

Definition 8 (sample mean)

a function of data

Ch7, p.13

The sample mean of X_1, X_2, \dots, X_n is $\bar{X} = \frac{1}{n} \sum_{k=1}^n X_k$.
 ↗ cf. population mean: μ of F_0 ↗ data

$$\begin{aligned} X &\sim F_0 \\ \mu &= E(X) \\ &= \frac{1}{N} \sum_{i=1}^N \chi_i \\ &= \sum_{j=1}^m \left(\frac{n_j}{N} \right) \zeta_j \end{aligned}$$

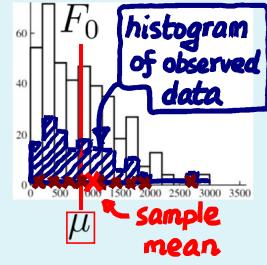
Note 4 (Some notes about sample mean)

The statistic that contributes the most to the world.

- \bar{X} is clearly a statistic, and hence a random variable.
- \bar{X} is an intuitive estimator of μ . ↗ why? ↗
- In the dichotomous case, we have $\mu = p$ and $\sum_{k=1}^n X_k = \# \text{ of 1's in the sample}$. ↗ population proportion ↗ cf. ↗

In X_1, \dots, X_n , observe ζ_1 about $(n \cdot \frac{n_1}{N})$ times \vdots ζ_m about $(n \cdot \frac{n_m}{N})$ times

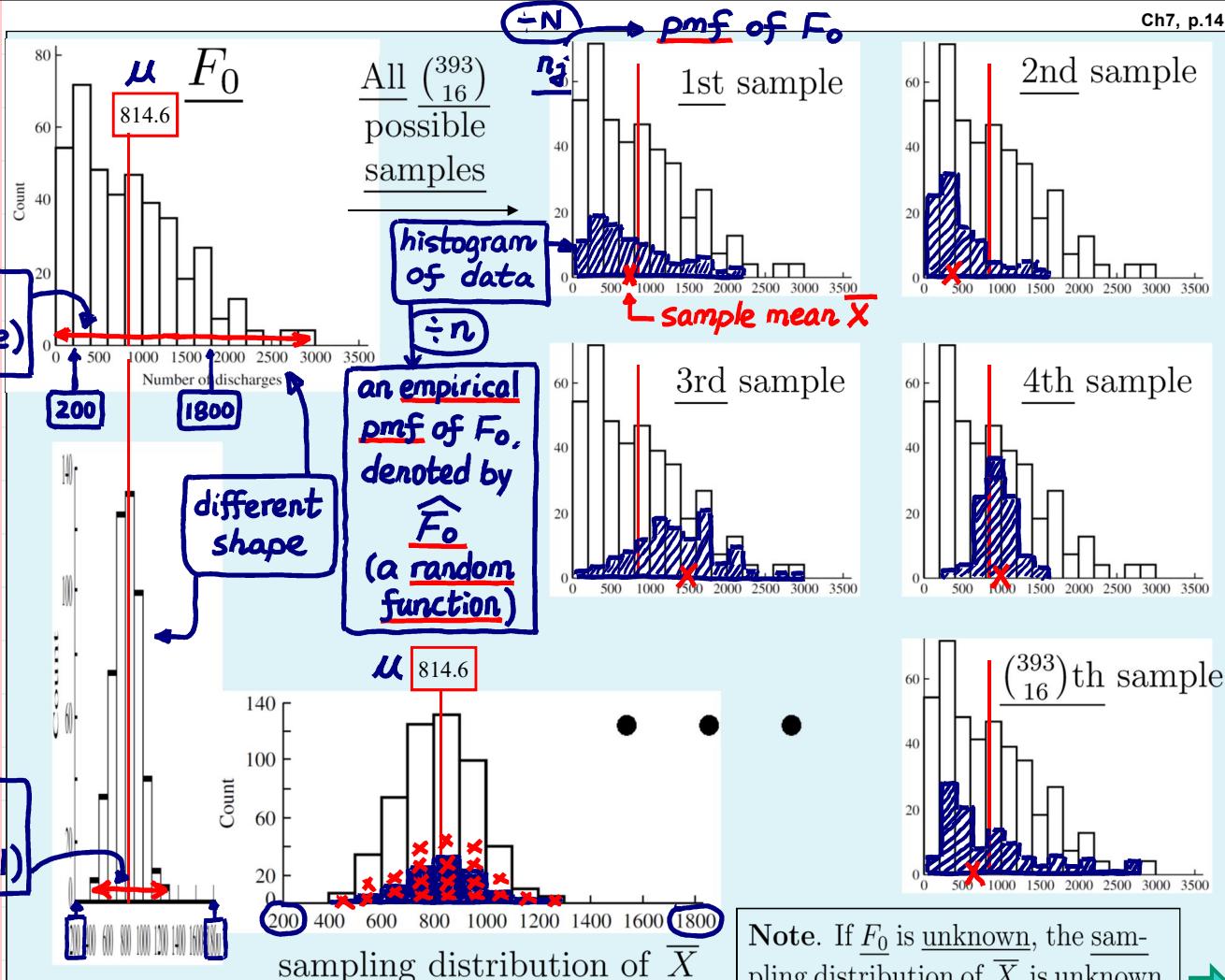
$$\Rightarrow \sum_{k=1}^n X_k \approx n \times \sum_{j=1}^m \left(\frac{n_j}{N} \right) \zeta_j$$



Example 3 (sampling distribution of sample mean, cont. Ex.2 in LNp.4)

- Consider the population of $N=393$ hospitals.
- Suppose we want to know the sampling distribution of \bar{X} of a s.r.s. without replacement of sample size $n=16$. ↗ Q: What is the source of randomness in \bar{X} ? ↗ Ans: random sampling
- There are $\binom{393}{16}$ possible samples. Note that $\binom{393}{16}$ is of order 10^{28} ! ↗
- Sampling distribution of \bar{X} is formed by the (sample) mean of each of the possible samples along with their probabilities.

Ch7, p.14



- $\binom{393}{16} = 10^{28}$ is too large
- To reduce computation, we can use the technique of simulation to understand the sampling distribution of \bar{X} .

perform an S.R.S on the $\binom{393}{16}$ samples

- randomly draw many (say, 500) s.r.s. of size n
- compute the mean of each sample
- form a histogram of the collection of these sample means

Why?

This histogram will be an approximation to the sampling distribution of \bar{X} .

- Figure 7.2 (textbook) shows the results for sample size $n=8, 16, 32$, or 64 .

Thm 1
LNp.16

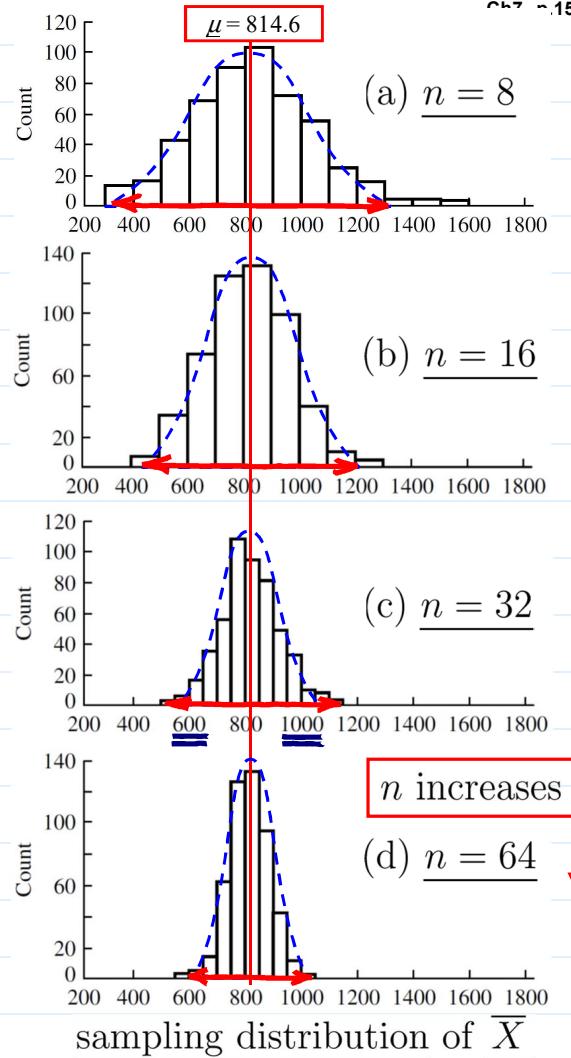
All the four histograms are centered at $\mu=814.6$.

Thm 2-3
LNp.17-18

As n increases, the histograms become less spread out.

Thm 12-13
LNp.29-30

Although shape of F_0 (population distribution) is not symmetric about μ , these histograms are nearly so.



Theorem 1 (expectation of sample mean)

- Under simple random sampling, with or without replacement,

The k th observation
Note. $X_k \sim F_0$

$$E(\underline{X}_k) = \mu \quad \text{and} \quad \text{Var}(\underline{X}_k) = \sigma^2$$

population variance
population mean

- Under simple random sampling, with or without replacement,

$$E(\bar{X}) = \mu.$$

parameter

So, \bar{X} is an unbiased estimator of μ , i.e., the sampling distribution of \bar{X} is centered at μ . **Recall. graphs in LNp.15**

Proof: Under simple random sampling, no matter with or without replacement, the marginal distribution of X_k is F_0 . Thus, we have

$$E(\underline{X}_k) = \sum_{j=1}^m \zeta_j P(X_k = \zeta_j) = \sum_{j=1}^m \zeta_j (n_j/N) = \frac{1}{N} \sum_{j=1}^m n_j \zeta_j = \mu.$$

$$\text{Var}(\underline{X}_k) = E(\underline{X}_k^2) - [E(\underline{X}_k)]^2 = \frac{1}{N} \left(\sum_{j=1}^m n_j \zeta_j^2 \right) - \mu^2 = \sigma^2,$$

Definition 3 in LNp.5

and

$$E(\bar{X}) = E\left(\frac{1}{n} \sum_{k=1}^n X_k\right) = \frac{1}{n} \sum_{k=1}^n E(X_k) = \frac{1}{n} (n \mu) = \mu.$$

Theorem 2 (variance of sample mean, s.r.s. with replacement)

Under simple random sampling with replacement, we have

$$\text{Var}(\bar{X}) = \frac{\sigma^2}{n}, \quad \text{parameter}$$

and the standard error (st.e.) of \bar{X} , denoted by $\sigma_{\bar{X}}$, is σ/\sqrt{n} .

$$n \rightarrow 4n$$

$$\sigma_{\bar{X}}^* \rightarrow \frac{1}{2} \sigma_{\bar{X}}^*$$

Proof: Under simple random sampling with replacement,

we have

$$\because \text{independent} \quad X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} F_0. \quad \leftarrow \text{LNp.II}$$

Thus, $\text{Cov}(X_k, X_l) = 0$ for any $1 \leq k < l \leq n$, and

$$\begin{array}{r} n \quad \sigma_{\bar{X}}^* \\ \hline +300 \quad 100 \quad 32 \\ +400 \quad 400 \quad 16 \\ +1200 \quad 1600 \quad 8 \\ \hline 2000 \quad 80 \quad 8 \end{array}$$

$$\text{Var}(\bar{X}) = \text{Var}\left(\frac{1}{n} \sum_{k=1}^n X_k\right) = \frac{1}{n^2} \sum_{k=1}^n \text{Var}(X_k) = \frac{1}{n^2} (n \sigma^2) = \frac{\sigma^2}{n}.$$

Note 5 (Some notes about the st.e. of sample mean, with replacement)

larger n ,
more accurate
estimator

$\sigma_{\bar{X}}^* = \sigma/\sqrt{n}$ (a measure of how spread out \bar{X} is)

measures the precision of the estimator \bar{X} .

① same $n \rightarrow$ same precision
irrelevant to N

• $\sigma_{\bar{X}}^*$ is determined by n and σ , but not N .

② No need to sample a certain proportion (i.e., n/N) of the population to reach same precision.

• $\sigma_{\bar{X}}^*$ is inversely proportional to \sqrt{n} , i.e., in order to double the accuracy, n must be quadrupled (the contribution of each observation to the accuracy of \bar{X} decays with the increase of n)

Theorem 3 (variance of sample mean, s.r.s. without replacement)

Under simple random sampling without replacement, we have

What if
 $n = N$?

$$\sigma_{\bar{X}}^* = \sqrt{\frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1}\right)}, \quad \text{parameter}$$

and the standard error of \bar{X} , denoted by $\sigma_{\bar{X}}$, is $(\sigma/\sqrt{n}) \sqrt{1 - \frac{n-1}{N-1}}$.

Proof: First, for $1 \leq k < l \leq n$,

$$\text{Cov}(X_k, X_l) = E(X_k X_l) - E(X_k) E(X_l)$$

$$= \left(\sum_{s=1}^m \sum_{t=1}^m \zeta_s \zeta_t P(X_k = \zeta_s, X_l = \zeta_t) \right) - \mu^2$$

LNp.II

$\zeta_s = \zeta_t \text{ iff } s = t$

$$= \zeta_s^2 \left(\frac{n_s(n_s-1)}{N(N-1)} \right)$$

when $\zeta_s = \zeta_t$

$$= \left[\sum_{s=1}^m \zeta_s^2 \left(\frac{n_s(n_s-1)}{N(N-1)} \right) + \sum_{s=1}^m \sum_{t \neq s} \zeta_s \zeta_t \left(\frac{n_s n_t}{N(N-1)} \right) \right] - \mu^2$$

When $\zeta_s \neq \zeta_t$

$$= \left[\frac{N}{N-1} \sum_{s=1}^m \sum_{t=1}^m \zeta_s \zeta_t \left(\frac{n_s n_t}{N \cdot N} \right) - \frac{1}{N-1} \sum_{s=1}^m \zeta_s^2 \left(\frac{n_s}{N} \right) \right] - \mu^2$$

$$= \frac{N}{N-1} E(X_k) E(X_l) - \frac{1}{N-1} E(X_k^2) - \mu^2$$

$$\sigma^2 = \frac{N}{N-1} \mu^2 - \frac{1}{N-1} (\sigma^2 + \mu^2) - \mu^2 = \frac{-\sigma^2}{N-1}$$

$$= \frac{N}{N-1} \mu^2 - \frac{1}{N-1} (\sigma^2 + \mu^2) - \mu^2 = \frac{-\sigma^2}{N-1}$$

why negative?

$$\begin{aligned} E(X_k) &= \left(\sum_{s=1}^m \zeta_s \frac{n_s}{N} \right) x \\ E(X_l) &= \left(\sum_{t=1}^m \zeta_t \frac{n_t}{N} \right) x \end{aligned}$$

Then,

$$\text{Var}(\bar{X}) = \text{Var}\left(\frac{1}{n} \sum_{k=1}^n X_k\right)$$

Note. $1 \leq k < l \leq n$ $= 0$ in with repl.

Why

 $\sigma_{\bar{X}}^2$ (without)
 $< \sigma_{\bar{X}}^{*2}$ (with)?

$$\begin{aligned} &= \frac{1}{n^2} \sum_{k=1}^n \text{Var}(X_k) + \frac{2}{n^2} \sum_{k=1}^{n-1} \sum_{l=k+1}^n \text{Cov}(X_k, X_l) \\ &= \frac{1}{n^2} \times (n\sigma^2) + \frac{2}{n^2} \times \frac{n(n-1)}{2} \times \frac{-\sigma^2}{N-1} = \frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1}\right). \end{aligned}$$

$$\begin{aligned} &\frac{1}{n} \times \frac{\sigma^2}{n} - \sigma^2 \times \frac{n-1}{n} \times \frac{1}{N-1} \\ &\approx \frac{\sigma^2}{n} - \frac{\sigma^2}{N} \end{aligned}$$

Note 6 (Some notes about the st.e. of sample mean, without replacement)

- The variance of \bar{X} in s.r.s. without replacement differs from that in s.r.s. with replacement by the factor $(1 - \frac{n-1}{N-1})$, which is called the **finite population correction**. (Note. $1 - \frac{n-1}{N-1} \rightarrow 1$ when $N \rightarrow \infty$)
- n/N : sampling fraction ($\approx \frac{n-1}{N-1}$ in most cases) $\Rightarrow 1 - \frac{n-1}{N-1} \approx \text{unsampled fraction}$
- $\sigma_{\bar{X}} \approx \sigma_{\bar{X}}^* = \sigma/\sqrt{n}$ if the sampling fraction is very small (i.e., $n \ll N$).
- $\sigma_{\bar{X}}$ also depends on n and σ , i.e., $\sigma_{\bar{X}} \downarrow$ as $n \uparrow$ and $\sigma_{\bar{X}} \uparrow$ as $\sigma \uparrow$, and $\sigma_{\bar{X}}$ depends on N only through the sampling fraction.

When $n \ll N$,
 without repl.
 \approx with repl.

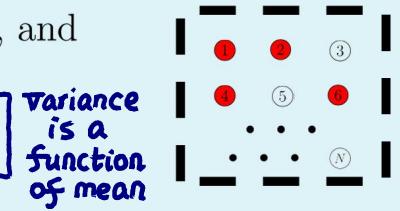
Example 4 (st.e. of sample mean, cont. Ex.2 in LNp.4)

- $N = 393$ hospitals. Consider s.r.s. without replacement of size $n = 32$.
- Because $\sigma = 589.7$ (of 393 hospitals), we have $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} \sqrt{1 - \frac{n-1}{N-1}} \approx 100$, where finite population correction $1 - \frac{31}{392} \approx 0.92$ makes little difference.
- Most of sample means differ from the population mean 814 by less than $2 \times \sigma_{\bar{X}} = 200$ (see graph (c) of Figure 7.2 in LNp.15).

$$\begin{aligned} Z &\sim \text{normal}(\mu_Z, \sigma_Z^2) \\ P(Z \in \mu_Z \pm 2\sigma_Z) &\approx 0.95 \end{aligned}$$

Theorem 4 (mean and variance of sample mean for dichotomous x_i 's)In the dichotomous case, $\bar{X} = \hat{p}$ (sample proportion), and

- under s.r.s. with or without replacement, $E(\hat{p}) = p$



Variance
is a
function
of mean

- under s.r.s. with replacement, $\text{Var}(\hat{p}) = \frac{p(1-p)}{n}$

and $np = \sum_{k=1}^n X_k$ follows binomial(n, p) distribution

mean = np
variance = $np(1-p)$

check
Note 1
in
LNp.6

of 1's in
 X_1, \dots, X_n

- under s.r.s. without replacement, $\text{Var}(\hat{p}) = \frac{p(1-p)}{n} \left(1 - \frac{n-1}{N-1}\right)$, and $np = \sum_{k=1}^n X_k$ follows hypergeometric($n, Np, N(1-p)$) distribution

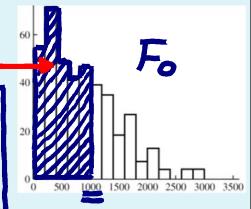
Example 5 (st.e. of sample mean, dichotomous case, cont. Ex.2 in LNp.4)

- In the population of 393 hospitals, a proportion of $p = 0.654$ had fewer than 1000 discharges. **parameter**

- $y_i = 1$ if $x_i < 1000$ and $y_i = 0$ if $x_i \geq 1000$

Data: X_1, \dots, X_n . $Y_k = I_{[0, 1000)}(X_k)$
 For $k = 1, \dots, n$.

Indicator function
 For a set A ,
 $I_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$

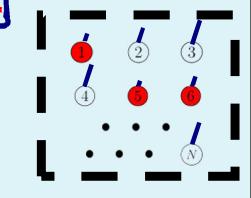


- For an s.r.s. without replacement sample

Y_1, \dots, Y_n of size $n = 32$, the estimator of p is $\hat{p} = \bar{Y}$ and

$$\hat{\sigma}_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} \sqrt{1 - \frac{n-1}{N-1}} = \sqrt{\frac{.654 \times .346}{32}} \sqrt{1 - \frac{31}{392}} = 0.08.$$

x: unknown in sampling survey

**Definition 9 (estimator of population total)**

Because $\tau = \sum_{i=1}^N x_i$ (population total) equals $N \mu$,
 an intuitive estimator of τ is $\underline{T} = N \bar{X}$. **known value**
parameter

Note. \underline{T} is not $\sum_{k=1}^n X_k = n \bar{X}$. **estimate**

c.f.

Theorem 5 (mean of population total estimator)

Under simple random sampling, with or without replacement, we have

$$E(\underline{T}) = \tau. \quad E(\underline{T}) = E(N \bar{X}) = N E(\bar{X})$$

That is, \underline{T} is an unbiased estimator of τ .

$$= N \mu = \tau$$

Theorem 6 (variance of population total estimator)

- Under simple random sampling with replacement, $Var(\underline{T}) = N^2 \left(\frac{\sigma^2}{n} \right)$. **Var(\bar{X})**
- Under simple random sampling without replacement,

c.f. the precision of \bar{X}
 • Note 5 in LNp.17
 • Note 6 in LNp.19

$$Var(\underline{T}) = N^2 \left(\frac{\sigma^2}{n} \right) \left(1 - \frac{n-1}{N-1} \right).$$

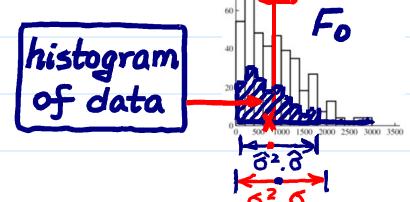
$$Var(\tau) = Var(N \bar{X}) = N^2 Var(\bar{X})$$

Note. The precision of the estimator \underline{T} does depend on population size N .

- Estimation of population variance $\sigma^2 = \sum_{j=1}^m \frac{n_j}{N} (C_j - \mu)^2 = \frac{1}{N} \sum_{i=1}^n (X_i - \mu)^2$

Recall. When F_0 is unknown, the σ in the standard error of \bar{X} is a parameter, i.e., it is unknown.

Q: how to estimate σ or σ^2 ?

**Definition 10 (sample variance)**

The sample variance of X_1, X_2, \dots, X_n is defined as $\hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^n (X_k - \bar{X})^2$.
• a function of data • a r.v. • an estimator

Theorem 7 (expectation of sample variance, s.r.s. with replacement)

Under s.r.s. with replacement, we have $E(\hat{\sigma}^2) = \sigma^2 \left(\frac{n-1}{n} \right)$. **not unbiased**