

• Statistical modeling of
$$X_1, \ldots, X_n$$
 under s.r.s. with replacement
• marginal distribution of X_k :
• X_k can take values only on ζ_1, \ldots, ζ_m , and
• $P\left(\underline{X}_k = \zeta_p\right) = P\left(I_k \in \{i_k | x_{i_k} = \zeta_p\}\right) = n_j/N, j = 1, \ldots, m$.
• Because I_1, \ldots, I_n are independent, X_1, \ldots, X_n are independent.
• joint distribution of X_1, \ldots, X_n : X_1, \ldots, X_n are independent
and identically distributed (i.i.d.) random variables with the
distribution F_0 , denoted by X_1, \ldots, X_n independent replacement
• marginal distribution of X_k : $X_k \sim F_0$, $k = 1, \ldots, n$ (same marginal
distribution as in the with-replacement case)
• X_1, \ldots, X_n are not independent.
• joint distribution of X_k and X_b , $1 \leq k < l \leq n$:
 $P(X_k = \zeta_k, X_l = \zeta_l) = P(X_k = \zeta_p)P(X_l = \zeta_l | X_k = \zeta_s)$
= $P((I_k, I_l) \in \{(i_k, i_l) | x_{i_k} = \zeta_k, x_{i_k} \neq I_k\})$
= $P((I_k, I_l) \in \{(i_k, i_l) | x_{i_k} = \zeta_k, (i_k, s \neq l), \frac{N_N}{N_N + N_{N-1}} = \frac{N_N(N-1)}{N(N-1)}$, if $\zeta_k \neq \zeta_l$ (i.e., $s \neq l$).
• It distribution of X_1, \ldots, X_n is more complicated,
but its derivation follows the same rule.
• Estimation of population mean (and population total)
• population mean: mean μ of F_0 (unknown parameter)
• data: X_1, \ldots, X_n (random variables) with distribution related to F_0
• estimation of population mean: use (a function of) the data to estimate μ
• An estimate is an observed value (an observation, a realization) of $\hat{\theta}$
computed based on a specific sample.
• The distribution of $\hat{\theta}$ is called annyling distribution, denoted by $F_{\hat{\theta}}$.
• The standard error (st.e.) of an estimator $\hat{\theta}$
is the squared root of the variance of $\hat{\theta}$, i.e., $\sqrt{Var_{\hat{\theta}}(\hat{\theta})}$.

Theorem 2 (variance of sample mean, s.r.s. with replacement)
Under simple random sampling with replacement, we have

$$\frac{Var(\overline{X})}{Var(\overline{X})} = \frac{\sigma^2/n}{n},$$
and the standard error (st.e.) of \overline{X} , denoted by $\sigma_{\overline{X}}^*$, is σ/\sqrt{n} .
Proof: Under simple random sampling with replacement,
we have

$$\frac{X_1, \dots, X_n}{X_n} \xrightarrow{bidd}_{\sum} \frac{F_0}{P_0}.$$
Thus, $Cov(X_k, X_l) = 0$ for any $1 \le k \le l \le n$, and
 $Var(\overline{X}) = Var\left(\frac{1}{n}\sum_{k=1}^n X_k\right) = \frac{1}{n^2}\sum_{l=1}^n Var(X_k) = \frac{1}{n^2}(n\sigma^2) = \frac{\sigma^2}{n}.$
Note 5 (Some notes about the stee of sample mean, with replacement)
• $\sigma_{\overline{X}}^* = \sigma/\sqrt{n}$ (a measure of how spread out \overline{X} is)
measures the precision of the estimator \overline{X} .
• $\sigma_{\overline{X}}^*$ is inversely proportional to \sqrt{n} , i.e., in
order to double the accuracy, n must be quadrupled (the contribution
of each observation to the accuracy of \overline{X} decays with the increase of n)
(Here $\sigma(\overline{X}) = \frac{\sigma^2}{n} (1 - \frac{n-1}{N-1}),$
and the standard error of \overline{X} , denoted by $\sigma_{\overline{X}}$, is $(\sigma/\sqrt{n})\sqrt{1 - \frac{n-1}{N-1}}.$
Proof: First, for $1 \le k \le l \le n$,
 $Cov(X_k, X_l) = E(X_k X_l) - E(X_k)E(X_l)$
 $= (\sum_{t=1}^m \sum_{t=1}^m \zeta_{\infty} \xi_k P(X_k = \zeta_{\infty}, X_t = \zeta_k)) - \mu^2$
 $= \left[\sum_{t=1}^m \zeta_{\infty}^2 \left(\frac{n_k(n_k-1)}{N(N-1)}\right) + \sum_{t=1}^m \sum_{k\neq 0}^m \zeta_{\infty} \left(\frac{n_k n_k}{N(N-1)}\right) - \mu^2$
 $= \left[\frac{N}{N-1} \frac{E(X_k)E(X_l)}{1 - \frac{1}{N-1}} (\sigma^2 + \mu^2) - \mu^2 = \frac{-\sigma^2}{N-1}.$

Then,
$$\underline{Var}(\overline{X}) = \underline{Var}\left(\frac{1}{n}\sum_{k=1}^{n}X_{k}\right)$$

$$= \frac{1}{n^{2}}\sum_{k=1}^{n}\frac{Var(X_{k})}{2} + \frac{2}{n^{2}}\sum_{k=1}^{n-1}\sum_{k=1}^{n}\sum_{k=1}^{n}\frac{Cov(X_{k}, X_{l})}{N-1} = \frac{1}{n^{2}}\times(\underline{n} \ \underline{\sigma}^{2}) + \frac{2}{n^{2}}\times\frac{\underline{n}(-1)}{2}\times\frac{-\sigma^{2}}{N-1} = \frac{\sigma^{2}}{n}\left(1-\frac{n-1}{N-1}\right).$$
Note 6 (Some notes about the st.c. of sample mean, without replacement)
• The variance of \overline{X} in s.r.s. without perplacement differs from that in s.r.s. with replacement by the factor $(1-\frac{n-1}{N-1})$, which is called the finite population correction. (Note: $1-\frac{n-1}{N-1} \rightarrow 1$ when $N \rightarrow \infty$)
• n/N : sampling fraction $\left(\approx \frac{n-1}{N-1}\right)$ in most cases)
• $\sigma_{\overline{X}} \approx \sigma_{\overline{X}}^{*} = \sigma/\sqrt{n}$ if the sampling fraction.
• $\sigma_{\overline{X}} \downarrow$ as $n\uparrow$ and $\sigma_{\overline{X}} \uparrow$ as $\sigma\uparrow$, and $\sigma_{\overline{X}} \downarrow$ as $n\uparrow$ and $\sigma_{\overline{X}} \uparrow$ as $\sigma\uparrow$, and $\sigma_{\overline{X}} \downarrow$ as $n\uparrow$ and $\sigma_{\overline{X}} \uparrow$ as $\sigma\uparrow$, and $\sigma_{\overline{X}} \downarrow$ as $n\uparrow$ and $\sigma_{\overline{X}} \uparrow$ as $\sigma\uparrow$, and $\sigma_{\overline{X}} \downarrow$ as $n\uparrow$ and $\sigma_{\overline{X}} \uparrow$ as $\sigma\uparrow$, and $\sigma_{\overline{X}} \downarrow$ as $n\uparrow$ and $\sigma_{\overline{X}} \uparrow$ as $\sigma\uparrow$, and $\sigma_{\overline{X}} \downarrow$ as $n\uparrow$ and $\sigma_{\overline{X}} \uparrow$ as $\sigma\uparrow$, and $\sigma_{\overline{X}} \downarrow$ as $n\uparrow$ and $\sigma_{\overline{X}} \uparrow$ as $\sigma\uparrow$, and $\sigma_{\overline{X}} \downarrow$ as $\sigma_{\overline{X}} = \sqrt{n}\sqrt{1-\frac{n-1}{N-1}} \approx 100$, where finite population correction $1-\frac{31}{202} \approx 0.22$ makes little difference.
• Most of sample means differ from the population mean 814 by less than $2 \times \sigma_{\overline{X}} = 200$ (see graph (c) of Figure 7.2 in LNp.15).
• Theorem 4 (mean and variance of sample mean, $E(p) = p$.
• under s.r.s. with replacement, $Var(p) = \frac{p(1-p)}{n}$, and $n\hat{p} = \sum_{k=1}^{n} X_{k}$ follows binominal (n, p) distribution
• under s.r.s. without replacement, $Var(\hat{p}) = \frac{p(1-p)}{n}$, and $n\hat{p} = \sum_{k=1}^{n} X_{k}$ follows binominal (n, p) distribution

**Theorem 10 (unbiased estimates of early and estimates of sample mean, dichotomous
$$x_{1}(s)$$**
In the dichotomous cases, $\overline{X} = \hat{p}$ and $\sigma^{2} = p(1-p)$.
• Because
 $\hat{\sigma}^{2} = \frac{1}{n} \sum_{k=1}^{n} (X_{k} - \overline{X})^{2} = \frac{1}{n} \left(\sum_{k=1}^{n} X_{k}^{2} \right) - \overline{X}^{2} = \hat{p} - \hat{p}^{2} = \hat{p}(1-\hat{p})$,
we have,
 $\hat{x}^{2} = \left(\frac{n}{n-1} \right) \hat{\sigma}^{2} = \frac{n}{n-1} \hat{p}(1-\hat{p})$.
• Under s.r.s. with replacement, an unbiased estimator of $Var(\hat{p}) = \frac{p(1-p)}{n}$
is $S_{p}^{2} = \frac{s^{2}/n}{n} = [\hat{p}(1-\hat{p})]/n-1$.
• Under s.r.s. without replacement, an unbiased estimator of $Var(\hat{p}) = \frac{p(1-p)}{n}$
($1-\frac{n-1}{N-1}$) is $S_{p}^{2} = \frac{s^{2}}{n} \left(1-\frac{n}{N} \right) = \frac{\hat{p}(1-\hat{p})}{n-1} \left(1-\frac{n}{N} \right)$.
Theorem 11 (unbiased estimator of the variance of population total estimator)
An unbiased estimator of $Var(T) = N^{2}Var(X)$ is $s_{T}^{2} = N^{2} \frac{s_{X}^{2}}{s_{X}^{2}}$.
• The quantities $s_{\overline{X}} \left(= \sqrt{s_{X}^{2}} \right), s_{\overline{T}} \left(= \sqrt{s_{T}^{2}} \right)$, and $s_{\underline{p}} \left(= \sqrt{s_{p}^{2}} \right)$ are called estimated standard errors.
MHU STAT 3075 Z015 Lecture Notes
made by S-W. Cherg (N1R0, Tawan)
Example 6 (estimate population mean, cont. Ex.2 in LNp.4)
• An s.r.s. without replacement of size $n=50$ of the $N=393$ hospitals was taken.
• From this sample, $\overline{X} = 938.5$ (recall, $\mu = 814.6$), $s = \sqrt{s^{2}} = 614.53$
(recall, $\underline{\sigma} = 590$), and an estimate of $Var(\overline{X})$ is
 $s_{\overline{X}} = \frac{s^{2}}{n} \left(1-\frac{n}{N} \right) = \frac{614.53^{2}}{50} \left(1-\frac{50}{393} \right) = 6592$.
• The estimated standard error of \overline{X} is $\sigma_{\overline{X}} = \frac{5692}{70} \sqrt{1-\frac{499}{292}} - 78$)
which gives a rough idea of how accurate the value of \overline{X} (938.5) is. In this case, the magnitude of the error is of the order 80, as opposed to 8 or 800.
• The error of \overline{X} is $935.5 - 814.9 = 123.9$, which is about $1.5 \times s_{\overline{X}}$.
Example 7 (estimate population total, cont. Ex.2 in LNp.4)
• For the same sample in Ex.6, the estimate of the total number of discharges $\underline{\tau}$ in the population of hospitals is $\underline{T} = N \overline{X} = 393 \times 938.5 = 368,8$

Example 8	(estimate population propo	rtion dichotomous x 's co	ont Ex 5 in LNn 21)
 • $n = 0.654$	4: (true) proportion of	hospitals in the popula	tion that had fewer
 $\underline{\underline{p}} = 0.05^{-1}$	$\underbrace{1}_{\underline{0}} \underbrace{(\underline{u} \underline{u})}_{\underline{0}} \underbrace{p}_{\underline{0}} \underbrace{p}$	$\frac{1000}{(1-p)} = 0.2263$).	toton that had <u>lewer</u>
• For the $\frac{1000}{Var(\hat{p})}$ disc	$\frac{\text{same sample}}{\text{charges. The estimate of s}}$	Np.26), <u>26</u> of <u>50</u> hosp f \underline{p} is $\underline{\hat{p}} = \underline{26/50} = \underline{0.52}$	itals has fewer than , and an $estimate$ of
 	$\underline{s_{\hat{p}}^2} = \underline{\frac{\hat{p}(1-\hat{p})}{n-1}} \left(\underline{1-\hat{p}}\right)$	$\underline{-\frac{n}{N}} = \frac{(.52)(.48)}{49} \left(1\right)$	$-\underline{\frac{50}{393}} = \underline{0.0045}$
 • The estimate	<u>mated</u> <u>standard error</u> of	$\underline{\hat{p}}$ is $\underline{s_{\hat{p}}} = \underline{\sqrt{0.0045}} = \underline{0}.$	<u>067,</u>
$\left(\mathbf{cf.} \left(\underline{\mathrm{tru}} \right) \right)$	$(\underline{\mathbf{n}}) \underline{\mathbf{standard}} \operatorname{error} \operatorname{of} \hat{\underline{p}} $ is	$ \frac{\sigma_{\hat{p}}}{\sigma_{\hat{p}}} = \sqrt{\frac{(.654)(.346)}{50}} \sqrt{1} $	$\overline{-\underline{49}}_{\underline{392}} = \underline{0.064}$
which tel probably	lls us that the <u>error</u> of \hat{p} : <u>not so fortunate</u> as to l	is in the $2nd$ or $1st$ dec have an error in the $3rc$	imal place — we are d decimal place.
 • The true	error of \hat{p} is $\underline{0.52} - \underline{0.65}$	64 = -0.134, which is a	bout $\underline{-2} \times s_{\hat{p}}$.
• Note. E		in s.r.s., we can not or	${}$
of unkno respectiv	own population parametry vely), but also gauge t	ters (e.g., use $\overline{X}, \overline{T}, \hat{p}$ he likely size of the	to estimate $\underline{\mu, \tau, p}$, errors of the esti-
 mates, b	y estimating their stand	lard errors (e.g., $s_{\overline{X}}$, s_T	$(\overline{s_{\hat{p}}})$ using the data
$\overline{\text{in the}}$ sa	mple.	5 2018 Lecture Notes	
	made by SW. C	heng (NTHU, Taiwan)	Ch7 = 29
 Note 8 (A su	ummary of parameter estim	ation in s.r.s.)	Gin, p.20
 • A summ	nary table:		
 population parameter	$estimator^{(\dagger)}$	$\frac{\text{variance of}}{(t)}$	octimated variance(†)(*)
		estimator	
μ	$\overline{X} = \frac{1}{\underline{n}} \sum_{k=1}^{n} X_k$	(a) $\underline{\sigma_X^2} = \underline{\frac{\sigma^2}{n}}$ (b) $\underline{\sigma_X^2} = \underline{\frac{\sigma^2}{n}}$ $(\underline{1 - \frac{n-1}{N-1}})$	$(a) \frac{s_{\overline{X}}^2}{s_{\overline{X}}^2} = \frac{s^2}{\underline{n}} \\ (b) \frac{s_{\overline{X}}^2}{s_{\overline{X}}^2} = \frac{s^2}{\underline{n}} \left(1 - \frac{n}{N}\right)$
μ 	$\overline{X} = \frac{1}{\underline{n}} \sum_{\underline{k=1}}^{n} X_{k}$ $\hat{p} = \text{sample proportion}$	$\frac{estimator^{(1)(*)}}{(a) \frac{\sigma_X^2}{Z} = \frac{\sigma^2}{n}}{(b) \frac{\sigma_Z^2}{Z} = \frac{\sigma^2}{n}}{(1 - \frac{n-1}{N-1})}$ $(a) \frac{\sigma_{\hat{p}}^2}{\sigma_{\hat{p}}^2} = \frac{p(1-p)}{n}}{(b) \frac{\sigma_{\hat{p}}^2}{\sigma_{\hat{p}}^2} = \frac{p(1-p)}{n}}{(1 - \frac{n-1}{N-1})}$	$\frac{\text{estimated variance}}{(a) \frac{s_X^2}{s_X^2} = \frac{s^2}{n}} (b) \frac{s_X^2}{s_X^2} = \frac{s^2}{n} \left(1 - \frac{n}{N} \right)}{(a) \frac{s_{\hat{p}}^2}{s_{\hat{p}}^2} = \frac{\hat{p}(1-\hat{p})}{n-1}} (b) \frac{s_{\hat{p}}^2}{s_{\hat{p}}^2} = \frac{\hat{p}(1-\hat{p})}{n-1}} (1-\frac{n}{N})}{(b) \frac{s_{\hat{p}}^2}{s_{\hat{p}}^2}} = \frac{\hat{p}(1-\hat{p})}{n-1}} (1-\frac{n}{N})}$
$\begin{array}{c} \mu \\ \mu \\ \hline p \\ \hline \tau \end{array}$	$\overline{X} = \frac{1}{\underline{n}} \sum_{k=1}^{n} X_{k}$ $\hat{p} = \text{sample proportion}$ $\overline{T = \underline{N} \overline{X}}$	$\underbrace{\frac{\text{estimator}^{(1)(*)}}{(a) \underline{\sigma_X^2}} = \frac{\underline{\sigma^2}}{\underline{n}}}_{(b) \underline{\sigma_X^2}} = \frac{\underline{\sigma^2}}{\underline{n}} \left(\underline{1 - \underline{n-1}} \right)}{(a) \underline{\sigma_{\hat{p}}^2}} = \frac{\underline{p(1-p)}}{\underline{n}}}{(b) \underline{\sigma_{\hat{p}}^2}} = \frac{\underline{p(1-p)}}{\underline{n}}}{\underline{n}} \left(\underline{1 - \underline{n-1}} \right)}$ $\underbrace{\underline{\sigma_T^2}}_{\underline{T}} = \underline{N^2} \underline{\sigma_X^2}}$	$\underbrace{\begin{array}{c} \text{(a)} & \underline{s_X^2} = \underline{s_n^2} \\ \text{(b)} & \underline{s_X^2} = \underline{s_n^2} \\ \text{(b)} & \underline{s_X^2} = \underline{s_n^2} \\ \text{(c)} & \underline{s_p^2} = \underline{p(1-\hat{p})} \\ \underline{s_p^2} = \underline{p(1-\hat{p})$
$\begin{array}{c} \mu \\ \\ p \\ \\ \hline \tau \\ \\ \sigma^2 \end{array}$	$\overline{X} = \frac{1}{\underline{n}} \sum_{k=1}^{n} X_{k}$ $\hat{p} = \text{sample proportion}$ $\overline{T = \underline{N} \overline{X}}$ $(a) \underline{s^{2}} = \frac{1}{\underline{n-1}} \sum_{k=1}^{n} (X_{k} - \overline{X})^{2}$ $(b) \left(\underline{1 - \frac{1}{N}}\right) \underline{s^{2}}$	$\frac{\underline{\text{estimator}}^{(1)(*)}}{(a) \underline{\sigma_X^2} = \underline{\frac{\sigma^2}{n}}}{(b) \underline{\sigma_X^2} = \underline{\frac{\sigma^2}{n}}\left(1 - \underline{\frac{n-1}{N-1}}\right)}$ $(a) \underline{\sigma_{\hat{p}}^2} = \underline{\frac{p(1-p)}{n}}{(b) \underline{\sigma_{\hat{p}}^2}} = \underline{\frac{p(1-p)}{n}}\left(1 - \underline{\frac{n-1}{N-1}}\right)}{\underline{\sigma_T^2} = \underline{N^2} \underline{\sigma_X^2}}$	$\frac{\text{estimated variance}}{(a) \underbrace{s_{\overline{X}}^2 = \frac{s^2}{n}}{(b) \underbrace{s_{\overline{X}}^2 = \frac{s^2}{n}}{(1 - \frac{n}{N})}}$ $(a) \underbrace{s_{\hat{p}}^2 = \frac{\hat{p}(1 - \hat{p})}{n - 1}}_{(b) \underbrace{s_{\hat{p}}^2 = \frac{\hat{p}(1 - \hat{p})}{n - 1}}_{(1 - \hat{p})} (1 - \frac{n}{N})}$ $\underline{s_{T}^2 = \underline{N^2} \underbrace{s_{\overline{X}}^2}_{\overline{X}}}$
μ p τ σ^{2} • (†): (a) a (*): the p square received as the second seco	$\overline{X} = \frac{1}{\underline{n}} \sum_{k=1}^{n} X_{k}$ $\widehat{p} = \text{sample proportion}$ $\overline{T = \underline{N} \overline{X}}$ (a) $\underline{s^{2}} = \frac{1}{\underline{n-1}} \sum_{k=1}^{n} (X_{k} - \overline{X})^{2}$ (b) $\left(\underline{1-\frac{1}{N}}\right) \underline{s^{2}}$ and (b) obtained under grave root of entries in the 4th	$\frac{\underline{\text{estimator}}^{(1)(*)}}{(a) \underline{\sigma_{\overline{X}}^2} = \frac{\underline{\sigma^2}}{\underline{n}}}{(b) \underline{\sigma_{\overline{X}}^2} = \frac{\underline{\sigma^2}}{\underline{n}}} \left(1 - \frac{n-1}{N-1}\right)}{(a) \underline{\sigma_{\widehat{p}}^2} = \frac{\underline{p(1-p)}}{\underline{n}}}{(b) \underline{\sigma_{\widehat{p}}^2} = \frac{\underline{p(1-p)}}{\underline{n}}} \left(1 - \frac{n-1}{N-1}\right)}{\underline{\sigma_T^2} = \underline{N^2} \underline{\sigma_{\overline{X}}^2}}$ $\text{with and without replant the and without replant the and without replant the and column are structure to the structure to $	$\frac{\text{estimated variance}}{(a) \frac{s_{\overline{X}}^2}{S_{\overline{X}}^2} = \frac{s^2}{n}}{(b) \frac{s_{\overline{X}}^2}{S_{\overline{X}}^2}} = \frac{\frac{s^2}{n}}{n} \left(1 - \frac{n}{N}\right)}{(a) \frac{s_{\hat{p}}^2}{S_{\hat{p}}^2} = \frac{\hat{p}(1-\hat{p})}{n-1}}{(b) \frac{s_{\hat{p}}^2}{S_{\overline{P}}^2} = \frac{\hat{p}(1-\hat{p})}{n-1}} \left(1 - \frac{n}{N}\right)}{\frac{s_T^2}{S_{\overline{X}}^2}}$ decement, repectively. andard errors, the standard errors.
μ p τ σ^{2} • (†): (a) a (*): the square received as the second	$\overline{X} = \frac{1}{\underline{n}} \sum_{k=1}^{n} X_{k}$ $\widehat{p} = \text{sample proportion}$ $\overline{T = \underline{N} \overline{X}}$ $(a) \underline{s^{2}} = \frac{1}{\underline{n-1}} \sum_{k=1}^{n} (X_{k} - \overline{X})^{2}$ $(b) \left(\underline{1-\frac{1}{N}}\right) \underline{s^{2}}$ $(b) \left(\underline{1-\frac{1}{N}}\right) \underline{s^{2}}$ $(b) (b) (b$	$\frac{\frac{\text{estimator}^{(1)(*)}}{(a) \frac{\sigma_{\overline{X}}^2}{\sigma_{\overline{X}}^2} = \frac{\sigma^2}{n}}{(b) \frac{\sigma_{\overline{X}}^2}{\sigma_{\overline{X}}^2} = \frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1}\right)}{(a) \frac{\sigma_{\widehat{p}}^2}{\sigma_{\widehat{p}}^2} = \frac{p(1-p)}{n} \left(1 - \frac{n-1}{N-1}\right)}{(b) \frac{\sigma_{\widehat{p}}^2}{\sigma_{\widehat{p}}^2} = \frac{p(1-p)}{n} \left(1 - \frac{n-1}{N-1}\right)}{\sigma_{\overline{X}}^2}}$ $\text{with and without replation of the set of the se$	estimated variance with r (a) $\underline{s_{\overline{X}}^2} = \underline{s_{\overline{n}}^2}$ (b) $\underline{s_{\overline{X}}^2} = \underline{s_{\overline{n}}^2}$ (c) $\underline{s_{\overline{p}}^2} = \frac{\hat{p}(1-\hat{p})}{n-1}$ (d) $\underline{s_{\overline{p}}^2} = \frac{\hat{p}(1-\hat{p})}{n-1}$ (eters) (eters
μ p τ σ^{2} • (†): (a) a a a a a a a a a a a a a a a a a a	$\overline{X} = \frac{1}{\underline{n}} \sum_{k=1}^{n} X_{k}$ $\widehat{p} = \text{sample proportion}$ $\overline{T = \underline{N} \overline{X}}$ (a) $\underline{s^{2}} = \frac{1}{\underline{n-1}} \sum_{k=1}^{n} (X_{k} - \overline{X})^{2}$ (b) $\left(\underline{1-\frac{1}{N}}\right) \underline{s^{2}}$ (c) $\left(\underline{1-\frac{1}{N}}\right) \underline{s^{2}}$ (c) $\underline{square root}$ of entries in the 4th $\overline{square root} \text{ of entries in the 4th}$	$\underbrace{\frac{\text{estimator}^{(1)(*)}}{(a) \frac{\sigma_X^2}{Z} = \frac{\sigma^2}{n}}{(b) \frac{\sigma_Z^2}{Z} = \frac{\sigma^2}{n}}{(1 - \frac{n-1}{N-1})}$ $\underbrace{(a) \frac{\sigma_{\hat{p}}^2}{p} = \frac{p(1-p)}{n}}{(b) \frac{\sigma_{\hat{p}}^2}{\sigma_{\hat{p}}^2} = \frac{p(1-p)}{n}}{(1 - \frac{n-1}{N-1})}$ $\underbrace{\sigma_T^2 = N^2 \sigma_X^2}{\sigma_X^2}$ $\text{with and without replant the and without replant the and without replant the and mathematical set of the and the and$	$\underbrace{\begin{array}{c} \underbrace{\text{estimated variance}}_{\text{(a)}} \underbrace{s_{\overline{X}}^{2} = \frac{s^{2}}{n}}_{(b)} \underbrace{s_{\overline{X}}^{2} = \frac{s^{2}}{n}}_{(c)} \underbrace{\left(1 - \frac{n}{N}\right)}_{(c)} \\ \underbrace{\begin{array}{c} (a) & \underline{s_{\hat{p}}^{2}} = \frac{\hat{p}(1-\hat{p})}{n-1}}_{(c)} \underbrace{\left(1 - \frac{n}{N}\right)}_{(c)} \\ \underbrace{s_{\hat{p}}^{2} = \frac{\hat{p}(1-\hat{p})}{n-1}}_{(c)} \underbrace{\left(1 - \frac{n}{N}\right)}_{\underline{s_{T}^{2}}} \\ \underline{s_{T}^{2}} = \underline{N^{2}} \underbrace{s_{\overline{X}}^{2}}_{\underline{s_{T}^{2}}} \\ \underbrace{s_{T}^{2} = \underline{N^{2}} \underbrace{s_{\overline{X}}^{2}}_{\underline{s_{T}^{2}}} \\ \underbrace{s_{T}^{2} = \underline{N^{2}} \underbrace{s_{\overline{X}}^{2}}_{\underline{s_{T}^{2}}} \\ \underline{s_{T}^{2}} = \underline{s_{T}^{2}} \underbrace{s_{T}^{2}}_{\underline{s_{T}^{2}}} \\ \underbrace{s_{T}^{2} = \underline{s_{T}^{2}} \underbrace{s_{T}^{2}}_{\underline{s_{T}^{2}}} \\ \underbrace{s_{T}^{2} = \underline{s_{T}^{2}} \underbrace{s_{T}^{2}}_{\underline{s_{T}^{2}}} \\ \underline{s_{T}^{2}} = \underbrace{s_{T}^{2}}_{\underline{s_{T}^{2}}} \\ \underline{s_{T}^{2}} = \underbrace{s_{T}^{2}}_{\underline{s_{T}^{2}}} \\ \underbrace{s_{T}^{2} = \underbrace{s_{T}^{2}}_{\underline{s_{T}^{2}}} \\ \underline{s_{T}^{2}} \\ \underline{s_{T}^{2}} = \underbrace{s_{T}^{2}}_{\underline{s_{T}^{2}}} \\ \underline{s_{T}^{2}} \\ $
μ p τ σ^{2} • (†): (a) a • (*): the square root fixed	$\overline{X} = \frac{1}{\underline{n}} \sum_{k=1}^{n} X_{k}$ $\widehat{p} = \text{sample proportion}$ $\overline{T = \underline{N} \overline{X}}$ (a) $\underline{s^{2}} = \frac{1}{\underline{n-1}} \sum_{k=1}^{n} (X_{k} - \overline{X})^{2}$ (b) $\left(\underline{1-\frac{1}{N}}\right) \underline{s^{2}}$ (c) $\left(\underline{1-\frac{1}{N}}\right) \underline{s^{2}}$ (c) $(\underline{1-\frac{1}{N}}) \underline{s^{2}}$ (c) $(\underline{1-\frac{1}{N}) \underline{s^{2}} \underline{s^{2}}$ (c) $(\underline{1-\frac{1}{N}) \underline{s^{2}} \underline$	$\underbrace{\frac{\text{estimator}}{(a)} \frac{\sigma_{\overline{X}}^2}{\sigma_{\overline{X}}^2} = \frac{\sigma^2}{n}}{(b)} \frac{\sigma_{\overline{X}}^2}{\sigma_{\overline{X}}^2} = \frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1}\right)}{(a)} \frac{\sigma_{\widehat{p}}^2}{\sigma_{\widehat{p}}^2} = \frac{p(1-p)}{n} \left(1 - \frac{n-1}{N-1}\right)}{\sigma_{\overline{T}}^2} = N^2 \frac{\sigma_{\overline{X}}^2}{\sigma_{\overline{X}}^2}}$ $\text{with and without replation of the and without replation of the and without replation of the and $	$\underbrace{\begin{array}{c} \text{estimated variance}}_{\text{(a)}} \underbrace{s_{\overline{X}}^{2} = \frac{s^{2}}{n}}_{(b)} \underbrace{s_{\overline{X}}^{2} = \frac{s^{2}}{n}}_{(c)} \underbrace{\left(1 - \frac{n}{N}\right)}_{(c)} \\ (a) \underbrace{s_{\hat{p}}^{2} = \frac{\hat{p}\left(1 - \hat{p}\right)}{n - 1}}_{(c) \frac{n}{N}} \underbrace{\left(1 - \frac{n}{N}\right)}_{\frac{s^{2}}{T}} = \underbrace{N^{2} \ s_{\overline{X}}^{2}}_{\overline{X}} \\ (b) \underbrace{s_{\hat{p}}^{2} = N^{2} \ s_{\overline{X}}^{2}}_{\overline{X}} \\ \hline \underbrace{s_{T}^{2} = N^{2} \ s_{\overline{X}}^{2}}_{\overline{X}} \\ \hline \underbrace{standard \ errors, \ the}_{\frac{1}{2} \text{ standard \ errors}, \ the}_{\frac{1}{2} \text{ standard \ errors}} \\ \underbrace{standard \ errors}_{\alpha^{2}, \ \dots} \\ \underbrace{unknown}_{\alpha^{2} \text{ estimate}} \\ \hline \underbrace{standard \ errors}_{\alpha^{2}, \ \dots} \\ \hline \underbrace{standard \ errors}_{\alpha^{2} \text{ standard}} \\ \hline \underbrace{standard \ errors}_{\alpha^{2}, \ \dots} \\ \hline standard $
μ p τ σ^{2} • (†): (a) a (*): the square received fixed fixed andom	$\overline{X} = \frac{1}{\underline{n}} \sum_{k=1}^{n} X_{k}$ $\widehat{p} = \text{sample proportion}$ $\overline{T = \underline{N} \overline{X}}$ $(a) \underline{s^{2}} = \frac{1}{\underline{n-1}} \sum_{k=1}^{n} (X_{k} - \overline{X})^{2}$ $(b) \left(\underline{1-\frac{1}{N}}\right) \underline{s^{2}}$ $(b) \left(\underline{1-\frac{1}{N}}\right) \underline{s^{2}}$ $(b) obtained under \underline{r}$ $square root of entries in the 4th$ $\overline{population} \qquad census$ $x_{1}, x_{2}, \dots, x_{N}$ $\overline{population} \qquad f$ $x_{1}, x_{2}, \dots, x_{N}$	$\underbrace{\frac{\text{estimator}}{(a)} \frac{\sigma_{\overline{X}}^2}{\sigma_{\overline{X}}^2} = \frac{\sigma^2}{n}}{(b)} \frac{\sigma_{\overline{X}}^2}{\sigma_{\overline{X}}^2} = \frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1}\right)}{(a)} \frac{\sigma_{\overline{p}}^2}{\sigma_{\overline{p}}^2} = \frac{p(1-p)}{n} \left(1 - \frac{n-1}{N-1}\right)}{(b)} \frac{\sigma_{\overline{p}}^2}{\sigma_{\overline{p}}^2} = \frac{N^2}{n} \frac{\sigma_{\overline{X}}^2}{\sigma_{\overline{X}}^2}}{\sigma_{\overline{X}}^2}$ $\text{with and without replation of the second $	$\underbrace{\begin{array}{c} \text{estimated variance}}_{\text{(a)}} \underbrace{s_{\overline{X}}^{2} = \frac{s^{2}}{n}}_{(b)} \underbrace{s_{\overline{X}}^{2} = \frac{s^{2}}{n}}_{(1 - \frac{n}{N})} \\ (b) \underbrace{s_{\overline{p}}^{2} = \frac{\hat{p}(1 - \hat{p})}{n - 1}}_{(b) \underbrace{s_{\overline{p}}^{2} = \frac{\hat{p}(1 - \hat{p})}{n - 1}}_{(1 - \frac{n}{N})} \\ \underbrace{s_{\overline{T}}^{2} = N^{2} \underbrace{s_{\overline{X}}^{2}}_{\overline{X}}} \\ \hline \\ \text{ccement, repectively.} \\ \hline \\ \text{andard errors, the} \\ \hline \\ \text{standard errors.} \\ \hline \\ \text{estimate} \\ \hline \\ \hline \\ \\ \begin{array}{c} \text{s}_{1}^{2} \\ \text{s}_{2}^{2} \\ \text{s}_{$

• Normal approximation to the sampling distribution of sample mean
• Q: without knowledge of the population distribution
$$F_0$$
,
how to further characterize the sampling distribution $\overline{F_X}$
of \overline{X} in addition to its mean and variance?
• Advantages if we (almostly) know the shape of F_X ?
- accurately evaluate $P(\text{error} \in (a, b)) \approx 2$
(Note. error = $\overline{X} - \mu$)
- construct confidence interval for μ
Theorem 12 (central limit theorem, CLT, for i.i.d. case)
Suppose that X_1, X_2, \dots, X_n are i.i.d. r.v.'s and have common mean μ and variance $0 < \sigma^2 < \infty$. For the sample mean $\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$, we have $\overline{E(X_n)} = \mu$,
 $\sigma_{X_n}^2 = Var(\overline{X_n}) = \sigma^2/n$, and for any fixed value z .
 $P\left(\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} = \frac{\overline{X}_n - \mu}{\sigma_{X_n}} \le \underline{z}\right) \rightarrow \Phi(\underline{z})$
as $n \to \infty$, where Φ is the cumulative distribution function (cdf)
of the standard normal distribution $\overline{N(0, 1)}$. That is, $\overline{X}_n \stackrel{D}{=} N(\mu, \sigma^2/n)$.
(cf.) Law of large number (LLN) guarantees that $\overline{X}_n \stackrel{D}{=} \mu$ and $\underline{s^2} \stackrel{P}{=} \sigma^2$
as $n \to \infty$, i.e., \overline{X}_n and s^2 are consistent estimators of μ and σ^2 , respectively.
MEHORSHOREMENTE tectors Notes
mode by S W Cheng (NTHU Taiven)
Theorem 13 (central limit theorem, CLT, for s.r.s. without replacement)
In s.r.s. without replacement, $(1 X_1, X_2, \dots, X_n$ are not independent, and
(2) there is no reason to have $n \to \infty$ while N remains fixed. But other CLTs
are still appropriate, e.g.,
If n is large, but still small relative to N ,
then \overline{X}_n is approximately normally dis-
tributed with mean μ and variance $\sigma_{\overline{X}_n}$ (check graphs in Ex.3, LNp.15).
Application 1 (CLT application on estimation error of population mean)
A use of CLT for estimation error $\overline{X}_n - \mu$ is
 $\mathcal{P}\left(|\overline{X}_n - \mu| < \hat{d}\right) = \mathcal{P}\left(-\hat{d} < \overline{X}_n - \mu \leq \hat{d}\right) = \mathcal{P}\left(-\frac{\delta}{\sigma_{\overline{X}_n}}\right) - 1$.
• Note. For the edf Φ of $N(0, 1), \Phi(-\underline{z}) = 1 - \Phi(\underline{z})$.
Example 9 (probability of estimation error more than δ , cont. Ex.2 in LNp.4)
• Consider the populatio

om, 5.00
 Application 2 (<u>CLT application</u> on the <u>construction</u> of <u>confidence interval</u> for $\underline{\mu}$)
 • For $\underline{0 \leq \alpha \leq 1}$, let $z(\underline{\alpha})$ be the $(1 - \underline{\alpha})$ -quantile of $N(0, 1)$, i.e., $\underline{z(\alpha)}$ is the
 number such that the area under the pdf of $N(0,1)$ to the right of $z(\alpha)$ is α
 and $\Phi(\underline{z(\alpha)}) = \underline{1-\alpha}$. Notice that $\underline{z(1-\alpha)} = \underline{-z(\alpha)}$.
 • For $\overline{Z} \sim N(0, 1) = P(-z(\alpha/2) \le \overline{Z} \le z(\alpha/2)) = \Phi(z(\alpha/2)) = $
 $ \underbrace{\underline{z} \mapsto \overline{W(0,1)}, \underline{I} \left(\underline{-z(\alpha/2)} \leq \underline{z} \leq \underline{z(\alpha/2)} \right) = \underline{\Psi}(\underline{z(\alpha/2)})^{-1} }_{\underline{z} = \underline{z(\alpha/2)}} $
 $\underline{\Phi}(\underline{-z(\alpha/2)}) = \underline{2 \times \Phi(z(\alpha/2))} - \underline{1} = \underline{1-\alpha}.$
• Bossuss $\overline{X} \xrightarrow{D} N(\mu, \sigma^2)$ by CLT, we have
• Because $\underline{X_n} \approx \frac{\overline{N(\underline{\mu}, \underline{\delta_{\overline{X_n}}})}}{\underline{M(\underline{\mu}, \underline{\delta_{\overline{X_n}}})}}$ by <u>CL1</u> , we have
$D\left(\left(\left(\left(2\right) \right) \right) = \overline{X}_{n} - \mu \right) = 1$
$P\left(\frac{-z(\alpha/2)}{\sigma_{\overline{X}_{\alpha}}} \le \frac{z(\alpha/2)}{\sigma_{\overline{X}_{\alpha}}}\right) \stackrel{\approx}{=} \frac{1-\alpha}{\sigma_{\overline{X}_{\alpha}}}$
 $\Leftrightarrow P\left(\underline{X_n - z(\alpha/2)} \underline{\sigma_{\overline{X_n}}} \le \underline{\mu} \le \underline{X_n + z(\alpha/2)} \underline{\sigma_{\overline{X_n}}}\right) \approx 1 - \alpha$
 • The probability that μ lies in the random interval formed by data:
 $\overline{\overline{X}_n} \pm z(\alpha/2) \sigma_{\overline{X}}$
 is $\approx 1 - \alpha$, i.e., it is a $100(1 - \alpha)\%$ (asymptotic) confidence interval of μ .
 • Becall A function $O(\mathbf{X}, \theta)$ of the data \mathbf{X} and a parameter say θ of interest
 is called a pivotal quantity for θ if the distribution of $O(\mathbf{X}, \theta)$ is irrelevant
 to <i>all</i> parameters.
NTHU STAT 3875, 2018, Lecture Notes
made by S-W. Cheng (NTHU Taiwan)
Ch7, p.34
 Note 9 (Some notes about confidence interval)
Note 9 (Some notes about confidence interval) • In a sample survey, $\sigma_{\overline{X}_n}$ is unknown. In the case, $s_{\overline{X}_n}$ (or \underline{s}^2 , respectively)
• In a <u>sample survey</u> , $\sigma_{\overline{X}_n}$ is <u>unknown</u> . In the case, $\underline{s}_{\overline{X}_n}$ (or \underline{s}^2 , respectively) can be substituted for $\sigma_{\overline{X}}$ (or σ^2 , respectively) if the sample size <i>n</i> is large
• In a <u>sample survey</u> , $\sigma_{\overline{X}_n}$ is <u>unknown</u> . In the case, $\underline{s}_{\overline{X}_n}$ (or \underline{s}^2 , respectively) can be <u>substituted</u> for $\sigma_{\overline{X}_n}$ (or $\underline{\sigma}^2$, respectively) if the sample size <u>n is large</u> enough, say $n \ge 25$ or $\overline{30}$ by a rule of thumb.
 Note 9 (Some notes about confidence interval) In a sample survey, σ_{X_n} is unknown. In the case, s_{X_n} (or s², respectively) can be substituted for σ_{X_n} (or <u>σ²</u>, respectively) if the sample size <u>n is large</u> enough, say <u>n ≥ 25 or 30</u> by a <u>rule of thumb</u>. Recall: duality between confidence interval and hypothesis testing.
 Note 9 (Some notes about confidence interval) In a sample survey, σ_{X_n} is unknown. In the case, s_{X_n} (or s², respectively) can be substituted for σ_{X_n} (or <u>σ²</u>, respectively) if the sample size <u>n is large</u> enough, say <u>n ≥ 25 or 30</u> by a <u>rule of thumb</u>. Recall: duality between confidence interval and <u>hypothesis testing</u>. - Suppose for every parameter value θ₀, there is a level-α test for
 Note 9 (Some notes about confidence interval) In a sample survey, σ_{X_n} is unknown. In the case, s_{X_n} (or s², respectively) can be substituted for σ_{X_n} (or <u>σ²</u>, respectively) if the sample size <u>n is large</u> enough, say <u>n ≥ 25 or 30</u> by a rule of thumb. Recall: duality between confidence interval and hypothesis testing. Suppose for every parameter value θ₀, there is a level-<u>α</u> test for H₀: θ = θ₀, vs. H_A: θ ≠ θ₀.
Note 9 (Some notes about confidence interval) • In a sample survey, $\sigma_{\overline{X}_n}$ is unknown. In the case, $s_{\overline{X}_n}$ (or \underline{s}^2 , respectively) can be substituted for $\sigma_{\overline{X}_n}$ (or $\underline{\sigma}^2$, respectively) if the sample size <u>n is large</u> enough, say $\underline{n \ge 25}$ or $\overline{30}$ by a rule of thumb. • Recall : duality between confidence interval and hypothesis testing. - Suppose for every parameter value $\underline{\theta}_0$, there is a level- $\underline{\alpha}$ test for $\underline{H}_0: \underline{\theta} = \underline{\theta}_0$ vs. $\underline{H}_A: \underline{\theta \ne \theta}_0$. Denote the acceptance region of the
Note 9 (Some notes about confidence interval) • In a sample survey, $\sigma_{\overline{X}_n}$ is unknown. In the case, $s_{\overline{X}_n}$ (or \underline{s}^2 , respectively) can be substituted for $\sigma_{\overline{X}_n}$ (or $\underline{\sigma}^2$, respectively) if the sample size \underline{n} is large enough, say $\underline{n \ge 25}$ or $\underline{30}$ by a rule of thumb. • Recall: duality between confidence interval and hypothesis testing. - Suppose for every parameter value $\underline{\theta}_0$, there is a level- $\underline{\alpha}$ test for $\underline{H}_0: \underline{\theta} = \underline{\theta}_0$ vs. $\underline{H}_A: \underline{\theta} \neq \underline{\theta}_0$. Denote the acceptance region of the test by $AB(\overline{\theta}_0)$. Then, the set
Note 9 (Some notes about confidence interval) • In a sample survey, $\sigma_{\overline{X}_n}$ is unknown. In the case, $s_{\overline{X}_n}$ (or \underline{s}^2 , respectively) can be substituted for $\sigma_{\overline{X}_n}$ (or $\underline{\sigma}^2$, respectively) if the sample size <u>n</u> is large enough, say $\underline{n \ge 25}$ or $\underline{30}$ by a rule of thumb. • Recall : duality between confidence interval and hypothesis testing. - Suppose for every parameter value $\underline{\theta}_0$, there is a level- $\underline{\alpha}$ test for $\underline{H_0}: \underline{\theta} = \underline{\theta}_0$ vs. $\underline{H_A}: \underline{\theta} \neq \underline{\theta}_0$. Denote the acceptance region of the test by $\underline{AR(\underline{\theta}_0)}$. Then, the set $C(\mathbf{X}) = (\underline{\theta} \mathbf{X} \in AB(\underline{\theta}))$
Note 9 (Some notes about confidence interval) • In a sample survey, $\sigma_{\overline{X}_n}$ is unknown. In the case, $s_{\overline{X}_n}$ (or \underline{s}^2 , respectively) can be substituted for $\sigma_{\overline{X}_n}$ (or $\underline{\sigma}^2$, respectively) if the sample size \underline{n} is large enough, say $\underline{n} \ge 25$ or $\underline{30}$ by a rule of thumb. • Recall : duality between confidence interval and hypothesis testing. - Suppose for every parameter value $\underline{\theta}_0$, there is a level- $\underline{\alpha}$ test for $\underline{H}_0: \underline{\theta} = \underline{\theta}_0$ vs. $\underline{H}_A: \underline{\theta} \neq \underline{\theta}_0$. Denote the acceptance region of the test by $\underline{AR(\underline{\theta}_0)}$. Then, the set $\underline{C(\underline{X})} = \{\underline{\theta} \mid \underline{X} \in \underline{AR(\underline{\theta})}\}$
Note 9 (Some notes about confidence interval) • In a sample survey, $\sigma_{\overline{X}_n}$ is unknown. In the case, $s_{\overline{X}_n}$ (or \underline{s}^2 , respectively) can be substituted for $\sigma_{\overline{X}_n}$ (or $\underline{\sigma}^2$, respectively) if the sample size \underline{n} is large enough, say $\underline{n} \ge 25$ or $\overline{30}$ by a rule of thumb. • Recall: duality between confidence interval and hypothesis testing. - Suppose for every parameter value θ_0 , there is a level- $\underline{\alpha}$ test for $\underline{H}_0: \underline{\theta} = \underline{\theta}_0$ vs. $\underline{H}_A: \underline{\theta} \neq \underline{\theta}_0$. Denote the acceptance region of the test by $AR(\underline{\theta}_0)$. Then, the set $\underline{C(\underline{X})} = \{\underline{\theta} \mid \underline{X} \in \underline{AR(\underline{\theta})}\}$ is a $\underline{100(1-\underline{\alpha})\%}$ C.I. for $\underline{\theta}$.
Note 9 (Some notes about confidence interval) • In a sample survey, $\sigma_{\overline{X}_n}$ is unknown. In the case, $s_{\overline{X}_n}$ (or \underline{s}^2 , respectively) can be substituted for $\sigma_{\overline{X}_n}$ (or $\underline{\sigma}^2$, respectively) if the sample size \underline{n} is large enough, say $\underline{n \ge 25}$ or $\underline{30}$ by a rule of thumb. • Recall: duality between confidence interval and hypothesis testing. - Suppose for every parameter value θ_0 , there is a level- $\underline{\alpha}$ test for $\underline{H_0}: \underline{\theta} = \underline{\theta_0}$ vs. $\underline{H_A}: \underline{\theta \ne \theta_0}$. Denote the acceptance region of the test by $\underline{AR(\theta_0)}$. Then, the set $\underline{C(\underline{X})} = \{\underline{\theta} \mid \underline{X} \in \underline{AR(\underline{\theta})}\}$ is a $\underline{100(1-\underline{\alpha})\%}$ C.I. for $\underline{\theta}$. - Suppose $\underline{C(\underline{X})}$ is a $\underline{100(1-\underline{\alpha})\%}$ C.I.
Note 9 (Some notes about confidence interval) • In a sample survey, $\sigma_{\overline{X}_n}$ is unknown. In the case, $s_{\overline{X}_n}$ (or \underline{s}^2 , respectively) can be substituted for $\sigma_{\overline{X}_n}$ (or $\underline{\sigma}^2$, respectively) if the sample size <u>n</u> is large enough, say $\underline{n \ge 25 \text{ or } 30}$ by a rule of thumb. • Recall : duality between confidence interval and hypothesis testing. - Suppose for every parameter value θ_0 , there is a level- $\underline{\alpha}$ test for $\underline{H_0}: \theta = \underline{\theta_0}$ vs. $\underline{H_A}: \theta \neq \underline{\theta_0}$. Denote the acceptance region of the test by $\underline{AR(\theta_0)}$. Then, the set $\underline{C(\underline{X})} = \{\theta \mid \underline{X} \in \underline{AR(\theta)}\}$ is a $\underline{100(1-\underline{\alpha})\%}$ C.I. for θ . - Suppose $\underline{C(\underline{X})}$ is a $\underline{100(1-\underline{\alpha})\%}$ C.I. for θ . Then, an acceptance region $t = 0$ for $\theta = 0$ for $\theta = 0$ for $\theta = 0$ for $\theta = 0$. - Suppose $\underline{C(\underline{X})}$ is a $\underline{100(1-\underline{\alpha})\%}$ C.I. - Suppose $\underline{C(\underline{X})}$ is a $\underline{C(\underline{X})}$ c.I. - Suppose $\underline{C(\underline{X})}$ is a $\underline{C(\underline{X})}$ c.I. - Suppose
Note 9 (Some notes about confidence interval) • In a sample survey, $\sigma_{\overline{X}_n}$ is unknown. In the case, $s_{\overline{X}_n}$ (or \underline{s}^2 , respectively) can be substituted for $\sigma_{\overline{X}_n}$ (or $\underline{\sigma}^2$, respectively) if the sample size \underline{n} is large enough, say $\underline{n} \ge 25$ or $\overline{30}$ by a rule of thumb. • Recall: duality between confidence interval and hypothesis testing. - Suppose for every parameter value θ_0 , there is a level- $\underline{\alpha}$ test for $\underline{H_0}: \underline{\theta} = \underline{\theta_0}$ vs. $\underline{H_A}: \underline{\theta} \neq \underline{\theta_0}$. Denote the acceptance region of the test by $\underline{AR(\underline{\theta_0})}$. Then, the set $\underline{C(\underline{X})} = \{\underline{\theta} \mid \underline{X} \in \underline{AR(\underline{\theta})}\}$ is a $100(1 - \underline{\alpha})\%$ C.I. for $\underline{\theta}$. - Suppose $\underline{C(\underline{X})}$ is a $100(1 - \underline{\alpha})\%$ C.I. for $\underline{\theta}$. Then, an acceptance region for a level- $\underline{\alpha}$ test of $\underline{H_0}: \underline{\theta} = \underline{\theta_0}$ is
Note 9 (Some notes about confidence interval) • In a sample survey, $\sigma_{\overline{X}_n}$ is unknown. In the case, $s_{\overline{X}_n}$ (or \underline{s}^2 , respectively) can be substituted for $\sigma_{\overline{X}_n}$ (or $\underline{\sigma}^2$, respectively) if the sample size \underline{n} is large enough, say $\underline{n} \ge 25$ or $\underline{30}$ by a rule of thumb. • Recall : duality between confidence interval and hypothesis testing. - Suppose for every parameter value θ_0 , there is a level- $\underline{\alpha}$ test for $\underline{H}_0: \theta = \underline{\theta}_0$ vs. $\underline{H}_A: \theta \neq \underline{\theta}_0$. Denote the acceptance region of the test by $AR(\underline{\theta}_0)$. Then, the set $\underline{C(\underline{X})} = \{\underline{\theta} \mid \underline{X} \in \underline{AR(\underline{\theta})}\}$ is a $100(1 - \underline{\alpha})\%$ C.I. for $\underline{\theta}$. - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for $\underline{\theta}$. $\underline{AR(\underline{\theta}_0)} = \{\underline{X} \mid \underline{\theta}_0 \in \underline{C(\underline{X})}\}$.
Note 9 (Some notes about confidence interval) • In a sample survey, $\sigma_{\overline{X}_n}$ is unknown. In the case, $s_{\overline{X}_n}$ (or \underline{s}^2 , respectively) if the sample size \underline{n} is large enough, say $\underline{n} \ge 25$ or $\overline{30}$ by a rule of thumb. • Recall: duality between confidence interval and hypothesis testing. - Suppose for every parameter value $\underline{\theta}_0$, there is a level- $\underline{\alpha}$ test for $\underline{H}_0: \underline{\theta} = \underline{\theta}_0$ vs. $\underline{H}_A: \underline{\theta} \neq \underline{\theta}_0$. Denote the acceptance region of the test by $\underline{AR(\underline{\theta}_0)}$. Then, the set $\underline{C(\underline{X})} = \{\underline{\theta} \mid \underline{X} \in \underline{AR(\underline{\theta})}\}$ is a $\underline{100(1 - \underline{\alpha})\%}$ C.I. for $\underline{\theta}$. - Suppose $\underline{C(\underline{X})}$ is a $\underline{100(1 - \underline{\alpha})\%}$ C.I. for $\underline{\theta}$. - Suppose $\underline{C(\underline{X})}$ is a $\underline{100(1 - \underline{\alpha})\%}$ C.I. for $\underline{\theta}_0$ is $\underline{AR(\underline{\theta}_0)} = \{\underline{X} \mid \underline{\theta}_0 \in \underline{C(\underline{X})}\}$. • In a sample survey, for the population mean μ and the hypotheses
Note 9 (Some notes about confidence interval) • In a sample survey, $\sigma_{\overline{X}_n}$ is unknown. In the case, $s_{\overline{X}_n}$ (or \underline{s}^2 , respectively) can be substituted for $\sigma_{\overline{X}_n}$ (or $\underline{\sigma}^2$, respectively) if the sample size \underline{n} is large enough, say $\underline{n} \ge 25$ or $\overline{30}$ by a rule of thumb. • Recall : duality between confidence interval and hypothesis testing. - Suppose for every parameter value $\underline{\theta}_0$, there is a level- $\underline{\alpha}$ test for $\underline{H}_0: \underline{\theta} = \underline{\theta}_0$ vs. $\underline{H}_A: \underline{\theta} \neq \underline{\theta}_0$. Denote the acceptance region of the test by $AR(\underline{\theta}_0)$. Then, the set $\underline{C(\underline{X})} = \{\underline{\theta} \mid \underline{X} \in AR(\underline{\theta})\}$ is a $100(1 - \underline{\alpha})\%$ C.I. for $\underline{\theta}$. - Suppose $\underline{C(\underline{X})}$ is a $100(1 - \underline{\alpha})\%$ C.I. for $\underline{\theta}$. Then, an acceptance region for a level- $\underline{\alpha}$ test of $H_0: \underline{\theta} = \underline{\theta}_0$ is $\underline{AR(\underline{\theta}_0)} = \{\underline{X} \mid \underline{\theta}_0 \in \underline{C(\underline{X})}\}$. • In a sample survey, for the population mean μ and the hypotheses $\underline{H}_0: \ \mu = \underline{\mu}_0$ vs. $\underline{H}_A: \ \mu \neq \underline{\mu}_0$, a test at (aymptotic) significance level $\underline{\alpha}$
Note 9 (Some notes about confidence interval) • In a sample survey, $\sigma_{\overline{X}_n}$ is unknown. In the case, $s_{\overline{X}_n}$ (or \underline{s}^2 , respectively) if the sample size \underline{n} is large enough, say $\underline{n} \ge 25$ or $\overline{30}$ by a rule of thumb. • Recall: duality between confidence interval and hypothesis testing. - Suppose for every parameter value θ_0 , there is a level- $\underline{\alpha}$ test for $\underline{H}_0: \theta = \overline{\theta_0}$ vs. $\underline{H}_A: \theta \neq \underline{\theta_0}$. Denote the acceptance region of the test by $AR(\overline{\theta_0})$. Then, the set $\underline{C(\underline{X})} = \{\underline{\theta} \mid \underline{X} \in \underline{AR(\theta)}\}$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \underline{\alpha})\%$ C.I. for θ . - Suppose $C(\underline{X})$ is a $100(1 - \alpha$

• marginal distributions of
$$F_0(x, y)$$
: Let
 $\underline{n_{x}} = \sum_{u=1}^{m_{x}} \underline{n_{xy}}$ and $\underline{n_{u}} = \sum_{u=1}^{m_{x}} \underline{n_{yu}}$
 $- F_{0,x}(x)$: assigning probability $\underline{n_{x}}/N$ on $\underline{r_{u}} = 1, \dots, \underline{m_{x}}$.
 $- F_{0,y}(y)$: assigning probability $\underline{n_{x}}/N$ on $\underline{r_{u}}, u = 1, \dots, \underline{m_{x}}$.
Definition 12 (Some population parameters that are often of interest for $\underline{F_{0,y}}$
similarly defined as in Definition 3 (LNp.5). Denote them respectively by
 $\underline{\mu_{x}}, \underline{\tau_{x}}, \underline{\sigma_{x}}, \underline{\sigma_{x}}$ for $F_{0,x}$, and $\underline{\mu_{y}}, \underline{\tau_{y}}, \underline{\sigma_{y}^{2}}, \underline{\sigma_{y}}$ for $\underline{F_{0,y}}$.
• population covariance (covariance of F_{0}):
 $\underline{\sigma_{xy}} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \underline{\mu_{x}}) (y_{i} - \underline{\mu_{y}}) = \sum_{s=1}^{m_{x}} \sum_{u=1}^{m_{y}} \frac{n_{su}}{N} (\zeta_{s} - \underline{\mu_{x}}) (\overline{n_{u}} - \underline{\mu_{y}})$
• population correlation coefficient (correlation of F_{0}): $\underline{\rho_{xy}} = \underline{\sigma_{xy}/(\underline{\alpha_x}\sigma_{y})}$.
Note. ρ_{xy} is a measure of the strength of the linear relationship between
the \underline{x} and \underline{y} values in the population, and $-1 \leq \rho_{xy} \leq 1$.
• a population ratio: $r_{xy} = \sum_{\substack{x=1 \\ N \\ x=1}^{-1} \underline{y_{i}}} = \frac{T_{y}}{T_{x}} = \frac{\mu_{y}}{\mu_{x}}$. (Note. $r_{xy} \neq \underline{1}, \sum_{x=1}^{N} \frac{y_{x}}{x_{x}}$)
reference for the component ratios and $-1 \leq \rho_{xy} \leq 1$.
• a population ratio: $r_{xy} = \sum_{i=1}^{N} \frac{x_{i}}{x_{i}} = \frac{T_{y}}{\mu_{x}}}$. (Note. $r_{xy} \neq \underline{1}, \sum_{i=1}^{N} \frac{y_{x}}{x_{i}}$)
reference for the component ratios and $-1 \leq \rho_{xy} \leq 1$.
• argoing thouseholds
- y : weekly food expenditure - x : number of inhabitants
- $r_{xy} = \tau_{y}/\tau_{x}$: proportion of unemployed males aged 20-30
- x_{x} mumber of males aged 20-30
- x_{x} number of males aged 20-30
- x_{y} acres of wheat planted - x_{x} : total acreage
- $r_{xy} = \tau_{y}/\tau_{x}$: proportion of harvested acreage planted to wheat
Statistical modeling of (x, y) -data collected from an s.r.s. of size n.
• Define I_{1}, \dots, I_{n} as in $INp.9$. The joint distribution of I_{1}, \dots, I_{n} is still as
that given in $INp.9-10$.
• Data

• Recall.
$$F_0(x,y)$$
: assigning probability n_{su}/N on $(\underline{\zeta_s},\eta_u)$ for $\underline{s} = 1, \ldots, \underline{m}_{x'}$.
 $\underline{u} = 1, \ldots, \underline{m}_{y'}$. (Note: F_0 is unknown in a sampling survey)
• Statistical modeling of $(X_1, Y_1), \ldots, (X_n, Y_n)$
under s.r.s. with replacement
(exercise) - the n pairs of data $(X_1, Y_1), \ldots, (X_n, Y_n)$ are independent.
- joint distribution: $(X_1, Y_1), \ldots, (X_n, Y_n)$ is $F_0(x, y)$.
• Statistical modeling of $(X_1, Y_1), \ldots, (X_n, Y_n)$ is $F_0(x, y)$.
• Statistical modeling of $(X_1, Y_1), \ldots, (X_n, Y_n)$ is $F_0(x, y)$.
• Statistical modeling of $(X_1, Y_1), \ldots, (X_n, Y_n)$ is $F_0(x, y)$.
• Statistical modeling of $(X_1, Y_1), \ldots, (X_n, Y_n)$ is $F_0(x, y)$.
• Statistical modeling of $(X_1, Y_1), \ldots, (X_n, Y_n)$ is $F_0(x, y)$.
• Statistical modeling of $(X_1, Y_1), \ldots, (X_n, Y_n)$ are not independent.
- joint distribution of (X_k, Y_k) and $(X_t, Y_t), 1 \le k < l \le n$:
 $P((X_k, Y_k) = (\zeta_n, \eta_k), (X_t, Y_t) = (\zeta_n, \eta_k)$ $(X_k, Y_k) = (\zeta_n, \eta_k)$.
= $P(((X_k, Y_k) = (\zeta_n, \eta_k), (X_t, Y_t) = (\zeta_n, \eta_k)]$ $(X_k, Y_k) = (\zeta_n, \eta_k)$.
= $P(((X_k, Y_k) = (\zeta_n, \eta_k), (X_t, Y_t) = (\zeta_n, \eta_k)]$ $(X_k, Y_k) = (\zeta_n, \eta_k)$.
= $P(((X_k, Y_k) = (\zeta_k, \eta_k), (X_t, Y_t) = (\zeta_t, \eta_k)]$ (i.e., $\underline{s} = t, \underline{u} = \underline{v}$.),
= $\frac{n_N}{N} \times \frac{n_{N-1}}{N-1} = \frac{n_N(N-1)}{N(N-1)}$ if (\underline{C}, η_k) (i.e., $\underline{s} = t, \underline{u} = \underline{v}$.),
= $\frac{n_N}{N} \times \frac{n_{N-1}}{N-1} = \frac{n_N(N-1)}{N(N-1)}$ otherwise.
• EXERCISE of $N(N-1)$ or $N(N-1)$ otherwise.
• EXERCISE of $N(N-1)$ or $N(N-1)$ or $N(N-1)$ or $N(N-1)$ of $N(N-1)$ or $N(N-1)$ o

Ch7, p.43

or
$$\underline{Z} = \underline{g(\underline{U}, \underline{V})} \approx \underline{g(\mu)} + (\underline{U} - \mu_U) \frac{\partial g(\mu)}{\partial u} + (\underline{V} - \mu_V) \frac{\partial g(\mu)}{\partial v} + \frac{1}{2} (\underline{U} - \mu_U)^2 \frac{\partial^2 g(\mu)}{\partial u^2} + \frac{1}{2} (\underline{V} - \mu_U)^2 \frac{\partial^2 g(\mu)}{\partial u^2} + \frac{1}{2} (\underline{V} - \mu_U)^2 \frac{\partial^2 g(\mu)}{\partial u^2} + (\underline{U} - \mu_U) (\underline{V} - \mu_U) \frac{\partial^2 g(\mu)}{\partial u^2} + \frac{1}{2} \sigma_L^2 \left[\frac{\partial^2 g(\mu)}{\partial u^2} \right] + \frac{1$$

Theorem 17 (approximate variance of
$$R$$
)
• Under s.r.s. with replacement,
 $\sigma_R^2 = Var(R) \approx \frac{1}{\mu_X^2} \left(\sigma_X^2 \frac{\mu_X^2}{\mu_X^2} + \sigma_Y^2 - 2\sigma_{XY} - \frac{\mu_Y}{\mu_X} \right) = \frac{1}{n} \times \frac{1}{\mu_Z^2} \left(\sigma_{Xy}^2 \sigma_X^2 + \sigma_y^2 - 2\tau_{Xy} \sigma_{xy} \right)$.
• Under s.r.s. without replacement,
 $\sigma_R^2 = Var(R) \approx \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \times \frac{1}{\mu_Z^2} \left(r_{xy}^2 \sigma_X^2 + \sigma_y^2 - 2\tau_{xy} \sigma_{xy} \right)$
 $= \frac{1}{n} \left(1 - \frac{n-1}{N-1} \right) \times \frac{1}{\mu_Z^2} \left(r_{xy}^2 \sigma_X^2 + \sigma_y^2 - 2\tau_{xy} \sigma_{xy} \sigma_{xy} \right)$.
Proof: From δ -method, Ex.15
(LNp.45), and Theorem 15 (LNp.46),
the results follows.
Note 12 (Some notes about the approximate variance of R)
• strong correlation ρ_{xy} of the same sign as $r_{xy} = \mu_y/\mu_x$ decreases the variance
 $he variance is of the order $1/n$, i.e., "Var $O(\underline{n-1})$ "
• the variance is of the order $1/n$, i.e., "Var $O(\underline{n-1})$ "
• the variance is of the standard error of the estimator
recover $\frac{1}{N} = \frac{1}{N} \left(\frac{1}{N^2} \left(R^2 s_X^2 + s_y^2 - 2R_{xy} \right) \right)$.
Definition 14 (an ituitive estimators of the standard error of R .
• Under s.r.s. with replacement, an estimator of the $\sigma_R^2 = Var(R)$ is
 $s_R^2 = \frac{1}{n} \times \frac{1}{N^2} \left(R^2 s_X^2 + s_y^2 - 2R_{xy} \right)$.
 $\frac{\sigma_R^2}{R} = \frac{1}{n} \times \frac{1}{N^2} \left(R^2 s_X^2 + s_y^2 - 2R_{xy} \right)$.
 $\frac{\sigma_R^2}{R} = \frac{1}{n} \left(\frac{1 - \frac{n}{N-1}} \right) \left(\frac{N-1}{N} \right) \times \frac{1}{X^2} \left(R^2 s_X^2 + s_y^2 - 2R_{xy} \right)$.
The quantity $s_R \left(= \sqrt{s_R^2} \right)$ is an estimated standard error of R .
• Under s.r.s. without replacement, an estimator of the $\sigma_R^2 = Var(R)$ is
 $s_R^2 = \frac{1}{n} \left(\frac{1 - \frac{n}{N-1}} \right) \left(\frac{N-1}{N} \right) \times \frac{1}{X^2} \left(R^2 s_X^2 + s_y^2 - 2R_{xy} \right)$.
The quantity $s_R \left(= \sqrt{s_R^2} \right)$ is an estimated standard error of R .
• Under s.r.s. without replacement, an estimator of the $\sigma_R^2 = Var(R)$ is
 $s_R^2 = \frac{1}{n} \left(\frac{1 - \frac{n}{N-1}} \right) \left(\frac{N-1}{N} \right) \times \frac{1}{X^2} \left(R^2 s_X^2 + s_y^2 - 2R_{xy} \right)$.
The quantity $s_R \left(= \sqrt{s_R^2} \right)$ is an estimated standard error of R .
• Under s.r.s. without replacement, an estimated standard$

	Ch7, p.51
	• an <u>argument</u> based on the <u>CLT</u> can be used to show that <u>R</u> is <u>approximately</u>
	<u>normally</u> distributed, i.e., $\underline{R} \stackrel{D}{\approx} \underline{N}(\underline{\mu}_R, \underline{\sigma}_R^2)$, when sample size <u><i>n</i> is large</u> .
	• Applications
	$- \underline{\text{probability}} \text{ of } \underline{\text{estimation error}} \in [a, b], \text{ e.g., } P\Big(\left \frac{\underline{R} - r_{xy}}{\underline{s_R}} \right > \underline{\delta} \Big) \approx \underline{2[1 - \Phi(\delta)]}$
	- approximate $\underline{100(1-\alpha)\%}$ confidence interval of $\underline{r_{xy}}$: $\underline{R} \pm \underline{z(\alpha/2)} \underline{s_R}$
	Example 16 (estimate population ratio $\underline{r_{xy}}$)
	• Suppose that <u>100 people</u> who recently <u>bought houses</u> are <u>surveyed</u> , and
	\underline{y} : mortgage payment \underline{x} : gross income
	are observed. The $\underline{r_{xy}} = \underline{\tau_y}/\underline{\tau_x}$ is the <u>percentage</u> of the <u>total mortgage</u>
	amount to the <u>total gross income</u> of <u>all people</u> who recently <u>bought houses</u> .
	• Suppose that the population size \underline{N} is <u>missing</u> , but it is <u>known</u> that $\underline{100 \ll N}$.
	• Suppose that $X = 3100$, $s_x = 1200$, $Y = 868$, $s_y = 250$, $\hat{\rho}_{xy} = 0.85$.
	We have $\underline{R} = \underline{868} / \underline{3100} = \underline{0.28}.$
	• <u>Neglecting</u> the finite population correction, the estimated standard error
	$ \underbrace{\frac{\text{Of } R}{\underline{s}_R}}_{\text{IS}} = \frac{1}{\underline{10}} \times \frac{1}{\underline{3100}} \sqrt{0.28^2 (1200^2) + 250^2 - 2(\underline{0.28})(\underline{0.85})(250)(1200)} = \underline{0.006}. $
	Note that $\underline{s_R}$ is small because \underline{x} and \underline{y} are highly positively correlated,
	$\underline{r_{xy} > 0}$, and \overline{X} is large.
	NTHU STAT 3875, 2018, Lecture Notes
	made by SW. Cheng (NTHU, Taiwan)
	made by SW. Cheng (NTHU, Taiwan) • An approximate 95% confidence interval for r_{xy} is
	made by SW. Cheng (NTHU, Taiwan) • An approximate 95% confidence interval for r_{xy} is $0.28 \pm 1.96 \times 0.006 = 0.28 \pm 0.012 = (0.268, 0.292).$
	 made by SW. Cheng (NTHU, Taiwan) Ch7, p.52 An approximate <u>95% confidence interval</u> for <u>r_{xy}</u> is <u>0.28 ± 1.96 × 0.006</u> = 0.28 ± 0.012 = (0.268, 0.292). Again, neglecting the finite population correction, an estimated bias of <u>R</u>
	 made by SW. Cheng (NTHU, Taiwan) Ch7, p.52 An approximate 95% confidence interval for r_{xy} is 0.28 ± 1.96 × 0.006 = 0.28 ± 0.012 = (0.268, 0.292). Again, neglecting the finite population correction, an estimated bias of <u>R</u> using <u>Thm 16</u> (LNp.48) is
	• An approximate <u>95%</u> confidence interval for $\underline{r_{xy}}$ is <u>0.28 ± 1.96 × 0.006</u> = 0.28 ± 0.012 = (0.268, 0.292). • Again, <u>neglecting</u> the finite population correction, an estimated bias of <u>R</u> using <u>Thm 16</u> (LNp.48) is $\frac{1}{n} \times \frac{1}{\overline{X}^2} (Rs_x^2 - \hat{\rho}_{xy} s_x s_y) = \frac{1}{100} \times \frac{1}{3100^2} [(0.28)(250^2) - (0.85)(250)(1200)] = -0.00025,$
	• An approximate <u>95%</u> confidence interval for $\underline{r_{xy}}$ is <u>0.28 ± 1.96 × 0.006</u> = 0.28 ± 0.012 = (0. <u>268</u> , 0. <u>292</u>). • Again, <u>neglecting the finite population correction</u> , an <u>estimated bias</u> of <u>R</u> using <u>Thm 16</u> (LNp.48) is $\frac{1}{n} \times \frac{1}{\overline{X}^2} (Rs_x^2 - \hat{\rho}_{xy} s_x s_y) = \frac{1}{100} \times \frac{1}{3100^2} [(0.28)(250^2) - (0.85)(250)(1200)] = -0.00025,$ which is <u>negligible</u> relative to <u>s_R</u> (=0.006). Note that the <u>large</u> $\hat{\rho}_{xy}$ (=0.85)
	• An approximate <u>95%</u> confidence interval for $\underline{r_{xy}}$ is <u>0.28 ± 1.96 × 0.006</u> = 0.28 ± 0.012 = (0.268, 0.292). • Again, <u>neglecting the finite population correction</u> , an <u>estimated bias</u> of <u>R</u> using <u>Thm 16</u> (LNp.48) is $\frac{1}{n} \times \frac{1}{\overline{X}^2} (Rs_x^2 - \hat{\rho}_{xy} s_x s_y) = \frac{1}{100} \times \frac{1}{3100^2} [(0.28)(250^2) - (0.85)(250)(1200)] = -0.00025$, which is <u>negligible</u> relative to $\underline{s_R}$ (=0.006). Note that the <u>large</u> $\hat{\rho}_{xy}$ (=0.85) and the <u>large</u> value of \overline{X} (=3100) cause the <u>bias</u> to be <u>small</u> .
• Ratio	 made by SW. Cheng (NTHU, Taiwan) • An approximate <u>95%</u> confidence interval for <u>rxy</u> is <u>0.28 ± 1.96 × 0.006</u> = 0.28 ± 0.012 = (0.268, 0.292). • Again, <u>neglecting the finite population correction</u>, an <u>estimated bias</u> of <u>R</u> using <u>Thm 16</u> (LNp.48) is <u>1</u> × <u>1</u> (Rs²_x - p̂_{xy}s_xs_y) = <u>1</u> 100 × <u>1</u> (0.28)(250²) - (0.85)(250)(1200)] = -0.00025, which is <u>negligible</u> relative to <u>s_R</u> (=0.006). Note that the <u>large</u> p̂_{xy} (=0.85) and the <u>large</u> value of <u>X</u> (=3100) cause the <u>bias</u> to be <u>small</u>.
• <u>Rati</u>	 made by SW. Cheng (NTHU, Taiwan) Ch7, p.52 An approximate <u>95% confidence interval for rxy is</u> <u>0.28 ± 1.96 × 0.006 = 0.28 ± 0.012 = (0.268, 0.292)</u>. Again, <u>neglecting the finite population correction</u>, an estimated bias of <u>R</u> using <u>Thm 16</u> (LNp.48) is <u>1 × 1/X² (Rs²_x - p̂xysxsy) = 1/100</u> × <u>1/3100²</u> [(0.28)(250²) - (0.85)(250)(1200)] = -0.00025, which is <u>negligible</u> relative to <u>s_R</u> (=0.006). Note that the <u>large p̂xy</u> (=0.85) and the <u>large</u> value of <u>X</u> (=3100) cause the <u>bias</u> to be <u>small</u>. Os used for estimating population means (and totals) Suppose µx is known, e.g., the example of 393 hospitals in Ex.2 (LNp.4),
• <u>Rati</u>	 Made by SW. Cheng (NTHU, Taiwan) Ch7. p.52 An approximate <u>95%</u> confidence interval for <u>rxy</u> is <u>0.28 ± 1.96 × 0.006</u> = 0.28 ± 0.012 = (0.268, 0.292). Again, neglecting the finite population correction, an estimated bias of <u>R</u> using <u>Thm 16</u> (LNp.48) is <u>1</u> × <u>1</u> (Rs²_x - p̂_{xy}s_xs_y) = <u>1</u> 100 × <u>1</u> (0.28)(250²) - (0.85)(250)(1200)] = -0.00025, which is negligible relative to <u>s_R (=0.006)</u>. Note that the large <u>p̂_{xy} (=0.85)</u> and the large value of <u>X</u> (=3100) cause the bias to be small. Suppose <u>µx is known</u>, e.g., the example of <u>393 hospitals</u> in <u>Ex.2</u> (LNp.4), - y: number of discharges,
• <u>Rati</u>	 Made by SW. Cheng (NTHU, Taiwan) Ch7. p.52 An approximate <u>95% confidence interval</u> for <u>rxy</u> is <u>0.28 ± 1.96 × 0.006</u> = 0.28 ± 0.012 = (0.268, 0.292). Again, neglecting the finite population correction, an estimated bias of <u>R</u> using <u>Thm 16</u> (LNp.48) is <u>1</u> × <u>1</u> × <u>1</u> (Rs² - p̂_{xy}s_xs_y) = <u>1</u> 100 × <u>1</u> × <u>1</u> (0.28)(250²) - (0.85)(250)(1200)] = -0.00025, which is negligible relative to <u>s_R</u> (=0.006). Note that the large p̂_{xy} (=0.85) and the large value of <u>X</u> (=3100) cause the bias to be small. Suppose <u>µx is known</u>, e.g., the example of <u>393 hospitals</u> in <u>Ex.2</u> (LNp.4), - <u>y: number of discharges, - <u>x: number of beds.</u></u>
• <u>Rati</u>	 Ch7. p.52 An approximate 95% confidence interval for rxy is 0.28 ± 1.96 × 0.006 = 0.28 ± 0.012 = (0.268, 0.292). Again, neglecting the finite population correction, an estimated bias of R using Thm 16 (LNp.48) is 1/(x) + (2x)/(x) + (2x)/(x)/(x) + (2x)/(x)/(x)/(x)/(x)/(x)/(x)/(x)/(x)/(x)/(
• <u>Rati</u>	 Made by SW. Cheng (NTHU, Taiwan) Ch7, p.52 An approximate <u>95% confidence interval for <i>r_{xy}</i> is 0.28 ± 1.96 × 0.006 = 0.28 ± 0.012 = (0.268, 0.292).</u> Again, neglecting the finite population correction, an estimated bias of <u>R</u> using <u>Thm 16</u> (LNp.48) is ¹/_n × ¹/_{X²}(Rs²_x - p̂_{xy}s_xs_y) = ¹/₁₀₀ × ¹/_{3100²} [(0.28)(250²) - (0.85)(250)(1200)] = -0.00025, which is negligible relative to <u>s_R</u> (=0.006). Note that the large p̂_{xy} (=0.85) and the large value of <u>X</u> (=3100) cause the bias to be small. Suppose <u>µ_x is known</u>, e.g., the example of <u>393 hospitals</u> in <u>Ex.2</u> (LNp.4), - <u>y</u>: number of discharges, - <u>x</u>: number of beds. Suppose the average (or total) number of beds <u>µ_x (or <u>τ</u>_x) in the <u>393 hospitals</u> is <u>known</u> (before a sample has been taken).</u>
• <u>Rati</u>	 Made by SW. Cheng (NTHU, Taiwan) An approximate <u>95%</u> confidence interval for <u>rxy</u> is <u>0.28 ± 1.96 × 0.006</u> = 0.28 ± 0.012 = (0.268, 0.292). Again, neglecting the finite population correction, an estimated bias of <u>R</u> using Thm 16 (LNp.48) is <u>1</u>/<u>x</u> × <u>1</u>/<u>X²</u>(Rs²_x - p̂_{xy}s_xs_y) = <u>1</u>/<u>100</u> × <u>1</u>/<u>3100²</u> [(0.28)(250²) - (0.85)(250)(1200)] = -0.00025, which is negligible relative to <u>s_R</u> (=0.006). Note that the large p̂_{xy} (=0.85) and the large value of <u>X</u> (=3100) cause the bias to be small. os used for estimating population means (and totals) Suppose <u>µx</u> is known, e.g., the example of <u>393</u> hospitals in Ex.2 (LNp.4), - <u>y</u>: number of discharges, - <u>x</u>: number of beds. Suppose the average (or total) number of beds <u>µx</u> (or <u>tx</u>) in the <u>393</u> hospitals is known (before a sample has been taken). Q: how to take advantage of this information in the estimation of <u>µy</u>?
• <u>Rati</u>	 Made by SW. Cheng (NTHU, Taiwan) An approximate <u>95%</u> confidence interval for <u>rxy</u> is 0.28 ± <u>1.96</u> × 0.006 = 0.28 ± 0.012 = (0.268, 0.292). Again, neglecting the finite population correction, an estimated bias of <u>R</u> using Thm 16 (LNp.48) is ¹/_n × ¹/_{X²}(Rs²_x - p̂_{xy}s_xs_y) = ¹/₁₀₀ × ¹/_{3100²} [(0.28)(250²) - (0.85)(250)(1200)] = -0.00025, which is negligible relative to <u>s_R</u> (=0.006). Note that the large p̂_{xy} (=0.85) and the large value of <u>X</u> (=3100) cause the bias to be small. Suppose <u>µx</u> is known, e.g., the example of <u>393 hospitals</u> in <u>Ex.2</u> (LNp.4), - <u>y</u>: number of discharges, - <u>x</u>: number of beds. Suppose the <u>average</u> (or total) number of beds <u>µx</u> (or <u>Tx</u>) in the <u>393 hospitals</u> is known (before a sample has been taken). Q: how to take advantage of this information in the estimation of <u>µy</u>? Select a random sample, and collect the data: (X_k, Y_k), <u>k</u> = 1,, <u>n</u>. For
• <u>Rati</u>	 An approximate <u>95%</u> confidence interval for <u>rxy</u> is <u>0.28 ± 1.96 × 0.006</u> = 0.28 ± 0.012 = (<u>0.268, 0.292</u>). Again, neglecting the finite population correction, an estimated bias of <u>R</u> using Thm 16 (LNp.48) is <u>1</u>/_n × <u>1</u>/_{X²}(Rs²_x - p̂_{xy}s_xs_y) = <u>100</u> × <u>1100</u> × (<u>1000</u>) = <u>-0.00025</u>, which is negligible relative to <u>s_R</u> (=0.006). Note that the large p̂_{xy} (=0.85) and the large value of <u>X</u> (=3100) cause the bias to be small. Suppose <u>µx</u> is known, e.g., the example of <u>393</u> hospitals in <u>Ex.2</u> (LNp.4), <u>y</u>: number of discharges, <u>x</u>: number of beds. Suppose the average (or total) number of beds <u>µx</u> (or <u>tx</u>) in the <u>393</u> hospitals is known (before a sample has been taken). Q: how to take advantage of this information in the estimation of <u>µy</u>? Select a random sample, and collect the data: (<u>X_k, Y_k), <u>k</u> = 1,,<u>n</u>. For the parameter <u>µy</u> = <u>µx</u> <u>rxy</u>, an intuitive ratio estimator of <u>µy</u> is</u>

Ex	xample 18 (Comparison of <u>sample mean</u> and <u>ratio estimator</u> , cont. <u>Ex.17</u> in <u>LNp</u> .
•	In the population of $\underline{393}$ hospitals,
	$\mu_x = 274.8, \sigma_x = 213.2, \mu_y = 814.6, \sigma_y = 589.7, r_{xy} = 2.96, \rho_{xy} = 0.9$
•	For a sample of size $n = 64$,
-	- the standard error of the ratio estimator \overline{Y}_R is (by Thm.19, LNp.55
	$\underline{\sigma_{\overline{Y}_R}} \approx \sqrt{\frac{1}{64} \left(1 - \frac{63}{392}\right)} \times \underline{\sqrt{(2.96^2)(213.2^2) + \underline{589.7^2} - 2(\underline{2.96})(\underline{0.91})(213.2)(589.7)}} = \underline{30.6} \times \underline{\sqrt{(2.96^2)(213.2^2) + \underline{589.7}}} = \underline{\sqrt{(2.96^2)(213.2^2) + \underline{589.7}} = \underline{\sqrt{(2.96^2)(213.2^2) + \underline{589.7}}} = \sqrt{(2.96^2)(213.2$
	- the standard error of the ordinary estimator $\overline{\underline{Y}}$ is (by <u>Thm.3</u> , LNp.1
	$\underline{\sigma_{\overline{Y}}} = \sqrt{\frac{1}{\underline{64}}} \left(\underline{1 - \frac{63}{392}} \right) \times \underline{589.7} = \underline{67.5}$
	The comparison of $\sigma_{\overline{Y}}$ to $\sigma_{\overline{Y}_R}$ is <u>consistent</u> with the substantial <u>reduc</u>
	in variability shown in the graph of $Ex.17$ (LNp.53).
-	- the bias of the ratio estimator \overline{Y}_R is (by Thm.19, LNp.54)
	$\underline{E(\overline{Y}_R) - \mu_y} \approx \underline{\frac{1}{64}} \left(1 - \frac{63}{392} \right) \times \frac{1}{274.8} [(2.96)(213.2^2) - (0.91)(213.2)(589.7)] = \underline{1.0}$
	which is a <u>slight and negligible</u> bias compared to the <u>variation reduc</u>
•	An alternative interpretation of $\sigma_{\overline{Y}_{P}}^{2}/\sigma_{\overline{Y}}^{2}$. Neglecting finite population
į	rection, an ordinary estimator $\overline{Y_{n_1}}^{\underline{T_R}}$ from a sample of size n_1 will have a
-	the same variance as a ratio estimator \overline{Y}_{R,n_2} from a sample of size n_2 i
	NTHU STAT 3875, 2018, Lecture Notes
	made by SW. Cheng (NTHU, Taiwan)
	$(\underline{1/n_1}) \times \underline{589.7^2} \approx (\underline{1/n_2}) \times \lfloor (\underline{2.96^2})(\underline{213.2^2}) + \underline{589.7^2} - \underline{2(2.96)(0.91)(\underline{213.2})(589.7^2)} + \underline{589.7^2} + \underline{2(2.96)(0.91)(\underline{213.2})(589.7^2)} + \underline{589.7^2} + 5$
	Thus, $\underline{n_2/n_1} \approx \underline{(30.0/67.5)^2} = \sigma_{\overline{Y}_{R,n}}^2 / \sigma_{\overline{Y}_n}^2 = \underline{0.198}$, i.e., we can obtain a
	precision from \overline{Y}_R using a sample about 80% smaller than the sample o
	Note that this comparison neglects the bias of \overline{Y}_R , justifiable in this ca
•	This is a case in which a biased estimator performs
	substantially better than an unbiased estimator.
•	In this case, the biased estimator is better because
	the $\underline{\text{bias}}$ is quite $\underline{\text{small}}$ and the reduction in variance is quite large.
De	efinition 17 (ratio estimator of population total $\underline{\tau}_y$)
Sir	ace $\underline{\tau_y} = \underline{N} \underline{\mu_y} = \underline{N} \underline{\mu_x r_{xy}} = \underline{\tau_x} \underline{r_{xy}}$, an intuitive ratio estimator of $\underline{\tau_y}$ is
	$\underline{T_R} = \underline{\tau_x}(\overline{Y}/\overline{X}) = \underline{N} \ \overline{Y}(\underline{\mu_x}/\overline{X}) = \underline{N}$
No	te 15 (Some notes about the ratio estimator of population total)
•	Since $E(T_R) = N E(\overline{Y}_R)$ and $Var(T_R) = N^2 Var(\overline{Y}_R)$, the approxim
	bias and variance of T_R can be derived from Thm. 19 (LNp.54).
•	The condition for $Var(T_R)$ to be smaller than $Var(T)$, where $T = N \overline{Y}$
	same as that given in Note 13 (LNp.55).
	An estimated standard error of $T_{\rm D}$ is $e_{\rm T} = Ne_{\rm T}$ and an approxim
•	An estimated standard error of I_R is $S_{T_D} = N S_{V}$, and an approxim
•	$\frac{\text{estimated}}{100(1-\alpha)\%} \frac{\text{standard error of } \underline{T_R}}{\text{c.I. of } \tau_{u} \text{ is } T_P + z(\alpha/2) s_{T_P}} \frac{1}{2} \frac{S_{T_R}}{100(1-\alpha)\%} \frac{1}{2} \frac{S_{T_R}}{S_{T_P}} \frac{1}{2} \frac{S_{T_R}}{S_{T_R}} 1$

Example 19 (Applications of stratified random sampling)
• In auditing financial transactions, the transactions may be grouped into
strata on the basis of their nominal values, e.g., high-value, medium-value,
and low-value strata.
• In human populations, geographical area often form natural strata.
Note 16 (Advantages of stratified random sampling)
• It provides information about each subpopulation
$$S_i$$
 in addition to the pop-
ulation Ω as a whole, e.g., in an industrial application,
– population = all items produced by a manufacturing process;
– subpopulations = items produced from different shifts or lots.
• It guarantees a presentibed number n_i of observations from each S_i .
• Stratified sample mean can be considerably more precise
than the mean of a simple random sample (shown in later slides), expecially
if the partition of the population into strata
– is homogeneous within each stratum, and
– has large variation between strata.
(Recall. $\sigma^2 = \sum_{l=1}^{L} W_l \sigma_l^2 + \sum_{l=1}^{L} W_l (\underline{\mu}_l - \underline{\mu})^2$)
• Data: $(X_{\underline{1}\underline{1}, X_{\underline{2}\underline{1}, \dots, X_{\underline{n},\underline{1}}), \dots, (X_{\underline{1}\underline{L}, X_{\underline{2}\underline{L}, \dots, X_{\underline{n},\underline{L}}), \in \underline{S}_{\underline{L}}$
where $(X_{\underline{1}\underline{1}, \dots, X_{\underline{n},\underline{1}})$, $l = 1, \dots, L$, is the data collected from the s.r.s.
(either with or without replacement) taken within the $l\underline{th}$ stratum $\underline{S}_{\underline{t}}$.
• distribution of data
– $(X_{\underline{1}\underline{1}, \dots, X_{\underline{n},\underline{1}})$, $l = 1, \dots, L$, is the data collected from the s.r.s.
(either with or without replacement) taken within each stratum,
the joint distribution of the data from the stratum $\underline{S}_{\underline{t}}$ is as
that given in LND.11-12, with \underline{F}_D replaced by $\underline{F}_{\underline{0}}$
– data from different strata are independent
Definition 20 (some intuktive estimators of the parameters of population and stratum)
• subpopulation $\underline{S}_{\underline{l}}^2$ site a s.r.s. is taken within each stratum,
– mean $\underline{\mu}_{\underline{l}}$ estimated by subsample total $T_{\underline{l}} = \underline{N}_{\underline{l}} \underline{X}_{\underline{l}}$
– total $\underline{T}_{\underline{l}}$ estimated by subsample total $T_{\underline{l}} = \underline{N}_{\underline{l}}$

• (whole) population
$$\Omega$$
: under a stratified random sample,
• (whole) population Ω : under a stratified sample mean
 $\overline{X}_{\underline{S}} \equiv \frac{1}{N} \sum_{l=1}^{L} \underline{N}_{l} \overline{X}_{l} = \sum_{l=1}^{L} W_{l} \overline{X}_{l} = \frac{1}{N} \sum_{l=1}^{L} \frac{1}{(\underline{m}_{l}/N_{l})} \left(\sum_{\underline{k}=1}^{n} X_{\underline{k},l} \right),$
since $\underline{\mu} = \sum_{l=1}^{L} W_{l} \mu_{l}.$
(Note: $\overline{X}_{\underline{S}} \neq \frac{1}{\underline{m}} \sum_{l=1}^{L} \sum_{\underline{m}=1}^{\underline{m}_{l}} X_{\underline{k}} \equiv \sum_{l=1}^{L} \frac{n}{\underline{m}} \overline{X}_{l}$ in general,
they are equal only when $\frac{n}{\underline{m}} = \frac{N}{N}$, $l = 1, \dots, L$.)
• $\underline{\operatorname{total}} \tau (=N\mu)$: estimated by $\underline{T}_{\underline{S}} \equiv N \overline{X}_{\underline{S}}$
• **FYI**. An intuitive estimator of the population variance σ^{2} can be developed, based on the relation between σ^{2} and μ_{l} 's, σ_{l}^{2} 's (Thm. 20, LNp.61),
by using the estimators \overline{X}_{l} 's and s_{l}^{2} 's (or $(1 - \frac{1}{N_{l}})s_{l}^{2}$'s).
Theorem 22 (mean and variance of the stratified estimator of population mean)
• Under stratified random sampling, with or without replacement, $\overline{E}(\overline{X}_{\underline{S}}) = \mu$.
• Under stratified random sampling, with or without replacement, $\overline{E}(\overline{X}_{\underline{S}}) = \mu$.
• Under stratified random sampling.
• with replacement, $\underline{Var}(\overline{X}_{\underline{S}}) = \sum_{l=1}^{L} W_{l}^{2} \left(\frac{\sigma_{l}^{2}}{n_{l}}\right) \left(1 - \frac{n_{l}-1}{N_{l}-1}\right)$.
• \overline{Wthout} replacement, $\underline{Var}(\overline{X}_{\underline{S}}) = \sum_{l=1}^{L} W_{l}^{2} \left(\frac{\sigma_{l}^{2}}{n_{l}}\right) \left(1 - \frac{n_{l}-1}{N_{l}-1}\right)$.
• \overline{Wthout} replacement, $\underline{Var}(\overline{X}_{\underline{S}}) = \sum_{l=1}^{L} W_{l}^{2} (\underline{M}_{\underline{L}}) = \sum_{l=1}^{L} W_{l} \mu_{l}^{2} (\underline{m}_{\underline{L}}) \left(1 - \frac{n_{l}-1}{N_{l}-1}\right)$.
• \overline{Wthout} replacement, $\underline{Var}(\overline{X}_{\underline{S}}) = \sum_{l=1}^{L} W_{L}^{2} (\underline{M}_{\underline{L}}) = \sum_{l=1}^{L} W_{L} \mu_{L} = \mu$.
Since the data from different strata are independent of one anther, the
subsample means $\underline{X}_{\underline{L}}, \underline{X}_{\underline{L}}, \dots, \underline{X}_{\underline{L}}$ are independent random variables, and
 $\underline{Var}(\overline{X}_{\underline{S}}) = War \left(\sum_{l=1}^{L} W_{l} \overline{X}_{l}\right) = \sum_{l=1}^{L} W_{L} \overline{W}_{L} \left(\frac{n}{N}_{L}\right)$.
Since the data from different strata are independent random variables, and
 $\underline{Var}(\overline{X}_{\underline{S}}$

	Ch7, p.67
	• Under stratified random sampling without replacement, since $(1 - \frac{1}{N_l})s_l^2$ is
	an <u>unbiased</u> estimator of σ_l^2 , the $Var(\overline{X}_{\mathbb{S}})$ can be estimated by
	$\underline{s_{\overline{X}_{\mathbb{S}}}^{2}} = \sum_{l=1}^{L} W_{l}^{2} \left(\frac{\underline{s_{l}^{2}}}{n_{l}} \right) \left(\underline{1 - \frac{1}{N_{l}}} \right) \left(\underline{1 - \frac{n_{l} - 1}{N_{l} - 1}} \right)$
	$= \sum_{l=1}^{L} \underline{W_l^2} \left(\frac{s_l^2}{n_l} \right) \left(1 - \frac{n_l}{\underline{N_l}} \right). \qquad \left(\underbrace{\checkmark} \underline{s_{\overline{X}_{\mathbb{S}}}} \right)$
	Theorem 23 (mean and variance of the stratified estimator of population total)
	Since $\underline{T}_{\mathbb{S}} = \underline{N} \overline{X}_{\mathbb{S}}$, we have $\underline{E}(T_{\mathbb{S}}) = \underline{N} \underline{E}(\overline{X}_{\mathbb{S}})$ and $\underline{Var}(T_{\mathbb{S}}) = \underline{N^2} \underline{Var}(\overline{X}_{\mathbb{S}})$.
	• $\underline{E(T_{\mathbb{S}})} = \underline{N}\underline{\mu} = \underline{\tau}$, i.e., $\underline{T_{\mathbb{S}}}$ is an <u>unbiased</u> estimator of $\underline{\tau}$
	• $\underline{Var(T_{\mathbb{S}})} = \begin{cases} \sum_{l=1}^{L} \underline{N_l^2} \left(\frac{\sigma_l^2}{n_l} \right), & \text{if } \underline{\text{with }} \text{ replacement}, \\ \sum_{l=1}^{L} \frac{\sigma_l^2}{n_l} \left(\frac{\sigma_l^2}{n_l} \right), & \text{if } \underline{\text{with }} \text{ replacement}, \end{cases}$
	$\left(\sum_{l=1} \frac{N_l^2}{\underline{n_l}} \left(\frac{1}{\underline{n_l}} \right) \left(\frac{1 - \frac{n_l - 1}{N_l - 1}}{\underline{n_l}} \right), \text{ if without replacement,}$
	Note. The <u>Var(T_S)</u> can be estimated by $\underline{s_{T_S}^2} \equiv \underline{N^2} \underline{s_{\overline{X_S}}^2}$. $\left(\xrightarrow{} \underline{s_{T_S}} = \underline{N} \underline{s_{\overline{X_S}}} \right)$
	Example 20 (stratified random sampling, cont. Ex.17 in LNp.53)
	• Consider the <u>population</u> of <u>393 hospitals</u> .
	• Assume that the <u>number of beds</u> in each hospital is <u>known</u> , and <u>4 strata</u> are
	determined by the number of beds from small to large:
	made by SW. Cheng (NTHU, Taiwan)
	Stratum N_l W_l μ_l σ_l
	A 98 0.249 182.9 103.4
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	• For a without-replacement stratified random sample of size n , suppose we
	choose $n_1 = n_2 = n_3 = n_4 = n/4$. Neglecting the finite population correc-
	$\frac{\text{tion}}{2}$, we have $\sigma = -\sqrt{4 \sum^4 W^2 \sigma^2} = \frac{268.4}{2}$
	$\underline{\underbrace{\partial_{X_{\mathbb{S}}}}}_{l=1} = \sqrt{\underline{n}} \underbrace{\underbrace{\partial_{l}}}_{l=1} \underbrace{\underbrace{\partial_{l}}}_{l=1} = \sqrt{\underline{n}}.$
	• For a without-replacement s.r.s. of size n , neglecting the finite population
	$\sigma_{\overline{X}} = \frac{589.7}{\sqrt{2}}.$
	• Note that the stratification has resulted in a tremendous gain in precision:
	$ \underline{\sigma_{\overline{X}_{\mathbb{S}}}} \approx \underline{0.455} \times \underline{\sigma_{\overline{X}}} \Rightarrow \underline{\sigma_{\overline{X}_{\mathbb{S}}}^2} / \underline{\sigma_{\overline{X}}^2} = \underline{0.207}. \text{ The stratified estimator } \overline{\overline{X}_{\mathbb{S}}} \text{ based } $
	on a total sample size of $\underline{n/5}$ is as precise as \underline{X} based on a s.r.s. of size \underline{n} .
	(cf. the reduction in variance due to stratification is comparable to that $\frac{1}{10000000000000000000000000000000000$
	achieved by using a <u>ratio estimator</u> given in <u>Ex.18</u> , LNp.58).
• Met	hods of allocation in stratified random sampling
	• Q: Why and when can a stratification produce
	a dramatic improvement in precision?

 • In the following discussion of this topic, we consider Ch7, p.69 the without-replacement case, but neglect the finite population correction.
 Actually, this is <u>equivalent</u> to the <u>with-replacement</u> case.
Theorem 24 (optimal allocation of the sample size <u>n</u> in a stratified random sampling) Neglecting the finite population correction, the subsample sizes $\underline{n_1, \ldots, n_L}$ that minimize $\underline{Var(\overline{X}_{\mathbb{S}})}$ subject to the constraint $\underline{n_1 + n_2 + \cdots + n_L = n}$ are $\underline{n_l} = \underline{n} \times \frac{\underline{W_l \sigma_l}}{\underline{\sum_{l'=1}^L W_{l'} \sigma_{l'}}} = \underline{n} \times \frac{\underline{W_l \sigma_l}}{\underline{\overline{\sigma}}}$, $\underline{l} = 1, 2, \ldots, \underline{L}$, where $\underline{\overline{\sigma}} = \underline{\sum_{l'=1}^L W_{l'} \sigma_{l'}}$ is a weighted average of $\underline{\sigma_1, \ldots, \sigma_L}$.
Proof. Introduce a <u>Lagrange multiplier</u> $\underline{\lambda}$, and <u>minimize</u>
$\underline{L}(\underline{n_1},\cdots,\underline{n_L},\underline{\lambda}) = \underline{Var(\overline{X}_{\mathbb{S}})} + \underline{\lambda}\left(\sum_{l'=1}^L n_{l'} - n\right) = \sum_{l'=1}^L \frac{W_{l'}^2 \sigma_{l'}^2}{\underline{n_{l'}}} + \underline{\lambda}\left(\sum_{l'=1}^L \underline{n_{l'}} - n\right).$
 Setting the <u>partial derivatives</u> equal to <u>zero</u>
 $\underline{0} = \frac{\partial L}{\underline{\partial n_l}} = -\frac{W_l^2 \sigma_l^2}{\underline{n_l^2}} + \underline{\lambda}, \underline{l} = 1, \cdots, \underline{L}, \text{and} \underline{\frac{\partial L}{\partial \lambda}} = \underline{\sum_{l'=1}^L n_{l'} - n = 0}$
we have $\underline{n_l} = \overline{\frac{W_l \sigma_l}{\sqrt{\lambda}}}, \underline{l} = 1, \cdots, \underline{L} \Rightarrow \underline{n} = \underline{\sum_{l'=1}^L \underline{n_{l'}}} = \frac{1}{\sqrt{\lambda}} \underline{\sum_{l'=1}^L W_{l'} \sigma_{l'}}.$
Thus, $ \frac{1}{\sqrt{\lambda}} = \frac{n}{\sum_{l'=1}^{L} W_{l'}\sigma_{l'}} \Rightarrow \underline{n_l} = \underline{n} \times \frac{W_l\sigma_l}{\sum_{l'=1}^{L} W_{l'}\sigma_{l'}}. $ NTHU STAT 3875, 2018, Lecture Notes
Note 18 (Some notes about the optimal allocation scheme) Ch7, p.70
 Note 18 (Some notes about the optimal allocation scheme) Ch7, p.70 This theorem shows that those strata with large <u>W_l σ_l</u> should be sampled <u>heavily</u>. This makes sense intuitively because <u>W_l</u> is large ⇒ <u>S_l</u> contains a large fraction of Ω ⇒ sample more <u>σ_l</u> is large ⇒ <u>x_{i,l}'s in S_l are quite variable</u> ⇒ a relatively large n_l is required to obtain a good determination of <u>µ_l</u> This optimal allocation scheme depends on the within-stratum variances <u>σ₁²</u>,, <u>σ_L²</u>, which generally is <u>unknown</u> before sampling. If a survey measures <u>several attributes</u>, it is usually <u>impossible</u> to find an allocation optimal for all attributes.
 Note 18 (Some notes about the optimal allocation scheme) Ch7, p.70 Note 18 (Some notes about the optimal allocation scheme) This theorem shows that those strata with large <u>W_l σ_l</u> should be sampled heavily. This makes sense intuitively because <u>W_l is large ⇒ S_l contains a large fraction of Ω ⇒ sample more</u> <u>σ_l is large ⇒ X_{i,l}'s in S_l are quite variable ⇒ a relatively large n_l is required to obtain a good determination of μ_l</u> This optimal allocation scheme depends on the within-stratum variances <u>σ₁²</u>,, <u>σ_L²</u>, which generally is <u>unknown</u> before sampling. If a survey measures <u>several attributes</u>, it is usually <u>impossible</u> to find an allocation optimal for all attributes. Definition 23 (optimal stratified estimator) This optimal allocation scheme is called <u>Neyman allocation</u>. <u>Denote the stratified estimator</u> under this <u>optimal allocation</u> scheme by <u>X_{S, Q}</u>.
Note 18 (Some notes about the optimal allocation scheme)Ch7, p.70• This theorem shows that those strata with large $\underline{W}_{l} \sigma_{l}$ should be sampled heavily. This makes sense intuitively because $\underline{W}_{l} \sigma_{l}$ should be sampled heavily. This makes sense intuitively because• W_{l} is large $\Rightarrow S_{l}$ contains a large fraction of $\Omega \Rightarrow$ sample more $-\sigma_{l}$ is large $\Rightarrow x_{i,l}$'s in S_{l} are quite variable \Rightarrow a relatively large n_{l} is re- quired to obtain a good determination of μ_{l} • This optimal allocation scheme depends on the within-stratum variances σ_{1}^{2} , \dots, σ_{L}^{2} , which generally is unknown before sampling.• If a survey measures several attributes, it is usually impossible to find an allocation optimal for all attributes. Definition 23 (optimal stratified estimator)• This optimal allocation scheme is called Neyman allocation.• Denote the stratified estimator under this optimal allocation scheme by $\overline{X}_{\underline{S}, \varrho}$. Theorem 25 (variance of the optimal stratified estimator)Neglecting the finite population correction, and substituting the optimal values of n_{l} 's in Thm. 24 (LNp.69) for the variance of the stratified estimator $\overline{X}_{\underline{S}}$ of μ presented in Thm. 22 (LNp.65) gives us $\underline{Var(\overline{X}_{\underline{S}, \varrho)} \approx \sum_{l=1}^{L} \underline{W}_{l}^{2} (\frac{\sigma_{l}^{2}}{\underline{n}_{l}}) = \sum_{l=1}^{L} \underline{W}_{l}^{2} \sigma_{l}^{2}} = \frac{\overline{\sigma}^{2}}{\underline{n}} = \frac{1}{\underline{n}} (\sum_{l=1}^{L} W_{l} \sigma_{l})^{2}$

