

- A nonparametric method --- the signed rank test allows dist. with variance = ∞ , such as Cauchy. Ch 11, p. 56
- Let Ω be the collection of all continuous distributions $\Rightarrow \dim(\Omega) = \infty$
- Consider the nonparametric statistical model: $D_1, \dots, D_n \sim \text{i.i.d. } F$, (∇) where $F \in \Omega$. $P(D > d) = P(D < -d), \forall d \in \mathbb{R}$
- Let $\Omega_0 = \{F \mid F \in \Omega \text{ and } F \text{ is symmetric about } 0\}$ $P(D > 0) = P(D < 0) = 1/2$
- $\Omega_0 \subset \Omega$ and $\dim(\Omega_0) = \infty$ odd-order moments = 0, even-order moment $\in \mathbb{R}$
- If $F \in \Omega_0$, then the median of F is 0. But, F with median zero is not necessary a distribution being symmetric about 0.
- Under the model (∇) , we want to test the null and alternative hypotheses:

$$H_0: F \in \Omega_0 \quad \text{vs.} \quad H_A: F \in \Omega \setminus \Omega_0$$

symmetric about 0

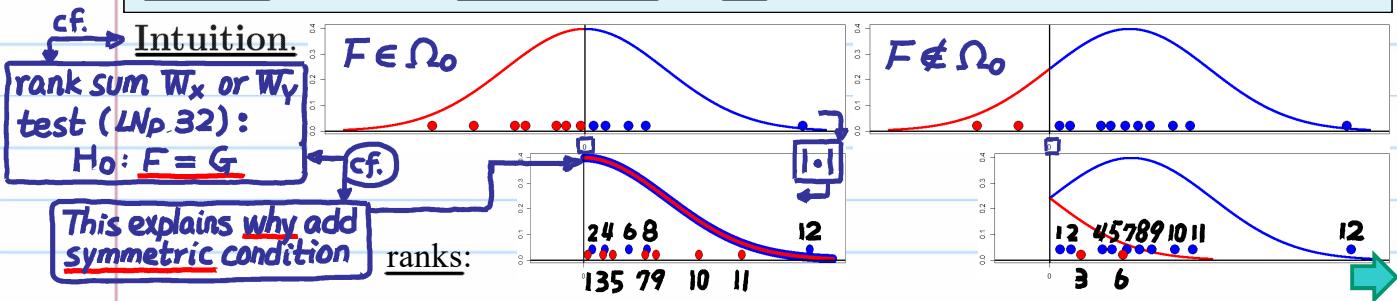
Q: Why add the "symmetric" condition in the null?

median = 0

always exists

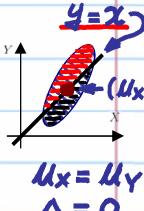
Question 8.

How to use ranks to examine "symmetric about 0"? What data are "more extreme," i.e., cast more doubts on H_0 ?



- A brief comparison to (2-sample) rank sum test (assume no $D_i = 0$) Ch 11, p. 57

– similarity: if in the paired case, W_x, W_y (LNp.32) t: F is continuous



- difference
- In 2-sample unpaired cases, the sample sizes m, n are fixed numbers.

What information contained in N_+ & N_- ?

$$N_- = \#\{D_i < 0\} \quad \text{and} \quad N_+ = \#\{D_i > 0\}$$

(Note. $N_- + N_+ = n$) are random variables.

Indicator function:

$$I_{[D_i > 0]} = \begin{cases} 1, & D_i > 0 \\ 0, & D_i \leq 0 \end{cases}$$

N_+ & N_- are known

* Under H_0 , F is symmetric about 0

• $I_{[D_1 > 0]}, \dots, I_{[D_n > 0]} \sim \text{i.i.d. Bernoulli}(1/2)$

$$\cdot N_+ = \sum_{i=1}^n I_{[D_i > 0]} \sim \text{bin}(n, 1/2) \quad \text{and} \quad N_- = n - N_+ \sim \text{bin}(n, 1/2)$$

* When conditioned on N_+ (or N_-), the null distribution of the test statistic in the paired case is identical to the null distribution of the rank-sum statistic in the unpaired case. conditional

- Alternative test: sign test (TBp.461, problem 12) cf. Mann-Whitney test
- Consider the model (∇) in LNp.56.

Under alternative,

$$I_{[D_1 > 0]}, \dots, I_{[D_n > 0]}$$

i.i.d. Bernoulli($1 - F(0)$)

cdf of D

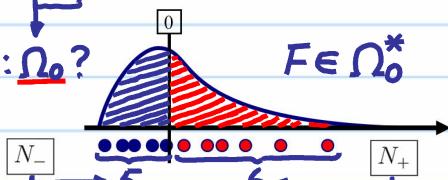
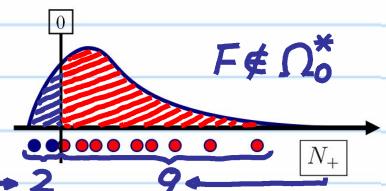
- Let $\Omega_0^* = \{F \mid F \in \Omega \text{ and } F \text{ has median 0}\}$
- * $\Omega_0 \subset \Omega_0^* \subset \Omega$ and $\dim(\Omega_0^*) = \infty \leftarrow \text{symmetric about 0} \Rightarrow \text{median} = 0$
- Under the model (∇) , test the null and alternative hypotheses:

$$H_0^* : F \in \Omega_0^* \text{ vs. } H_A^* : F \in \Omega \setminus \Omega_0^*$$

Intuition.

Is this good enough for $H_0: \Omega_0$?

Note. W_+ & W_- use more information of data than N_+ & N_-



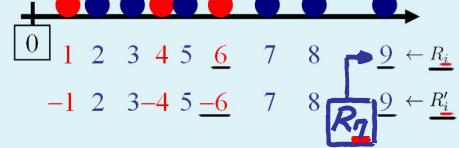
- Reject H_0^* if N_+ (or N_-) is small (close to 0) or large (close to n)
- Null distribution of N_+ (or N_-): $\text{bin}(n, 1/2)$

Theorem 19 (Wilcoxon signed rank test)

$$\rightarrow W_- = \sum_i I_{[D_i < 0]} (-R'_i) \quad R_i \quad i=1 \dots n$$

Consider the nonparametric model (∇) in LNp.56.

- test statistic W_+ (or $W_- = \frac{n(n+1)}{2} - W_+$)



(1) Let $R_i = \text{rank of } |D_i|$, $i = 1, \dots, n$.

(2) Restore the signs of D_i 's to the ranks R'_i 's, i.e., let $R'_i = \text{sign}(D_i) \times R_i$.

(3) $W_+ = \sum_{i=1}^n I_{[D_i > 0]} R'_i$, i.e., sum of the ranks R'_i 's that have positive signs.

- Q: What values of W_+ are more extreme? If there is no difference between the two paired conditions, we expect \hookrightarrow more support for H_A

- about half the D_i 's to be positive and half negative (median=0?)
- positive R'_i 's and negative R'_i 's similarly distributed (symmetric?) and W_+ will not be too small or too large \hookrightarrow similar histograms R'_i $I_{[D_i > 0]}$ \Rightarrow data with larger or smaller W_+ are more extreme \Rightarrow tend to reject H_0

- Null distribution of W_+

$$P(D > d) = P(D < -d) = P(-D > d), \forall d$$

$$P(|D| \leq x) = 2 P(0 < D \leq x) = 2 [P(D \leq x) - P(D \leq 0)] = 2 [F(x) - 1/2]$$

$P(I=1 \mid |D|=d) * D_i \Leftrightarrow (I_{[D_i > 0]}, |D_i|)$ and D_i has the same distribution as $-D_i$

$$= \frac{f(d)}{f(d) + f(-d)} * D_1, \quad D_2, \quad \dots, \quad D_n, \quad \sim \text{i.i.d. } F(x) \leftarrow \text{cdf}$$

$$= \frac{f(d)}{2f(d)} = \frac{1}{2}$$

independent $\rightarrow I_{[D_1 > 0]}, I_{[D_2 > 0]}, \dots, I_{[D_n > 0]} \sim \text{i.i.d. Bernoulli}(1/2)$

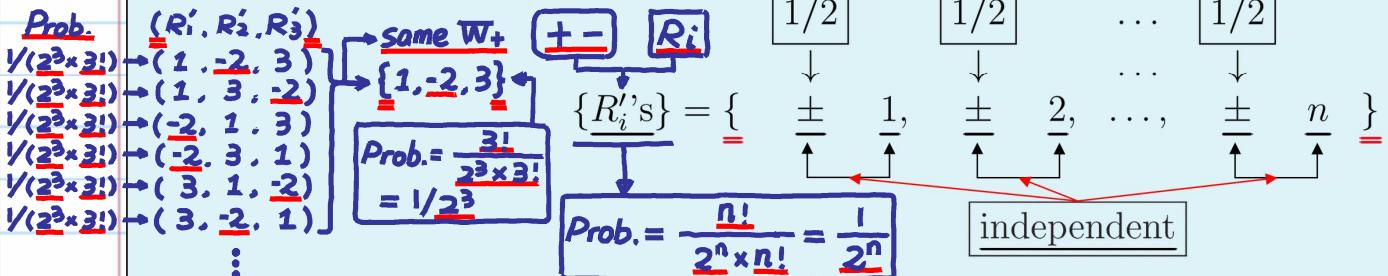
independent $\rightarrow R_1, R_2, \dots, R_n \sim \text{i.i.d. } 2F(x) - 1, x > 0$

independent $\rightarrow \{1, 2, \dots, n\} \sim ? \leftarrow \text{check LNp.32}$

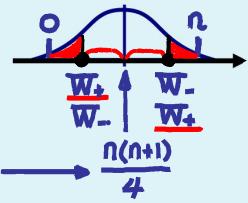
independent $\rightarrow \text{randomly assign to } (R_1, \dots, R_n) \leftarrow \text{check LNp.32}$

independent $\rightarrow \text{each outcome has (equal) probability } 1/n!$

- * Any particular assignment of $\{-, +\}$ signs to the integers $1, \dots, n$ (the ranks) is equally likely.



- * There are 2^n such assignments and for each we can calculate W_+ \Rightarrow obtain 2^n values (not all distinct) of W_+ , each with probability $1/2^n$.
- * The probability of each distinct value of W_+ may thus be calculated, giving the desired null distribution.



check
LNp.33

- (Two-sided) rejection region **Recall.** $W_+ + W_- = \frac{n(n+1)}{2}$

(exercise) – The null distribution of W_+ is symmetric around $E(W_+) = \frac{n(n+1)}{4}$

CF. \rightarrow **Reject H_0** when $\min(W_+, W_-)$ is small, i.e., $\min(W_+, W_-) \leq w$

W & W' in LNp.33 – Table 9 of Appendix B in textbook (TBp.A24) gives critical values w

- Ties

– Tie between (X_i, Y_i) : If some of the differences D_i 's are zero, the most common technique is to discard those observations.

- Tie between $|D_i|$'s: If there are ties, each $|D_i|$ is assigned the average value of the ranks for which it is tied.
- If there are a large number of ties, modifications must be made. See Hollander and Wolfe (1973) or Lehmann (1975).

Example 9 (Smoking effect, signed-rank test for paired data, cont. Ex.7 In LNp.52)

- $n = 11$, $W_- = 1$ and $W_+ = [11(11+1)]/2 - W_- = 65 \Rightarrow \min(W_-, W_+) = 1$
- From Table 9 of Appendix B (TBp.A24), the critical value for two-sided test with significant level $\alpha = 0.01$ is 5.
- Since $\min(W_-, W_+) < 5$, reject H_0 at $\alpha = 0.01$ (consistent with the test result in Ex.8, LNp.55).

Note8
(LNp.39)

cf.

Note 10 (A comparison of one-sample t -test and signed rank test for paired data)

- Unlike (one-sample) t -test, the signed-rank test does not depend on normality assumption. **good for data with outliers (\leftarrow Cauchy dist.)**
- The signed-rank test is insensitive to outliers, whereas the t -test is sensitive.
- When the normality assumption holds, the t -test is more powerful.
- However, it has been shown that even when normality assumption holds, the signed-rank test is nearly as powerful as the t -test (relative efficiency of signed-rank test statistic to (one-sample) t -test statistic ≈ 0.95).
- The signed-rank test is generally preferable, especially for small sample sizes.

can check box-plot of D_i 's

Theorem 20 (means and variances of W_{\pm} under H_0)

- Consider the nonparametric model (∇) in LNp.56.
- Under the null hypothesis H_0 : F is symmetric about 0,

$$\underline{E(W_+)} = \frac{\underline{n(n+1)}}{4} \quad \text{and} \quad \underline{\text{Var}(W_+)} = \frac{\underline{n(n+1)(2n+1)}}{24}.$$

$$(\Leftrightarrow \underline{E(W_-)} = \underline{[n(n+1)]/4} \quad \text{and} \quad \underline{\text{Var}(W_-)} = \underline{[n(n+1)(2n+1)]/24} \\ \text{since } \underline{W_-} = \underline{[n(n+1)]/2} - \underline{W_+})$$

Same variance

R_1
 R_n

indep (LNp.59)

Proof.

- For $k = 1, \dots, n$, let $I_k = \begin{cases} 1, & \text{if the } k\text{th largest } |D_i| \text{ has } D_i > 0, \\ 0, & \text{otherwise.} \end{cases}$

$$I_9 = I_{[D_9 > 0]}$$

- Under H_0 , order statistic of $I_{[D_1 > 0]}, \dots, I_{[D_n > 0]}$

cf.

- $I_{[D_1 > 0]}, \dots, I_{[D_n > 0]} \sim \text{i.i.d. Bernoulli}(1/2)$
- $E(I_k) = 1/2$ and $\text{Var}(I_k) = 1/4$.

$$|D_3| |D_6| |D_1| |D_8| |D_2| |D_9| |D_4| |D_5| |D_2|$$

- Write

$$W_+ = \sum_{i=1}^n I_{[D_i > 0]} R'_i = \sum_{k=1}^n k I_k.$$

$$i \rightarrow k(i) : \text{r.v. depending on } R_i \text{'s}$$

- Thus,

$$E(W_+) = \sum_{k=1}^n k E(I_k) = \frac{1}{2} \left(\sum_{k=1}^n k \right) = \frac{n(n+1)}{4}$$

$$k=9 \\ i=7$$

$$\text{Var}(W_+) = \sum_{k=1}^n k^2 \text{Var}(I_k) = \frac{1}{4} \left(\sum_{k=1}^n k^2 \right) = \frac{n(n+1)(2n+1)}{24}$$

Theorem 21 (Asymptotic null distribution of W_{\pm})

- Consider the nonparametric model (∇) in LNp.56.
- Under the null H_0 : F is symmetric about 0,
if the sample size n is greater than 20, the null distribution of W_{\pm} is well approximated by a normal distribution, i.e., cf. Thm13 (LNp.41)

can be used to determine critical value & rejection region

$$\frac{W_{\pm} - E(W_{\pm})}{\sqrt{\text{Var}(W_{\pm})}} \xrightarrow{D} N(0, 1) \quad \left(\text{or} \quad \frac{W_{\pm} - E(W_{\pm})}{\sqrt{\text{Var}(W_{\pm})}} \xrightarrow{D} N(0, 1) \right).$$

Hint for Proof. Use the expression $W_{\pm} = \sum_{k=1}^n k I_k$ to find the moment generating function of W_{\pm} , and show it converges (after standardization) to the moment generating function of $N(0, 1)$, which is $e^{t^2/2}$. let $n \rightarrow \infty$

$$\begin{aligned} M_{W_{\pm}}(t) &= E(e^{tW_{\pm}}) = E[e^{t(\sum_{k=1}^n k I_k)}] \\ &= E\left[\prod_{k=1}^n e^{t k I_k}\right] = \prod_{k=1}^n E[e^{t k I_k}] = \prod_{k=1}^n \frac{1}{2} (1 + e^{t k}) \\ &\quad \because I_k \sim \text{Bernoulli}(1/2) \\ &\quad \because I_1, \dots, I_n \text{ indep.} \end{aligned}$$