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<:| e Let random variables Z1,...,Z, and Z,4t1, ..., Zntm represent the
variablility of the n + m members sampled from the population.

e Assume Z1,...,Zy4+m are i.i.d. from a population distribution H.
e Let F' and G be the distributions of X = ¢(Z) and Y = ¢(Z), respectively.

e The transformations ¢ and ¢ might contain random components, e.g.,
&(Z) = ¢*(Z) + 9, where ¢*: a fixed function and §: a random variable.

e Let ux and py be the means of F' and G, respectively.

o Let Xz = gb(Zz),
1 =1,...,n,
= X; ~F
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Note 1 (Some notes about comparing several samples)

e The samples are drawn under different conditions,
and inferences must be made about possible effects
of these conditions, e.g., treatment and control groups.
e Two-sample comparison (and ANOVA, multiple comparison):

— methods for comparing samples from distributions
that may be different

— methods for making inference about how the distributions differ

e This chapter (and next chapter) will be concerned with analyzing mea-
surements that are continuous in nature, e.g., temperature.

Example 1 (heat of fusion of ice, Natrella, 1963)

e Two methods, A and B, were used in a
determination of the latent heat of fusion of ice.

e The investigators wished to find out how the methods differed.

e The following table gives the change in total heat from ice
at —0.72°C to water 0°C in calories per gram of mass:

Method A 79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97

80.05 &80.03 &80.02 80.00 80.02
Method B 80.02 79.94 79.98 79.97 79.97 80.03 79.95 79.97
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Definition 1 (box plot)

1. horizontal lines SonEL: side-by-side box plot
e at median, upper and lower quartiles =

80.04 |

(50%, 75%, 25% quantiles) | .

80.02 |

e /()R = upper quartile — lower quartile

80.00 | -

2. vertical lines: from upper (or lower) quar-
tile to the most extreme data point that ™%
is within a distance of 1.5 x IQR of the 7}
upper (or lower) quartile

79.94 £ -

- Method A Method B
3. each data point beyond the ends of the
vertical lines is marked with an asterisk or dot
(might be regarded as possible outliers)
150
box plot — histogram (true, unknown)
143 ) underlying
146 F ’ — distribution
144 1 » — "
142
[ |
140

o
138
— Upper quartile
1361 . ! Median |
134} | Lower quartile .
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Question 1

Q: How to define “two samples are identical” or “two samples are different”?

e Notice the distinction between “two identical random variables” (X =Y)
and “two random variables with an identical distribution” (X ~Y)

e In the statistical modeling of two-sample problem, X ~ F'and Y ~ G

Consider the different modelings in LNp.2,
e For (a), F=Gvs. F£G

e For (a), ux = py vs. ux # ty (a) F i} G //\

e For (a), ix = fiy vs. fix # fly
(fi: median)

R ()a=0w 840 F/\M_LL

e For (¢), px = py and 0% = 0% vs.

fix # py Or 0% # 0y
e For (c), ux = py (i.e., different f[
variances are allowed) vs. px # py
e For (¢), 0% = o (i.e., different
means are allowed) vs. 0% # 0% A A
o For (d), ux = py vs. px # py A_
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» Methods based on normality assumptions
e Assume that (1) ' and G are normal,

and (2) F' and G have same variance.

e Thus, the statistical model is:
Ist sample:  Xi,..., X, ~ iid. N(ux,o?)
2nd sample:  Yy,..., Y, ~ iid. N(uy,o?)
— This model contains three parameters: ux (€ R), py (€ R), o2 (> 0).
— Under this model, the “difference” between F' and G is simplified to be

the difference between pyx and py, i.e., A = pux —py (<= called “effect”),
and

} < independent (k)

ux — py =0 < no difference or no effect

Review 1 (estimation of the parameters in one-sample normal model)
Consider X7, ..., X, ~ iid. N(u,o?), and the statistics

. 1l . ,
= Ezilei —> pw  and sy =

e distribution (exercise)

— X and s% are independent

— X~ N(02/n) = (X — )0 ~ N(0,1)
— (n—1)s% ~ % | = (n—1)s% /0% ~ x2_|; n— 1: degrees of freedom
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o (Th=>",X;,, To=>", X?) is a sufficient and complete
statistic (exercise, Hint. 2-parameter exponential family)
e Optimality
— X is the uniformly minimum variance unbiased estimator
(UMVUE) of u (exercise, Hint. Lehmann-Scheffe Thm)
— X is the maximum likelihood estimator (MLE) of u (exercise, Hint.
> it (Xi — p)? )
20
— 5% is the UMVUE of 02 (exercise, Hint. Lehmann-Scheffe Thm)

. 1 n —
— The MLE of o2 is — e Z-_l(Xi —X)? (exercise)

n

log-likelihood o —g log(0?) —

Definition 1 (estimators of the parameters in the 2-sample normal model)

Under the two-sample normal model () in LNp.6,
e an intuitive estimator of px is X = L 3" X,

. . . -1 m
e an intuitive estimator of uy is Y o1 Vi,

m

o since sk = =7 2" (X; — X)? and s3 = 15 37" (V; — Y)? estimate

the same parameter o2, we can pool them to get a better estimator:
A (n-1) (m —1) (n—1)sk + (m —1)sy
P n=1D)+m-1)""F (n=1+(m-1) 02

) Ch11,p.8
Note 1 (Some notes about the estimator of &)

e s is called the pooled sample variance
2
p

2 _
Sy =

e s is a weighted average of the sample variances of the X;’s and Y;’s, where

— the weights are proportional to the degrees of freedom, it is appropriate
since if one sample is of much larger size than the other, the estimate of

o? from that sample is more reliable = it receives greater weight

2

— since E(s%) = 0* and E(sy) = 0> = s;: an unbiased estimator of o

Theorem 1 (distributions of the parameter estimators, 2-sample normal model)

e Since (Xi,...,X,), (Y1,...,Y),) are independent random variables
— (Y, sg(, Y, S%/ ) are independent random variables

- (7, Y, sf, ) are independent random variables

~ N(ux,0%/n) = y/n(X — px)/o ~ N(0,1)
~ N(py,0%/m) = /m(Y — py)/o ~ N(0,1)
e X—-Y~N (,uX — uy, an + %2) = XV)—(ex—py) N(0,1)

1 1
U\/;Jra

<

e Since (i) (n—1)s%/0? ~ x2_,, (ii) (m—1)s%./0? ~ x2,_, and (iii) s% and
2 .
sy, are independent,
Y P (n—1)s% +(m—1)s2  (m+n—2)s; 9
5 = o2 ~ Xm+n—2

o
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Theorem 2 (log-likelihood, 2-sample normal model)
Under the two-sample normal model (k) in LNp.6, the log-likelihood is pro-

portional to (exercise) . ) m )
m4+n 2 Z¢:1(Xz‘ =) Zj:l(}/j — py)
log(a ) - D) o 2
2 20 20

202 (Zz 1X2 * Zg— Y2> (Z;XZ) * Z_}; <Z;n=1Y3)

—[(m + n)/2]log(c*) — (n ux)/(202) — (mpy)/(20%)

€ J3-parameter exponential family

l(/’LXv My, 02) o =

From the log-likelihood, we have
o 2L = A[@? IX-> —n x px]

ol
o 2L _ _min Zl=1(Xz'—MX)2 YL i(Yi—py)?
002~ 202 204 204

Theorem 3 (UMVUE and MLE of the parameters in the 2-sample normal model)

o (Rl = i X Re=3 1" Y, Re=3 0 X7+ Y; ) is a sufficient and
complete statistic (Hint. 3- parameter exponential family)

e X (= Ry/n) is the UMVUE (by Lehmann-Scheffe Thm) and MLE of px

e Y (= Ry/m) is the UMVUE (by Lehmann-Scheffe Thm) and MLE of uy
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o (by Lehmann-Scheffe Thm) The pooled sample variance s is the UMVUE
of 0%, since (i) s is unbiased, and (ii)

(m+n—2)s2=(n—1)sx +(m—1)s}

= K- XP Y (Y-
= (X0 %) X+ (7 ¥2) - m¥” = Ry~ (Bifn) — (R/m)

e The MLE of ¢2 is LHSQ _ (n—l)s§(+(m— 1)3%/
m+n ° m+n

Question 2 (how to claim A=0 or A#07?)

Under the two-sample normal model (sk) in LNp.6, consider the parameter

A= px — py.

Notice that
A =0 < no difference in the two samples
e The UMVUE (by Lehmann-Scheffe Thm and A = Ry /n— R,/m) and MLE
of AisA=X-Y.
e But, A # 0 is not a strong enough evidence to reject A = 0 (Note.
P(A #0) = 1). A better way is to examine if a C.I. of A contains 0.

° Q_: how to construct an interval estimator for A7
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Review 2 (pivotal quantity of &)

A pivotal quantity for 6 is a function of data X, ..., X,, and the parameter
0, denoted by Q(X,@) _ Q(Xl,---,Xn,‘9>,

if the distribution of Q(X,#) is irrelevant to all parameters.

Theorem 4 (confidence interval of A, 2-sample normal model)
Under the two-sample normal model () in LNp.6,

e 02 known (0? is not a parameter)
— a pivotal quantity of A is

(X ) (ux — 1) — T
Qrn — _ X2V A N1
o/ttt o/t L

l—a=P(|Qza| <2(a/2))
_ p((y_?)—z(a/ma 1+ <A< (X-Y)+2(0/2)0 %+%)

A —a100(1 — )% C.L for Ais (X = Y) + 2(a/2) x (04/2 + L) since

e 02 unknown (¢? is a parameter)
— a pivotal quantity of A is
X-T) = (ux—py) _ [F=D - A/ loya+50)
= ~ TImtn—2

QT,A = 2
Sp/ 141 \/[(m+n_2)31’] 1
o2 m+n—2

Ch 11, p. 12

— 2 100(1 — a)% C.I for Ais (X = Y) £ tiyn_2(a/2) x (sp = -ﬂ%)

Note 2 (A note about the confidence intervals of A)

These confidence intervals are of the form

(estimate) + (critical value) x [(estimted) standard error],

where the (estimated) standard error of X —Y is ox_y = 04/% + - when

o? is known, and is sx_y = Spr/+ + = when o? is unknown.

Example 2 (confidence interval of A, heat of fusion of ice, cont. Ex.1 in LNp.3)
e n=13X,=280.02 s4 =0.024 m=28 Xp="7998, sp=0.031

OSPZ\/%SZ—I—%SZB:O.OQ?, S%,—Xg = Spr/ 5 + 3 = 0.012
e A 95% confidence interval for A = ps — pp is
(Xa—XpB)+t19(0.025) x 5%, _x,, = (0.04) £(2.093) x (0.012) = (0.015, 0.065).

Question 3 (how to perform testing of A=07?)

e Recall. duality between confidence interval and hypothesis testing

e Q: What are the hypothesis testings corresponding to these confidence
intervals of A?
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Theorem 5 (z-test and ¢-test for A=A, 2-sample normal model)

Under the two-sample normal model (k) in LNp.6, consider the null and alternative

hypotheses: Ho:px —py =A=Ag vs. Hp:px —py =A # A

where Ag is a known constant (Note. if Ag =0, Hy : ux = py vs. Ha : px # py),
and H 4 is a two-sided alternative. From the duality between C.I. and testing,

Cf. X (data)
< z(a/2 > < z(a/2 A
cf. .
QoA < tmyn—2(a/2) « 1QT,80] < tmin—2(/2)
the corresponding test of these confidence intervals are: ?5;%‘%’;&6
e test statistic —  — H: 0=6, vs.
X-Y)-A ==
— 02 known: Z = ( ) 0 ( cf. Rz in LNp.ll)
1, 1
g = A =
=) — A
— o2 unknown: T = ( ) 0 < cf. Qr.a in LNp.ll)
P\/ n m

test (or z-test)
rejects Hg if
and only if its

e null distribution
— 02 known: under Hy, Z ~ N(0,1)

— o2 unknown: under Hy, T ~ tpmin—2 corresponding
e level-a rejection region C.I. does not
— 0% known: |Z| > z(a/2), called z-test  (reasonable?) include Ag.
— 0% unknown: |T| > t;4n_2(a/2), called t-test  (reasonable?) ,
<:| Note 3 (Some notes about z- and ¢-tests) chthe 1

e For the null and alternative hypotheses:
Ho: A=Ay (or A<Ag) vs. Hy: A> Ay (need domain knowledge)

or b
Ho: A= Ap(or A= Ag) vs. Hy* : A < Ag (need domain knowledge)

where H and H}* are one-sided alternatives, the z- and ¢-tests are

— 0% known: Z > z(«a) for HY, and Z < —z(a) for H%*

— 02 unknown: T > t;,4pn_o(c) for HY%, and T < —tpmin—2(a) for HY*

e FYI. All the tests presented in LNp.13-14 are uniformly most powerful unbi-
ased (UMPU) tests. (Note. Its proof follows a theorem of UMPU tests for

exponential family with nuisance parameters)
e The test statistics are of the form: x‘
S
— In the numerator, (X —Y) — Ag estimates A — Ag. % [ad (5]

B

— Q: why is this estimate divided by s%_v (57_? | when m 1 and/or n T)?
e Q: if Hy not rejected, do we really accept A = Ag, say ux = py? (better to
claim “sample size is not large enough to reject Hy.”)

e statistically significant difference vs. physically significant difference

(example?) o different .
statistical standard physical standard
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Theorem 6 (likelihood ratio tests for A=A, 2-sample normal model)
All the tests presented in LNp.13-14 are likelihood ratio tests.

Proof: We only prove the case of two-sided hypothesis. For the case of one-sided
hypothesis, its proof is similar (exercise).

e Recall that
— the log-likelihood is

b= 2 (Y — puy)?
[ =log(L) o« — s 10g(02) — izt (X = 1) — Zj_l( i = hy) ,
202 202
— the test statistic of likelihood ratio test is
sup,, £
A=——— or log(A)=suplog(L)—suplog(L)=sup ! —supl,
supq £ w Q w Q

where Q2 = Ho| JH4 and w = Hy,
— a likelihood ratio test rejects Hp for small values of A (or logA).

e o2 known

— The parameter spaces ) and w are ‘
Q = {(ux,py) | uxeR, pyyeR} /=
w = {(ux,py) | pxeR, py =px — Ao} /l/
— Under 2, the MLE’s of (ux, uy) are
fixa=2X, fya =Y,
Ch11,p. 16

i (Xi =X+ 37 (Y -Y) m+tn

= sup | = l(ix,0, fv,e) € — 5 log(c?)
Q 20 2
— Under w, the log-likelihood is proportional to
R ee?) i1 (Xi —px)* XL Y — (ux — Ao))?
s 202 202 ’
and the MLE’s of (ux, py) are
W s T
] == X+——XY+A
e m+n +m+n( + Bo),
. — =
1y = [1 — Ay = X-A ¥
e — P 0 m+n( 0)+m+n ’
o ST e —Prw)?
= sup = l(:U'wall’Yw) o —
w ) ) 20-2
m+n 9
— Therefore, the log-likelihood-ratio is ) log(c?)
log(A) = l(:&'X,W7 /ly,w) - l(ﬂX,Qa ,&'Y,Q)
1 n — . m — .
= 5 [(Z¢:1Xi2 —2nXjx ., + nu?x,w + ijlez —2mY iy, + mu%/,w)

_ (Z?Zle — n72 - Z;n:le? - m72)]
1

_ 'X—_A w2 ?_A w2 — o m = =
552 [n(X = fixw)® +m(Y — fiyw)?] X - jixw =——(X-Y -2
1 mn \ — = 9 — . R

_ _T‘Z(ern)(X—Y—AO) Y vy === (X =¥~ &)




— The likelihood ratio test rejects Hy for Lkl

small values of log(A) < large values of (X —Y)— 4

Y

which is the z-test apart from constants that do not depend on the data.
e o2 unknown

— The parameter spaces {2 and w are

Q = {(MX:NY702)IIU’XER7/'LYER70-2>O}
w = {(ux,py,0)| px € R, py = px — Ag, 0> > 0}
— Under Q, the MLE’s of (ux, puy,o0?) are
fixo =X, fivo =Y, ) )
1 n m (n_l)SX+ (m_l)SY
A2 ~ 2 ~ 2
oh = —— D (K= i)+ 3 (Y = fiva) —
. . 9 m+n .9 S (X = X)? + 20501 (Y; ~-Y)?
= Z(MX,QMMY,Q: UQ) o« - log(UQ) - ~9
204
m—+n . m—+n
= ———log(6%) — —

— Under w, the log-likelihood is proportional to

m+n 9 Dt (K — px)? ZT:JYJ — (px — Ao)J?
- log(c*) — — ;
202 Dy
and the MLE’s of (ux, py,c?) are
n = m o —
I — X+ Y 4+ Ay),
P m+n T n( 0)
n — m — Ch11,p. 18
1 = fix.,—NAg= X —-A Y
Ky w HX w 0 m+n( 0)+m+n ;
]. n m
~2 = 2 Ao 2
67 = —— | D (K= hxo) + 2 (¥~ ive)?]
. = "9 m-+n -9 Z?:1(Xi = ﬂX,uJ)2 + Z;nzl(yj - :&Y,w)z
= l(:UJX,wmuY,w’O-w) o€ = 10g<0w) - 252
aUJ
m-+n . m+n
el

— Therefore, the log-likelihood-ratio is A9
~ = e ~ - ~92 m + Y23 UU)
log(A) = l(/JfX,wa HY w, Uw) - Z(MX,Q7 Ky Q, UQ) — = 2 10g ~9 and

he
& Die1 (Ko — px ) + 25y (Y — fvw)?
B n (KXt (Y VP
T (K= X2+ TR (G -V 2 (X - - Ag)?
) S (K~ X0+ S, (¥, ~ V)P
o g (X =Y — Ag)? (X —7 — Ag)?

+ X - — o
m+n 3 (X —X)2+ 37 (Y- Y)? (m+n —2)s2

— The likelihood ratio test rejects Ho for o
(X —Y) — A
small values of log(A) < large values of ,
Sp

which is the t-test apart from constants that do not depend on the data.
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Theorem 7 (power of z-test, 2-sample normal model)

When o2 is known, the power function of a level-a z-test
for Hy: A = ux—puy = Do vs. Hy: A = ux—py # Ay '
is /|

/J’A=1—<I>(z(a/2)_ A~ Ao >+@<_Z<a/2)_ OA—AO ) R

OA) =~ + —

where A € Hy, ® is the cdf of N(0,1), and
z(a/2) is the (1 — a/2)-quantile of N(0,1).

Proof. power S = P (rejection region |ux — py = A)

P[220 s o) | v = )

o '715 {3 %,L—
X —Y)—A A—-A
P(EE2 oo = 222 | — iy = 4)
o fls L o fie L
X-Y)-A A—-A
+P<( ) <—z(a/2)——0 ux—py=A>,
oy/L+ L oy/L+ L
Where[(Y—?)—A]/(a %+%>~N(O,1)When,ux—uy=A. I:>
<:| Ch 11, p. 20
A—-A
e The power o 11 as a 11 (reasonable?) or | o 1 o0, ie.,
Syl o
— as |A — Ay| increases (reasonable?), or : .
|
— as o decreases (reasonable?), or e >
— as m, m increase (reasonable?).
e When o2 is unknown, the exact power of the é

t-test can be similiarly calculated. But, this % %I % % %

calculation requires the use of noncentral t

distribution.

e Sample size determination using power. % %
— The necessary sample sizes can be é %

determined from «, o, A, and Sa.

— For example, when o2 is known and n = m,

sa-1-0(x(3) - 2525 ) v (= (5)-252F)

Y

first term second term

« Usually, one of these terms is negligible with respect to the other.




Ch 11, p. 21

x If A — Ag > 0, the first term will be dominant and

savi-a(:(3)- 252, 5)

9 2
= 0~ [0/~ ()
Q: What if A — Ag < 07 (exercise)

e Determining sample sizes using power is equivalent to using length of C.I.
For example, consider the case of o? known.

— Suppose that m, n are such that the half-length of the C.I. for A is L,, ,,.

— From Thm 4 (LNp.11), Ly, = 2(a/2) 04/ = + =

— From Thm 7 (LNp.19), the corresponding power function of L,, , is

== S50 a)

fa = 1-® (z(a/Q) - mz(aﬁ)) +2 <—Z<O‘/ A

— This property could be used to suggest sam-
ple sizes m,n under which the statistical
standard (LNp.14) is more consistent with '
the physical standard.

v

&

: ] R Ch 11, p. 22
Example 3 (power function and sample size determination)

e Figure 11.6 (textbook, p.435) gives the
power function So when n = m = 18,
o =), kg =0k e = k) (= Al = 1L
e Suppose we want to detect a difference )
of A =1 with probability (power 54) 0.9. ﬁ
The sample size should be such that

01=1—fa~® (1.96 - (A/a)«/n/Q)
— Solving for n, we find that the necessary sample size would be 525!
— This is a consequence of a large ¢ = 5 relative to the difference A = 1.

— If the experimenters want to detect such a difference with a smaller
sample size, some modification of the experimental technique to reduce

o would be necessary.

Note S (Some notes about z- and ¢-tests when 2-sample normal model does not hold)

e Q: Can we use z- or t-tests (or their corresponding C.I.) when the underlying
distributions F, G of X,Y are not normal?

Ans: Yes, if the sample sizes m,n are large. But, why? Consider the model:
1st sample: Xi,...,X, ~ iid. from F

< independent
2nd sample:  Y7,...,Y,, ~ iid. from G

where F' and G can be any continuous distributions with same finite variance.
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— Denote the means of F,G by ux, puy, respectively, and their (identical) vari-
ance by 02 (< o). Consider testing Ho : ux = py vs. Hp : ux # py.
— By CLT and LLN, when m — o0 and n — 00,

—D 2\ _bp 2 — D 1 1
-X%N@uﬂJ,Y~NOWﬁJ=$X—Y~N<mfwwﬁ<~+—>>
n m n 1k

. B o B 9 n—1 m—1 o5 P o

SR St A Al & Sy & G
— Thus
7 X-Y)—(ux —py) D
x+ when o2 is known, Qza = ( ) — Hy) ~ N(0,1)
| oy/ (7 + =)
+ when o2 is unknown,

Qra = — = —
Sp (E + E) A Sp/ o t5 (long dash), t,,
(short dash), t5, (dot),

D sh)
~ N(0,1) (by Slutsky’s Thm) VO solid)

=
A
/A

and t,,+n—2 tends to N(0,1) as m,n — 0.

e Q: How to modify the z- and ¢-tests (or their corresponding
6.1.) when the equal variance assumption in the 2-sample
normal model does not hold? Consider the model:

1st sample:  Xi,...,X, ~ iid. N(ux,o%)
2nd sample:  Y3,...,Y,, ~ iid. N(py,o?)
where ag( and 0}2, can be different. Consider Hy : ux = py vs. Ha : ux # py.

} < independent
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— This model has 4 parameters: ux, py, ai, U%, and their intuitive estimators
are X%y, Ty, % 50k, s2-% ol
— Under this model, , ,
= < ¥ % @z
*x X —-Y —>A=ux—uy andX——YNN(/Lx—-,uy,T-i‘W)
X - F) — (ux — v
* when 0%, 0y are known, Q%A = ( )0§< (v = py) ~ N(0,1),
*x when ai-, 0% are unknown, R
- G . G ) 9 5% 55
- Var(X —Y) = - 4+ —- can be estimated by s < = -+ —
(s%/n) + (s3/m)
- it has been shown (Welch, 1938) the distribution of ‘;( }2/
(0% /n) + (oy/m)

can be approximated by x?2/v where
2
[(0%/n) + (0% /m)]

UV =

(c%/m)? | (of/m)®
1 —1 2 2 2
: e [k /) + (s3/m)]
the degrees of freedom v can be estimated by 7 = EE (2 m)?
S n S m
and then rounded to the nearest intecer X = + Y =
(C R A AR = AE A A AT R A A A AT AR S A A S AL E 2 SIS A V) J.J.LU\Jb\JJ.’ n_l m_l
thus, 3

Q* — —
o 3, & AV
n T m (77‘*7;)/(77‘*7;)

and v can be substituted by its integer estimate.




Ch11,p.25

Note 6 (The circumstances under which z- and ¢-tests may be invalid)

e The distributions F, G of X,Y are not normal, and sample sizes are small
( = the null distribution of the statistic 7" (or Z) might not be close to ¢
(or N(0,1)) distribution.)
e Data contains outliers (extreme values)

— Problem of averaging data, such as X, Y, 62: sensitive to extreme values

Normal

Cauchy

x
® 4 -3 -2 -1 0 1 2 3 4

In contrast, median of data is insensitive to extreme values.
— Q: In what distributions, observing extreme values is often expected?
Ans. heavy-tail distributions, such as Cauchy C(u,0).
X1,...,X90 ~1id. N(0,1) (repeat 10 times) Xji,..., X99 ~ i.i.d. C(0,1) (repeat 10 times)

PedrRe ot

o

H o N o 5

B e —— ?é?%é?+%
° (] o °

— Some properties of Cauchy distribution
% it does not have finite moments of any order (a consequence of heavy tail)
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x if X3,...,X, are i.id ~ C(u,0), then X ~ C(u,0).
( fols if X1,...,X,, are i.i.d. from a distribution with finite variance o2,

then Var(X) = 0%/n — 0 when n — 0. )
= For 2-sample data, when F, G are Cauchy, even though the sample sizes

— D
m,n are large, the property “X,Y =& normal” does not hold.
(Q: Why do LLN and CLT not apply to Cauchy?)

Queins.

How to develop statistical methods for the circumstances under which z- and

t-tests are inappropriate?

Q: What limits the validity of the tests?

Ans. Statistical models (i.e., joint distributions of data) covered in the
2-sample normal model (a model space of dimension three) are still
not flexible enough to reflect the pattern of data

= should include more joint distributions into the model space, say enlarge

the model space to allow for F, G being any distributions

= develop statistical methods under this enlarged model space

= such statistical methods should be suitable for data of any patterns
+ Reading: textbook, 11.1, 11.2.1, 11.2.2

* A nonparametric method for 2-sample problem --- Mann-Whitney Test
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Question 5.

e In the materials taught before, we usually assume, in the statistical mod-
eling, that the data follows a particular joint distribution which contains

some unknown parameters of finite dimension.

e The statistical inferences, estimation and testing,

are then based on a formulation of these parameters.
Q: What if we do not have any knowledge about the
~ particular form of the joint distribution of data?

Consider the problem of 2-sample comparison.
e Let €2 be the collection of all continuous distributions

e Only assume that F,G € Q FDQG m
e Thus, the statistical model is: >

1st sample:  X;,...,X,, ~ 1iid. from F

< ind dent
2nd sample:  Yi,...,Y, ~ iid. from G } S (O)

— This model contains parameters of
infinitely many dimension because

dim(Q2) = o0 (why?)

— Under this model, a 2-sample comparison examines the null and alter-
native hypotheses: Hy:F=G vs. Hy:F#£G.
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Definition 2 (nonparametric models and nonparametric methods)

e Nonparametric models do not assume any particular distributional form.
Nonparametric models can be viewed as having infinitely many parameters.

(<i> parametric models: parameters are of finite dimension)

e Statistical methods developed under nonparametric models
are called nonparametric methods.

Review 3 (order statistics and ranks)

o Let Xy, Xs,..., X, berandom variables. We sort the X;’s and denote by
X1y < X@) < < X(p) the order statistics. Using the notation,

Xay = min(Xy, Xy,...,X,) is the minimum,

Xy = max(Xy,X,...,X,) isthe mazimum.
e Let R(Xl,Xz,...,Xn) = (Rl,Rg,...,Rn) such that Xz = X(Ri)a I —
1,...,n. Then, (Ry, Rs, ..., R,) is called the ranks of X1, Xs,..., X,,. No-

' tice that .
P — XZ - X ) h - ) . —
R ijl 5( 5), where 4(t) { 0 wre
data: X, X, X, X X, X
———— o— o— o— o— » R
order statistics: Xm X@ X@ X@ X@ X@

ranks: R,=1 R,=2 R;=3 R&=4 R=5  Rs=6
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Theorem 8 (sufficient and complete statistics for nonparametric models)

Let X;,...,X,, beiid. from F, where F € (.
Then, (Xna), X(2),...,X(n)) is sufficient and complete.

(<i> Xi,..., X, ~iid. N(p,0%) = (X, s%) is sufficient and complete.)

Proof. Denote the pdf of F' by f. The joint pdf of X (), X(9),..., X() is

fX(1)7X(2),m,X(n) (z1, 22, o) = nbx fz1) flze) - fzn),

for x1 < 9 < --- < x,, and zero, otherwise.
The proof of sufficiency follows from the fact that the conditional prob-

1
ability of X1,..., Xy given X(qy,..., X(,) is — which is irrelevant to F.
n!

The proof of completeness is omitted (out of the scope of this course).

Note 7 (Some notes about order statistics and ranks)

e Order statistics and ranks are defined precisely, i.e., no ties, under the condition
P(X; = X;) = 0, ¢ # j (Note. this condition holds when Xi,...,X, ~
ii.d. from F and F is a continuous distribution).

e Under (2, the dimension of data (i.e., n) cannot be reduced without losing the
information about F' (€ Q).

e Under 1-sample model, ranks + order statistics = complete data

e Order statistics are intuitive estimator of quantiles, e.g., median.
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e Ranks are invariant under any monotonic transformation of data, i.e.,
R S =S (O N E () 4 4
if H is a monotone increasing function and

R(X1,...,Xn) = (n+1) — R(H(X1),..., H(Xy)), . X

if H is a monotone decreasing function. (égf—> z- or t-tests may change signifi-
cantly under monotonic transformations of data).

»

e Replacing the data by their ranks also has the

>

effect of moderating the influence of outliers.
e Many nonparametric methods are based on order statistics and/or ranks.
e Q: Why are many nonparametric methods based on replacement of the data by
ranks? What information of data are contained in their ranks?
(exercige) — Recall. Let X1, ..., X, bei.i.d. from a continuous cdf F', and let U; = F(X;),
i=1,...,n. Then, Uy,...,U, are i.i.d. from U (0, 1).
(exercise) — Recall. If Uy,...,U, ~ iid.

U(0,1), the pdf of the ith-order
— 7 statistic Uy is

n!
(i —1)(n —1)!

ui—l (1_u)n—i7

fU(i) (u) =

for 0 < u < 1 and zero, otherwise.
Note that E(Ug;)) =i/(n+1).
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— U; = F(X;) is not a statistic because F' is an unknown function.
— But,

R;
Xi = X(ry) = Uy = F(X(ry) = Bi = (n+1) —= & (n+DE[ Ury

How to use ranks to compare two samples? Under the nonparametric model
(CJ) in LNp.27, for the null and alternative hypotheses:

Hy: F=G vs. Hy:F#@G

what data are “more extreme,” i.e., cast more doubts on Hg?

Ri].

— /¥<\G F&G _ :
0000 0000 00 6 O ] L XX )
ranks:

Theorem 9 (Mann-Whitney test or Wilcoxon rank sum test)

Consider the nonparametric model (J) in LNp.27.

e Pool all m+n observations (i.e., Xi,...,X,,Y1,...,Y,,) together and rank
them in order of increasing size, i.e.,

R(X17"'aXn7}/i7"'aYm) = (Rla---7RnaRn+17"‘7Rm+n>-
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e Test statistic Wx (or Wy)
— Let Wx = > R, and Wy = Z;nzl R,+;. They are respectively the
sums of the ranks of X;’s and Y}’s in the pooled data. Notice that

4 Wx+Wy:1+2+...+(m+n):(m‘f‘n)(??zl-I-N—i—l)
L 1
= Wy = (m+n)(7"121—|—n—|- )—Wx.

— Data with larger or smaller Wx are more extreme = tend to reject H
e Null distribution of Wy
— Under H, (F =G),

X, ... X, Y. ... Y., ~ iid F
G 1
Rla 000y R’n7 Rn—H 000y Rm+n ~ 7

— Any assignments of the ranks {1, ..., m+n} to the pooled m+n data are
equally likely, and the total number of different assignments is (m +n)!.
— Joint distribution of Ry, ..., R,:

* Consider an urn containing m + n balls,
labelled by 1,2,...,m + n, respectively.

* Sequentially draw n balls without replacement from the urn = there

are (m:”) x n! different outcomes, each with equal probability
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x Let ry,r9,...,7, be the numbers on the 1st, 2nd, ..., nth balls drawn,

respectively. Then, { :
m!
e G FY I T

— The null distribution of Wx = Ry +---+ R, (Wx
is the sum of the numbers on the n balls) can be
obtained from the joint distribution of Ry, ..., R,.

e Rejection region

— Let ny = min(n, m) be the smaller sample size, and W be the rank sum
from that sample (i.e., W = Wx if n <m and W = Wy if n > m).
x Note that under H,

E(W)_{E(R1)+...+E(Rn), ?fngm}_nl(m—{—n—l—l).
E(Rp+1)+ -+ E(Rp+m), ifn>m 2

- the null distribution of W is symmetric around E (W) (exercise).

* Let W=n(m+n+1)-W. /l\

x Let W* = min(W, W’). ' g
— Reject Hy when W* is small, i.e., W* < w

— Table 8 of Appendix B in the textbook A»

gives critical values w for W*.
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e We have assumed here that there are no ties
among the observations. If there are only a
small number of ties; tied observations are
assigned average ranks.

v

Example 4 (Mann-Whitney test, heat of fusion of ice, cont. Ex.1 in LNp.3)
e The ranks are (ties = average rank)

Method A 7.5 19.0 11.5 19.0 155 155 19.0 4.5
21.0 155 11.5 9.0 11.5
Method B 11.5 1.0 7.5 45 45 155 2.0 45

o ny =8 W=Wg=51, W =88+13+1)— W = 125, W* = min(W, W’) = 51

e two-sided test at level a = 0.01, critical value = 53
two-sided test at level a = 0.05, critical value = 60

e Therefore, the Mann-Whitney test rejects the null hypothesis at a = 0.01.

a comparison of parametric and nonparametric models

model data power on | power on

space | reduction | robustness H f‘ H Zp \ HZ /
T small | low-dim worse higher (usually) /
models lower /
DONPATAINENTIc large | high-dim better lower (us‘ually)
models higher
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Question 7.

Does Mann-Whitney test have reasonably good

powers over the whole H, : F' # G7 Note that
HoUH,={(F,G)|F,G € Q}, A»AAX&»
Hy={(F,G)|F € Q,G = F}.

e Assume that the distributions (cdfs)

F,G € Q and F,G have same shape. FC : é: G Q
A

—If X ~FandY =X+ A, where
A is an unknown constant, then
for the cdf G(y) of Y, we have

Gly)=PY <y)=P(X+A<y)=PX <y—A)=F(y—A4A),
and for the pdfs f(z) of X and ¢(y) of Y, we have
9ly) = 2Gy) = L Fy—A) = fly— Q).

e Thus, the statistical model is:
1st sample:  Xy,...,X,, ~ iid. from F

2nd sample:  Y7,....Y,, ~ iid. from G

} < independent (0)

where F' € Q and G(z) = F(z — A).

— This model contains infinitely many parameters because dim(2) = oc. |:>

<:| — Under this model, the null Hy : F' = G become Hy : A =0, G 36
and the alternative Hy : ' # G becomes Hy : A # 0, i.e.,

x HoUH4 = {(F,G)|F €Q, Gly) =Fy—A), AeR (or ma € [0,1])}
x Hy={(F,G)|F €, Gly)=F(y—A), A=0 (or ma =1/2)}
Theorem 10 (An alternative formulation of H, and H ;)
e Suppose that (1) X ~ F € Q, (2) YV ~ G where
G(z) = F(r—A), and (3) X,Y are independent. The
joint pdf of (X,Y) is f(z)g(y) = f(x)f(y — A).
e Define mao = PA(X < Y). Clearly, 0 < 7a < 1.
e Then, 7o = 1/2 if and only if A = 0.

a7 j f F(a) Fly— A) dyde
- [ f@ [Fu- )] d LS
- [ n-Fe-a) f@d=1- [ Fe-8)@)d

o If A >0, then F(x —A) < F(z) < F(z + A), Vz, and there must exist a
region A of z in which the inequalities are strict and §, f(z)dz > 0. IE>




@
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e Thus, for A > 0,
SO_OOOF(QZ-—A>f(£L') dr < SO_OOOF(QZ)f(lL'>dSE < SO_OOOF(:E+A)f(x)dI

- =

W Y W

1-PrA(X<Y) 1 — Pro(X <Y) 1-PA(X<Y)
o0 1 1 1 i
e Then, the results follow from: J Flz) flz)de = J zdz = -2°| ==.
& 0 2o 2
Theorem 11 (An alternative view of Mann-Whitney test)
Consider the nonparametric model (¢) in LNp.35. Y
e Estimation of ma: the parameter mp = Pa(X < Y) Yo ¥i |
(4) T2 ]
can be estimated by the proportion of the comparisons 233 o
for which X was less than Y, i.e., Yoy ¥i—
— consider any pairs (X;,Y;),1<i<n,1<j<m,
> X
1, fX;<Y;, 1 K& % X %
— let Zz‘j — { 0 otherwise, = TTA = % Zz:; Jz:; Zij Xgy Xy X Xy Xes)

— an alternative expression: consider the mn pairs (X (4)> Y(j)) , and let

1, if X(z) <Yv(j), . I s a = am@#Xi<Y})
mj:{ = fa=—md > Vi

0, otherwise, = am(# X <Yy}

i=1 j=1

Ch 11, p. 38

o Test Hy:mp=1/2(& A =0) vs. Hy:ma#1/2 (& A#0)

— intuitively, should reject Hy if A is too small (closer to 0) or too large

(CIOSGI' to 1) Yo Yo YeYw Yo Yo
— test statistic Uy (or Ux) 0000 0606006 660 6 6,
2 5 5 X C
« Define 1 234 567 8 91011 12

RY( 1) RY(Z) RY(:»RY(A) RY(.s) RY(G)

UYE(mn)ﬁAzzn:iZij:zn:iv;j, j=1 2 34 5 6

i=1 j=1 i=1 j=1
- Reject Hy if Uy is too small or too large (closer to 0 or mn).

x Let Ry(j) be the rank of Y{;) in the pooled sample. Then,
Z:;RY(J') = rank sum of Y}’s (or Y{;y’s) = Rnpq1 + -+ + Rpym = Wy
* Notice that
Uy =3 (W) = > (B -i) - (Em: it = )
— \ = , —

#HXe) <YYot — py - [m(m +1)]/2.

* Similarly, Ux can be defined by changing “X(;) < Y{;” in Vj; to
“X@ > Yy)”, and
- LUy = 1-ma=Pa(X>Y)
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- Ux =mn—Uy
- Ux =Wx — in(n+1)
- reject Hy if Uy is too small or too large
— null distribution of Uy: the pmf of Uy under H, can be obtained from
the null distribution of Wy by
m(m + 1) m(m + 1))
2 2
— The tests based on Uy and Wy (or Ux and W) are actually equivalent.

P(Uy:u):P<Wy— :u)zp(Wy:u+

Note 8 (A comparison of ¢-test and Mann-Whitney (M-W) test)

e The M-W test is insensitive to outliers, where as the t-test is sensitive.

Unlike t-test, the M-W test does not depend on normality assumption.

e When the normality assumption holds, the t-test is more powerful.

e However, under normality assumption, the M-W test is nearly as powerful
as the t-test. It has been shown that to attain the same power

— the total sample size required for the t-test is approximately
0.95 times the total sample size required for the M-W test.

e The M-W test is generally preferable, especially for small sample sizes.
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Theorem 12 (means and variances of Uy and Wy under H,)

Consider the nonparametric model (¢) in LNp.35. If A =0 (& ma = 1/2),
e E(Wy)=[m(m+n+1)]/2 and Var(Wy)= [mn(m+n+1)]/12
(& E(Wx) =[n(m+n+1)]/2 and Var(Wy) = [mn(m +n+ 1)]/12
since Wx = [(m +n)(m +n+1)]/2 — Wy)
e E(Uy)=mn/2 and Var(Uy)=[mn(m+n+1)]/12
(& E(Ux) =mn/2 and Var(Ux)= [mn(m+n+1)]/12
since Ux = mn — Uy)

Proof. It is enough to prove the case of Wy.

e Note that Wy = Rps1 + - + Rinan.
Under Hy: A =0, (Ryy1, -+ , Rinan) can be viewed as a
without-replacement simple random sample from the population

: {1,...,n,n+1,...,m+n}.
e Let N =m +n. Since

N N(N +1 N(N +1)2N +1
s M wmd 3 )N + 1)
k=1 —1 12
the population mean p and variance o2 of this population distribution are

1 N _N+1 ! N s N°-1
M_N<Zk=1k)_ ;— and o _N<Zk=1k)—“ = 12
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e Let R (= Wy /m) be the average of this without-replacement
sample (R,41,- .., Rnin). Then (by Thms 1 & 3 in LN, Ch7, p.16-18),

E(R)=p and Var(R) = (a?/m)[(N —m)/(N —1)].

e The results follows from E(Wy) = m E(R) and Var(Wy) = m?Var(R).

Theorem 13 (Asymptotic null distribution of Uy)

Consider the nonparametric model (¢) in LNp.35 and the null Hy : A =0
(& ma = 1/2). For m,n both greater than 10, the null distribution of Uy
(or Ux) is well approximated by a normal distribution, i.e.,

Uy — E(Uy) D N(O,1) (Or Ux — E(Ux) D

N T ~ zN(O,l)).

The proof is omitted, but some notes are given below.

Var(Ux)

e This Thm does not follow immediatedly from the ordinary CLT although
Uy =>,;2.,;%ij and Z;; ~ binomial(1, ).
But, Z;;’s are not independent.

e Similarly, the null distribution of Wy (or Wx) can be approximated by

normal, i.e., Wy — E(Wy) b Wx —=EWx) b )

) ~ N(0,1) (or Tar (V0 ~ N(0,1)

Example S (Asymptotic null dist. of Wy, heat of fusion of ice, cont. Ex.4 in LNp.34)
e n =13 (method A), m = 8 (method B), W = 51.

e Under the null, puwy = E(Wg)=[88+13+1)]/2 =88,
owy, = /Var(Wg)=+/[(8 x13)(8+13+1)]/12 =13.8.
Wp — —
e Because B — HWp _ 51 — 88 _ 968,
oOWpg 13.8

the approximate p-value is P(|N(0,1)| > 2.68) = 2 x [1 — ®(2.68)] = 0.0074
(= reject Hy at o = 0.01 = consistent with the testing result using exact
null distribution in Ex.4)

Theorem 14 (Nonparametric confidence interval for A)

Consider the nonparametric model (¢) in LNp.35.
e Q: How can we test H: A=Ay vs. Hy:A#A,,
where Ay is a known constant?

— Under Hj, we have (1) X; ~ F, (2) Y; ~ G, and (3) G(z) = F(z — Ay).
Then,

X1, oo X, Yi—= Do, o, Y — Ay ~ iid. F

— The test of Hj vs. H} using the data X;’s and Y}’s is equivalent to
testing Hy : A =0 vs. Hy : A # 0 using the data X;’s and (Y; — Ay)’s.
— To test Hj : A = Ay, can use




Ch 11. p. 43
x the test statistic: Uy(Ao) = #{Xl < Y; — Ao} = #{YJ - X; > Ao},

* the acceptance region: k(a) < Uy (4Ag) < mn — k(a),

where k(«) is the critical value determined by the significance level a

(Note. The null distribution of Uy (Ag) /'l\

is symmetric about mn/2.) ; >
e By the duality of test and C.I., a 100(1 — «)% confidence interval for A is

C={A|kla <Uy(A) <mn-—Ek(a)}.
— Let Dy, D), ..., Dumn) denote the

ordered mn differences (Y; — X;)’s. ’—»f ’_'f%
Then,

=D D e

— To see this,
* if Ag = Dig(a)), then Uy {Ag) = #{Y; — X; > Ag} = mn — k(a),

if Ag < Di(a)), then Uy (Ag) = #{Y; — X; > Ao} > mn — k(o) + 1,
thus, D)) is the leftmost point of the confidence interval C,

* if Ag < Dnn—k(a)+1), then Uy (Ag) = #{Y; — X; > Ao} > k(a),
if Ag > Dmn—k(a)+1), then Uy (Ag) = #{Y; — X; > A} < k(a) —
thus, D(mn—k(a)+1) is the rightmost point of the confidence interval C',

D(mn k(a)+1) Dmn

Example 6 (C.I. for A, heat of fusion of ice, cont. Ex.4 in LNp.34 & Ex.5 in LNp.42)
e n =13 (method A), m = 8 (method B), W = 51. Under null, E(Wpg) = 88.
e Under the significant level a = 0.05, the critical value for W5 is 60 (Ex.4,
LNp.34) = acceptance region: 61 < Wp < 88+ (88 —61) = 115
& 25<Up=Wp—[88+1)]/2=Wp—-36<T79.

o After sorting the mn = 8 x 13 = 104 differences (Y; — X;)’s, we get
D (k(a)=25) = —0.07 and  D(;ppn—k(a)+1=80) = —0.01.
A 95% confidence interval for A is (—0.07, —0.01), which does not contain 0.
[+ the C.I. (0.015, 0.065) given in Ex.2 (LNp.12)

— Note that the A here is the —A in Ex.2.

— In this case, the C.I. based on the nonparametric model
is slightly wider than the one based on the normal model.

— But, the latter C.I. relies on the validity of normality assumption. ]

Theorem 15 (Bootstrap confidence interval for T, («~ A))

Consider the nonparametric model (¢) in LNp.35 or the nonparametric model

(0) in LNp.27. (Note. (1) (O) has more models than (Q) (2) 7a = P(X <

Y) is well-defined in (¢) and (0) (3) A is well-defined only in (0))

e Bootstrapping is a numerical method that can be used to gain information
about the sampling distribution of 7p = == (#{X; < Y;}) 5 7a, and the
estimated standard error of 7.
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X1,...,X, ~ iid. from F
Yi,..., Y, ~ iid. from G

In bootstrap, we

} <« independent

— replace the ture cdf F (unknown) by the empirical cdf F), (known) of
(X1,...,X,) = (x1,...,2,) [Fp: assigns z;’s equal probabilities 1/n ]

— replace the true cdf G' (unknown) by the empirical cdf G,,, (known) of
(Yo, .. Y) = (W1, -+, Ym) [é,n: assigns y;’s equal probabilities 1/m |

Re-sample (generate data X7,..., X/, Y/, ..., Y/ using simulation) from

this model: X{,..., X! ~ iid. from F),

Y{,....,Y! ~ iid. from G

— Xi,..., X/ is a with-replacement sample from the population {z1, ..., z,},

} < independent

— Y/,..., Y is a with-replacement sample from the population {y, ..., ym}.

Repeat the re-sampling procedure many times, say B times, and
— at each time, compute iy = ——#{X] < Y/} from (X7,..., X}, Y{,...,Y})

— this produces a bootstrap sample: (7 ;,...,Tx )

A histogram of (7 ;,..., 7 p) offers an indication of the sampling distri-

bution of 7a ( = a 100(1 — a)% C.I. of ma is [ﬁ/A,(B(a/Q))?ﬁJA,(B(l—a/2))})7

(&
e the standard deviation of (7 ;,..., 7 g) — the standard error of 7a.
¢ Reading: textbook, 11.2.3
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* Comparing paired samples «—» Independent samples
» Problem formulation and statistical modeling
population
observed data : e —————
(random variables) population I e

{Xl,...,XE} ——— @ 2 2 >

%/ P4 @ | |
{ 1’ DY Y ]

© X5, Y)s are
continuous quantities
* X-Y is meaningful

ol
:@@
|
|

i :@"@d.

Data For example, in human L I
(0 e 5 A s.1.s., N - oo: population, For example, in medical study,
i % § I without replacement || * )—(z’,—S: left eye vision e X ;s: treatment
_ = 2 = with replacement || ¢ Y;’s: right eye vision * Y,’s: control
i n Xn (= iid.) of the ith person applied on the ith twins
TEIRE © (X, ), (X0 Yy), oy (X,,Y,) ~ iid. with a common
: : : »| continuous joint distribution F{(z, y) < population distribution
. Y, * (X, Y), i.e, F, might not be independent




e Let random variables Zi,..., 7, represent the variablility

® Then,forlgign,{
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Independent
of the n members sampled from the population. samples

e Assume Zi,...,Z, are ii.d. from a population distribution H(z).
o Let X =¢(Z) and Y = ¢(Z), where ¢, ¢

contain random components, and denote (@) Z — (X)Y)
(H(z)) (F(z,9))

— F(z,y): the joint distributions of (X,Y),

— ux and py: the means of X and Y, respectively,

— A= ux — ly. Because 71, ..., Z, ~iid. H(z),
Xi=¢(Zi) (X1, Y1), ..., (Xn, Yn)
Y, =v9(%;) ~iid. F(z,y)

in two independent samples case.
Yi =9(Zntj) = py + €2,

e Further assume that
(1) ¢(Z2) = ¢*(Z) + 61 and Y(Z) = ¢Y*(Z) + b9, where ¢*,¢* are fixed

functions and 01, 05 are independent random variables with mean 0

&(2) { X = ¢( Zi) = ux + €15,

distribu-
tion

(2) Z, 61, 05 are independent, ux = E[¢*(2)]
B) v(2) =9¢"(2) —A = A=¢"(2) =v*(2) py = E[p*(Z)] B
<:| MO0 i sestsismmines ey R p—. ]
Xz'z:ﬁb( ) 0 —Cb( i) + 014 =:Nx+[¢*(zi)—ux}+51i:
et | L Ye =107 (Z0) + 00 1= 6*(Z5) = A+ b =V pay + [6(Zi) = pix] + 0o

e Q: What are the sources of variation in €’s and 0’s? If we apply the
above formulation to the case of two independent samples, then

x A .
{Xizﬂx+€1i:§¢*(zi)+5u EZ:Mx+(¢*(Zi)—MX)+51i l

: |
Y = py + €95 =10 (Znyj ) + 095 —'MY+ (" (Znts ) — pix) + 025 1

e A comparison
— Increase sample sizes: increase information about px and uy (signal)

— 2 independent — paired: suppress the variation of error (noise)

Theorem 16 (A brief variance comparison of paired and independent samples)
Consider the models in the dashed frames. Under the two models,

e e=[¢"(Z2)—pux]+d8 = Var(e) =Var[p*(Z)]+ Var(d) > Var(d)
S 7 7

e 2 independent samples (n = m) | 2 {

- Xi—Y; = (ux —py) + (€1 — €25) = o}
= (ux — py) + [0°(Zi) — 0" (Zn+s)] + (615 — 035)
- XY = (ux —py) + (& — &)
= X-Y S5 A and Var(X-Y) = (¢ /n)+ (02 /n)
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e paired samples Var(X — V) under

— D, =X, =Y, = (ux — py) + (015 — 02;) the 2-independent-

P _YV_V _ =~ sample model with

D f }:_ . (mx = piv) + (61 = 02) the sample size

= X—-Y—>A=ux —uy and o?

. n=—mn (>n)
Var(X =Y) = (05, /n) + (05, /n)+—> 5

e Paired sample is more effective than independent samples in this case.

Theorem 17 (Conditions under which paired sample is more effective)
Consider the models in the dotted frames of LNp.48. Under the two models,

o BX) = E[6"(2) + 8] = E[6"(2)] = ux
B(Y) = B[y*(2)+ 8] = E[v*(2)] = uv
e Var(X) =Var[¢*(Z) + 61 = Var[¢*(2)] + Var(6:) = 0% (=02)
Var(Y) = Var[y*(Z) + 6] = Var[v*(Z)] + Var(6;) = 0% (=02))

e 2 independent samples (n = m)
— Cov(X;,Y;) = Cov|[@*(Z;) + 615, ¥*(Znyj) + 025 =0
~EX-Y)=px —pr=A
—Var(X -Y) = (0% +02) /n X

<j Ch 11, p. 50
e paired samples
- OOU(XZ', Y;) = Cov [Qb*(ZZ) + 512', Qp*(Zz) + (SQZ]
= Cov [¢*(Zi)7¢*(zi)] = 0Xy

+ Note. We do not observe (¢*(Z;),v*(Z;))’s. But, oxy can be esti-

mated using (X, Y;)’s data.
OXy

* Denote the correlation of (X;,Y;) by pxy =
Ox Oy
x Notice that  pxy #

Cor[¢*(2),¢*(2)] =
— Let D;=X;,-Y;,i=1,...,n. Then,
x Dy,...,D, areii.d.
* BE(D;) = px — py
x Var(D;) = Var(X;) + Var(V;) —2Cov(X;,Y;) = 0% + 0% —20xy

OXYy

O¢(2) Oy*(2)

— Since D=X -Y (—e->A)

x E(D)=pux —py = A
x* Var(D) = Var(X =Y) = (o + 0y —20xy) /n

= (6% + 0% —2pxyoxoy)/n |
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<:' e If pxy >0 (& oxy > 0 & Cov[¢p*(Z),¢*(Z)] > 0),
then paired sample is more effec- y

tive than independent samples.
e When ¢*(2) = ¢*(Z) — A, x -

Cov|¢*(2),¥*(2)]  =======-- -

= Cov[*(2),6(2) — A] |
— [gb*(Z)] > 0. x x

e Q: Why are independent samples

more effective than paired sam-
ples when oxy < 07

o If 0% = 0 = 02, then in the paired case
05 =Var(D)= [20°(1 - pxy)]/n and o% o =Var(X-Y)=20%/n

in the unpaired case. The relative efficiency is a%/ a%_y =1-— pxy.

— If pxy = 0.5, a paired design with n pairs of subjects yields the same
precision as an unpaired design with 2n subjects per treatment.

e From now on, the analyses of paired data are based on
DZ':XZ‘—Y;', 7,:1,,77,

e Statistical modeling for D;’s: Dy,...,D, ~ii.d. F < one-sample model
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Example 7 (Effect of cigarette smoking on platelet aggregation, Levine, 1973)

e Blood samples were drawn from 11 individuals before and after they smoked a
cigarette to measure the extent to which the blood platlets aggregated.

e data: maximum percentage of all platelets that aggregated after being exposed
to a stimulus.

1 2 3 4 5 6 7 8 9 10 11
before (Y) |25 25 27 44 30 67 53 53 52 60 28
after (X) |27 29 37 56 46 82 57 80 61 59 43

difference (D) | 2 4 10 12 16 15 4 27 9 -1 15

e Q: Do the differences D;’s indicate a clear pattern of A = ux — puy # 07

e The two-sample (unpaired) t-test for the before and after data gives a p-value =
0.1721 = the null Hy : ux = py is not rejected under o = 0.1 (812) = 289.34).

— Q: Why did the 2-sample ¢-test not reject Hp when the differences showed
such a clear pattern of ux > uy? X -7

— Note that in 2-sample ¢-test, the test statistic is |T'| =

, il
estimates o2, rather than o3. Sp\/n T m

2

, where s

°r | correlation = 0.9
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e Figure 11.7 (textbook, p.447) plots after-values vs. before-values. They are
positively correlated with a sample correlation coefficient 0.9. Pairing was a
natural and effective experimental design in this case: relative efficiency = 0.1.

* Methods based on normality assumptions

e Recall. D;=X,—-Y,;,i=1,...,n,and Dy,... D, ~iid. F.
e Assume that F'is Normal.
e Thus, the statistical model for D;’s is

Dy,...D, ~iid. N(up,o2%), A
Where ,U/D = IU’X — ILLY 1 11 (ILLD O-D) ( )

— This model contains two parameters: pp (€ R) and ¢% (> 0).

— Under this model, we can only examine whether there exists “difference”
between the means of the two paired samples, i.e.,

lp = px — by = 0 = no difference or no effect

Theorem 18 (test and confidence interval for 4/, 1-sample normal model, paired data)

Consider the model (A).
e Recall (Review 1 in LNp.6-7).

— D= %Z?:l D; — pp, and D ~ N(uD,a%/n) = /n(D — pp)/op ~ N(0,1)

X:?:l(D'i_E)2 e

- 3% = n—1 - U%a and ("—1)3% ~ U%) X721—1 = (n_l)s%/ajzj ~ X%—l

— D and s2D are independent
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e Pivotal quantity for up _ _
D—pp D—pp /n(D—pp)
Op Known QZ’MD 05 O'D/\/ﬁ oD ( y )
_D—up D—pp  Vn(D—pp)/op
— op unknown: Qr ., = = ~ tn_1

sp sp/vn [nsjed
n—1

e Test the null and alternative hypotheses at significance level a:
Ho:pp=ppo vs. Ha:pp # pppo
where pp is a known constant.
(Note. if upo = 0, this is equivalent to Hy : pux = py vs. Ha : px # py.)
— op known: reject Hy if

D —ppo oD

g /i

Il

>z2(a/2) & |D—ppp|>2(a/2)op = 2(a/2)

D

— op unknown: reject Hy if

D —ppo SD

T = NG

> th—1(a/2) & ‘b—,up,o‘ > tp—1(a/2) Sﬁztn_l(a/Q)

5
e A 100(1 — a)% confidence interval for up is

— op known: D=+ z(a/2) X o & D=+z(a/2) X (op/vn)

— op unknown: D =+t, 1(a/2) x sp & DEt,_q1(a/2) x (sp/v/n)
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Example 8 (Effect of smoking, ¢-test for paired data, cont. Ex.7 In LNp.52)

e n =11, D; = after; — before; If
e D =10.27, s = 2.405 ( = s3, = 11 x 2.405% = 63.62 03 =03 = o3,
then

= 63.62/2 =31.81 5 02 < 52 = 289.34 - o2 in Ex.7)
' ' ¢ P ' ¢ | Var(D;) = 203

e A 90% confidence interval for up is
D +t10(0.05) s = 10.27 + 1.812 x 2.40 = (5.9, 14.6),

which does not contain zero ( <i> Hj not rejected in Ex.7 using 2-sample t-test)

e The (one-sample) t-statistic is 7" = (10.27—0)/2.40 = 4.28 > ¢10(0.005) = 3.169.
The p-value of a two-sided test is less than 0.01. There is little doubt that
smoking increases platelet aggregation.

Note 9 (Some notes about one-sample ¢-test when normality assumption does not hold)

e Consider the model: Dq,...D, ~iid. F,
where F' can be any continuous distributions with finite variance.

— By CLT and LLN, when n — oo (sample size is large),
D = N(pp, 0% /n) and s, N o3

0= o n) b
— Thus, by Slutsky’s Thm, (i) o — ( D)z/( f/\/_) ~ N(0,1)
and t,_; tends to N(0,1) as n — oo. v/ $p/0p

e (): What if the sample size n is small or population variance = co?
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* A nonparametric method --- the signed rank test "

e Let Q be the collection of all continuous distributions = dim(Q2)=o00
e Consider the nonparametric statistical model: Dy,... D, ~iid. F, (V)
where F' € ().
o Let Qo ={F|F € Qand F is symmetric about 0}
— Qp C Q and dim(Qg)=00
— If F' € Qy, then the median of F'is 0. But, F' with
median zero is not necessary a distribution being symmetric about 0.
e Under the model (V), we want to test the null and alternative hypotheses:
Hy:FeQy vs. Ha:FeQ\Q
Q: Why add the “symmetric” condition in the null?

Question 8.
How to use ranks to examine “symmetric about 0”7 What data are “more

extreme,” i.e., cast more doubts on Hy?

Intuition. /\ I /‘\
Z‘ ®© o eo eodee oo Z ’/9_0_&00. o0
I'anks ; N ii 00y o0 (X ] ]

| - 5
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e A brief comparison to (2-sample) rank sum test (assume no D; = 0) ch it p-o7

— similarity: if in the paired case,
x the data {—D; | D; < 0} is treated as the 1st sample
« the data {D; | D; > 0} is treated as the 2nd sample

x then, the calculation for the paired case is equivalent
to the rank-sum statistic in the unpaired case
— difference
% In 2-sample unpaired cases, the sample sizes m,n are fixed numbers.

x In the paired case, the sizes
(Note. N_ + N, = n) are random variables.

x Under Hy,
- Itpy>o)y -+ Ipy>0] ~ i.i.d. Bernoulli(1/2),
Ny = Iip,so ~ bin(n, 1/2) and N— = n— Ny ~ bin(n, 1/2)

* When conditioned on N, (or N_), the null distribution of the test
statistic in the paired case is identical to the null distribution of
rank-sum statistic in the unpaired case.

e Alternative test: sign test (TBp.461, problem 12)

— Consider the model (V) in LNp.56. |:>

&
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— Let Qf = {F | F € Q and F' has median 0}
x Qg < Qf < Q and dim(QF)=
— Under the model (V) test the null and alternative hypotheses:
:FeQf vs. Hjy:FeQ\Qf

o k M

ecsegoco 0 o eepococoo o

— Reject Hj if N, (or N_) is small (close to O) or large (close to n)
— Null distribution of N, (or N_): bin(n, 1/2)

Theorem 19 (Wilcoxon signed rank test)

Consider the nonparametric model (V) in LNp.56. [PsllPallDDDelDo] [Di] Ds] - [D]

e test ststistic W+ (Or W_ = n(n2+1) — W+) f 12 3456 7 8 9 « R

(1) Let R; = rank of |D;|,i=1,...,n. -12 3456 7 8 9¢R
(2) Restore the signs of D;’s to the ranks R.’s, i.e., let R, = sign(D;) X R;.

(3) Wy =>""Iip>q R}, ie., sum of the ranks R;’s that have positive signs.

e Q: What values of IV, are more extreme? If there is no difference between

the two paired conditions, we expect b
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— about half the D;’s to be positive and half negative (median=07?)
— positive R;’s and negative R;’s similarly distributed (symmetric?)
and W, will not be too small or too lagre

= data with larger or smaller W, are more extreme = tend to reject Hy
e Null distribution of W

n(n+1)
- Wy e{0,1,2,..., 2%

— Under the null Hy (F is symmetric about 0)
* D; < (Ip,;>0), |Di]) and D; has the same distribution as —D;

* Dy, D», D,  ~ iid. F(z)
ndepi- > | D1l [Dsf, ..., D,| ~ iid 2F(z)—1,2>0
dent >/ o -
> Ip,>0), Iip,>o), ooy 1ip,>0] ~ 1i.i.d. Bernoulli(1/2)
~ 7
indepgn- randolmy assign to
dent

(Rl By

v

(exerciy
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* Any particular assignment of {—, +} signs to the integers 1, ..., n (the
ranks) is equally likely.

1/2 1/2 o 1/2
1L i SR
= == el e
independent

« There are 2" such assignments and for each we can calculate W, =
obtain 2" values (not all distinct) of W, each with probability 1/2".

« The probability of each distinct value of W, may thus

be calculated, giving the desired null distribution. A,

e (Two-sided) rejection region
s¢) — The null distribution of W, is symmetric around E(W,)

— Reject Hy when min(W,, W_) is small, i.e., min(W,, W_) < w

— Table 9 of Appendix B in textbook (TBp.A24) gives critical values w
o Ties

— Tie between (X;,Y;): If some of the differences D,’s are zero, the most

common technique is to discard those observations.
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— Tie between |D;|’s: If there are ties, each |D;| is assigned the average
value of the ranks for which it is tied.

— If there are a large number of ties, modifications must be made. See
Hollander and Wolfe (1973) or Lehmann (1975).

Example 9 (Smoking effect, signed-rank test for paired data, cont. Ex.7 In LNp.52)

e n=11,W_=1and Wy =[11(11+ 1)]/2 - W_ =65 = min(W_, W) =1

e From Table 9 of Appendix B (TBp.A24), the critical value for two-sided test
with significant level o = 0.01 is 5.

e Since min(W_, W, ) < 5, reject Hy at o = 0.01 (consistent with the test result
in Ex.8, LNp.55).

Note 10 (A comparison of one-sample ¢-test and signed rank test for paired data)

e Unlike (one-sample) t-test, the signed-rank test does not depend on normality
assumption.

e The signed-rank test is insensitive to outliers, whereas the ¢-test is sensitive.
e When the normality assumption holds, the t-test is more powerful.

e However, it has been shown that even when normality assumption holds, the
signed-rank test is nearly as powerful as the t-test (relatively efficiency of
signed-rank test statistic to (one-sample) t-test statistic ~ 0.95).

e The signed-rank test is generally preferable, especially for small sample sizes.
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Theorem 20 (means and variances of W, under H)

e Consider the nonparametric model (V) in LNp.56.

e Under the null hypothesis Hy: F'is symmetric about 0,

n(n+ 1) n(n+1)(2n + 1)

24

(& EW.) = [n(n+1)]/4 and Var(W_) = [n(n+1)(2n+1)]/24
since W_ = [n(n + 1)]/2 — W, )

E(W,) = and Var(W,) =

Proof.
roo 1, if the kth largest |D;| has D; > 0,
e Fork=1,...,n,let I} = _
0, otherwise.
e Under Ho, (sl D6l DI DAIDAIDal (D] 1Dl D]
— Ii,..., I, ~iid. Bernoulli(1/2),
— B(L) = 1/2 and Var() = 1/4 0l12 3456 78 9cn
o Write : : 123456 7 8§ 9cH
Wi=> IpsqRi=) kI
e Thus
’ n 1 n n(n + 1)
BWy) = Y kB(l) =5 (Zk:1k> -
n 1 n n(n+1)(2n+ 1)
_ 2 _ 2\ _
Var(Wy) = Y. kK Var(ly) = (Zkzlk ) = =
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Theorem 21 (Asymptotic null distribution of W)

e Consider the nonparametric model (V) in LNp.56.

e Under the null Hy : F' is symmetric about 0,
if the sample size n is greater than 20, the null distribution of W, is well

approximated by a normal distribution, i.e.,
W, —-EW,) b W_—EW_
il W) ~ N(0,1) or W)
Var(W,) Var(W_)

Qo

NG, 1>> |

Hint for Proof. Use the expression W, = > | kI to find the moment
generating function of W, , and show it converges (after standardization) to

the moment generating function of N(0,1), which is e?*/2.

+» Reading: textbook, 11.3




