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Lecture Notes

Note 5 (Some notes about the F-test in ANOVA)

e Connection between the 2-sample (unpaired) ¢-test and the F-test in ANOVA

Ch 12, p. 22

(L samples, I > 2): the 2-sample t-test

is a special case of the F'-test where

only two groups are being compared (I = 2
— test statistic (recall: LN, CH11, p.13, t-test for n X;’s 'and m Y}-’S‘;ﬂ
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e Under the model (%) in LNp.5, the F-test ?;_ (=121,
in ANOVA is equivalent to the likelihood ra- o G:f},"_* SSW/ N
tio test (exercise, the proof is similar to what |® U"iergl""'_".‘_g.\ .MLEs:
presented in LN, CH11, p.15-18, for the case ﬁls‘A’:'“:uI.w:Y:___:
of two independent samples). Ow =SSIQI/ N,
« A nonparametric method --- the Kruskal-Wallis test+—~Why need it ? I\?AeCkLch:llp ®
l e Consider the model (®) in LNp.1, and further assume that pogg-é 26.
 is the collection of all continuous distributions = dim(Q)=00
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e Test the null and alternative hypotheses: Yi s

H 4 : at least one of A;’s is not 0

% ® Under ﬂ, all Y;;’s ~ i.i.d. E-——h

Under Ho. the distribution of ranks is

e Recall. The sample size of the ith sample is J;, i = 1,..., 1, irrelevant
I and N = J; 4 --- + J; is the number of all observations. to %

Theorem 9 (Kruskal-Wallis test)

use ranks, rather than raw data . to do

® Let R;;’s be the ranks of Y;;’s in the combined (pooled) sample. L AL
e Define gb_g ed average of R,.,.Rr.
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<:I e Define [IGY(Z _(23) [E(Z)l Z"'.._L with prob. ;ﬁh 12, p. 24
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which measures dispersion of R;.’s. —[ﬂé if Ai's very different
e Test statistic K Small, i§ Ai's about the same
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(Note. SSp can be found by running R;;’s through an ANOVA program)
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2 consr N (G constant
— Q: Why is no SSw in K? -SSg ®:Why ANOVA use
— Data with large values of K are more extreme, %s 0&%@
i.e., provide stronger evidence against Hj. ﬁ),
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