂ - E)Z —_0
Note that
e If 6y =0y ="---=o0p, then Var(Xs,) = Var(Xs,)-

e The more variable these o;’s are, the better it is
to use (if feasible) the optimal allocation.




Example 22 (comparison of optimal and proportional allocations, cont. Ex.20, LNp.67)
e Consider the population of 393 hospitals and the 4 strata.

e Under the sampling fractions given in Ex.21 (LNp.72),

Var(Xsp) Wi(o; — )2
A Y (_2 L ioas
Var(Xs,) ol

e Under proportional allocation, the variance of the stratified estimator E of
p is about 20% larger than it is under the optimal allocation.

e Q: When can a stratified random sample based on proportional allocation
perform better than a simple random sample? Note that

— under proportional allocation, Yg,p and z, where z is the sample mean

of the data from a s.r.s., have the same functional form,

— a s.r.s. has more possible samples than a stratified random sample (check
Thm. 21, LNp.62).

e Recall.
— Under a s.r.s. without replacement, neglecting the finite population cor-
rection, we have Var(X) ~ 0/n (check Thm.3, LNp.18).

— From Thm.20 (LNp.61),
L L
=2 Wiot 2 Wil —
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Theorem 28 (variance difference between s.r.s. and proportional allocation)

Ignoring the finite population correction, from Thm.26 (LNp.71), we have

2
Var(X) - Var(Xap) » &= — (300 Wiot) = = [ Wil - w?] 2

Note 20 (Some notes about s.r.s., proportional allocation, and optimal allocation)

e Stratified random sampling with proportional allocation is better than s.r.s.,
which is a result of excluding some unwanted simple random samples.

e Comparing the equations for the variances under s.r.s.,
proportional allocation, and optimal allocation, we see that

Var(X)
> Var (Yg,g)

n _
= = _Z I/Vlal Z_lﬁﬂ e > Var(Xs,)

8 =

- Z v o 1Y 2

l = = +izl:1_W_z(9_z—_U_> + 2 Wil —p)
X S,0

YS’B —p Yg,g Y =7 XS,B

— | X — X&p : X, s,p much better than X if y;’s are quite variable

— YSJ, — Yg,g i YS,Q much better Yg,p if 0;’s are quite variable

e The gain from X — Yg,p is often greater than the gain from Yg,p — Yg,g.




e Q: Which one is a better way to form strata (i.e., to partition

the population)?

L L
Do Wiat Y Wil - p)?

+ Reading: textbook, 7.5
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¢ Further reading: textbook, 7.6 (systematic sampling, cluster sampling, practical difficult)




