NTHU STAT 3875, 2018 Lecture Notes

\/* Ch 11, p. 43
Y
* the test statlstlc Uy Ao # Xi < o= Aog d #{Y X; > AO}
Ass g

. “[."25 * the acceptance region: I<:( ) S Uy(Ag) <mn —k(a), (What if Ao-o?
integer| where k(a) is the critical value determined by the significance level o

heck i di
e (Note. The null distribution of Uy (Ay) check | o mn 2;[61.?20)

w to|F is Symmetrlc about mn/2.)_—|(wp40) k()= ~ I % mn- k(o)

e By the duality of test and C.L., a 100(1 — )% confidence interval for A is
#changed
Snton]  C= A ko) < & <Tin — ko)) ”
A ixe <
— Let DQ)7 D@) ooy D(mn) denote the PWOta' mn k(“)ll" [-‘ k(d’ -1

uanti
ordered mn differences (Y; — X;)’s. %_lfy ’-»E»n k) k»f’—»
Then, What

C = [Dgg(a)), Dmn—t(@)+nl- is.its? D(1(a)) D mn—k(a) 1) DLZ
— To see this, ot

* if Ag = Dk(a)), then Uy (Ag) = #{Y; — Xi > Ag} = mn — k(o) sac
if Ag < Dk(a)), then Uy (Ag) = #{Y; — X; > Ao} > mn — k(a) + 1,
thu—s, @ the leftmost poirg of the conﬁ(glce interval C' L’E;ﬁd

* if Ag < Dimn—k(a)+1), then Uy (Ag) = ﬁ{YJ - X; > @} i@
if Ag > Dimn—k(a)t1), then Uy (Ag) = #{Y; — X; > Ag} < k(o) —

thus, D(mn—k(a)+1) is the rightmost point of the confidence interval C.

Example 6 (C.I. for A, heat of fusion of ice, cont. Ex.4 in LNp.34 & Ex.5 in LNp.42)
e n =13 (method A), m = 8 (method B), Wg = 51. Under null, E(Wg) = 88.

e Under the significant level o = 0.05, the critical value for Wy is 60 (Ex.4,
LNp.34) = acceptance region: 61 < Wpg < 88+ (88 — 61) = 115 mn - k()
U = _ = —36<T79. ;
Klo)~ 2,25 <Us =Wp —[8(8+1)]/2=Wp—-36<T79 | %t
e After sorting the mn = 8 x 13 = 104 differences (Y; — X;)’s, we get test result

normal; D(k(a)=25) = =0.07 and D(mn—k(a)+1=80) = =0.01. | in éé_!é—
seems vglid| A 95% confidence interval for A is (=0.07, —0.01), which does not contain 0.

'(':,“' [ < the C.L (0.015, 0.065) given in Ex.2 (LNp.12) L x(-1) = (0.02,0.07)
k
lot in} — Note that the A here is the —A in Ex.2. i ,::;I 4 canbe deﬁned

Np 4 })In this case, the C.I. based on the nonparametric model as ‘M

check Note8) s slightly wider than the one based on the normal model. medians " under (Q
l (LNpB%)! — But, the latter C.I. relies on the validity of normality assumption. ]

Theorem 15 (Bootstrap confidence interval for T, (- A) )

Consider the nonparametric model (¢) in LNp.35 or the nonparametric model

Z-gz (0) in LNp.27. (Note (1) (O) has more models than (¢) (2) ma = P(X <

-285 ) |Y) is well-defined in (¢) and (O) (3) A is well-defined only in @)—__J

L—e® Bootstrapping is a numerical method that can be used to gam information
*w" Jabout the sampling distribution of 7 = (#{X <Y} = T, and the
ul estlmated standard error of 7a. @—only has one obs. of this r.V. p
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<h "~ Ch 11, p. 45
L 2hosendls 7 ik f om F
e In bOOtStra we Sl hn
. P, 14 A 4—{ T < independent Q-—D

true L Yi,..., Yo, ii.d. nG

cdf B —Lom T oo _

E—- = eplace the ture cdf F' (unknown) by the empirlcal cdf F,, (known) of
Vo

(Koo X)) = (2, -, 25 [& assigns x;’s equal probabilities 1/n |

XyXear '~ * Xip)

— replace the true cdf G (unknown) by the empirical cdf G, (known) of
Qe 2 (TR ey [Gm: assigns y;’s equal probabilities 1/m]
e Re-sample (generate data Xi,..., X ,Y/,..., Y, using simulation) from

thi del: .. A
stk o of hse 3.;—[)(—1’ oy vl om S L gependente | Are Bhey
rYs: etely known e Y’ ~ 11.d. from Ci lsmular?

— X1,..., X/ is a with-replacement sample from the population {x1, ..., x,}1

— Y/ ..., Y/ is a with-replacement sample from the population {y1, ..., ¥m }:

we can control this
e Repeat the re-sampling procedure many times, sa B times, and f,%‘l,t.";”
— at each time, compute ) = —=#{X] < Y/} from (X{,..., X, Y/, ....Y")

— this produces a bootstrap sample: (ﬁg,y . ,frﬁx,B)Jca" be regfard:rdas a
e A histogram of (@ y,..., 7 p) offers an indication of the sampling distri-
- 2 ‘a [47 ~/
e bution Oi’ﬂ'A (= a100(1 — )% C.L of ma is [WA,(E(%)),’]TA,(Q(I_Q :2))}),
e the standard deviation of (7 ;,...,7x p) 5 the standard error of A
+ Reading: textbook, 11.2.3 La_"_'_l—l
Ch 11, p. 46
i i Recall. Strata
. mparing paitr amples «—» Independent samples | | DA
Lo g SiSamples - a stratum
» Problem formulation and statistical modeling
population
observed data - . ——
Such connackion (random variables) _poiuleion_ s s I
does not exist X s X r - 69 63
in 21 H—e! 3 | @ H é | : !
samples. RS 4 : i ,
= o O
* X/’s,Y;’s are | e o o | | |
- continuous quantities e o o I | 7=\ |
2-in * X-Y is meaningful I * o o qb
samples —— I e o o | | |
thecomparison of their| | mm w= == == -
cf. [ ] L [
means (s meaningful. |
Data gful._| For example, in human L=
] e i s.r.s., N & oo: population, For example, in medical study,
1 % § ! without replacement || * X;’s: left eye vision * X,’s: treatment 2-in
= 2 3 3 . .o 5 —
: : : = with replacement || * Y}’s: right eye vision * Y}’s: control sampleJ
i n X (= ii.d.) of the ith person applied on the ith twins ¢-S¢_1
NN Yﬁ
3 Y; * (X,Y), (X,,Y)), ..., (X,,Y,) ~ iid. with a common
- : »| continuous joint dlstrlbutlon Kz, y) < population distribution
sllen | v * (X,,Y), i.e., F, might not be independent  Estimation o a ratio <-
n n . — (LN,CH1, p.38~39)
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e Let random variables 7y, ...

Ch 11, p. 47

, Zy, represent the variablility

cf.

[

of the n members sampled from the population. <

—

Independent
samples

S.r.s.,
|[V>00

Check p@

LNp.2

use e.4 ’S
in INp %6
to under-
Stand

Assume 72y, ..

., Zy are 1.i.d. from a population distribution H(z).

CF.

Let X = ¢(Z) and Y = ¢(Z), where ¢, ¢

contain random components, and denote

(&, 3):

Z — XY)

(H(z)) (Elz,y))

— F(z,y): the joint distributions of (X,Y),%

— px and py: the means of X and Y, respectively,

not necessari y

independent

]

A &Y

A: shift

_ é = lx — ly. same ball

e Then, for 1 <i <mn,

Because 71, ...,

Zp, == 1d.d. Hiz)

(Xla}/l)a ey
~iid. F(z,y)

(Xn, Yn)

mean zero

in two independent samples case.

£ check [Np 2

° Further assume that

) ¢(Z) =

+51and }—w

) + (52, where ¢*, 9" are fixed

in Y.V.'§
not only

X functlons and 01, (52 are independent random variables with mean 0 J

can have different dist

same

marginal
distribu-
tion

e -
":.*"3" (2) Z, 01, 0 are independent <MY pix = E[¢"(2)]
A(3) U(2) = 8'(2) - A= A=¢(20) - L (D)«Es| py - B D) |,
<:| Then, ............................ A T . S o
g )+5h — g )+51Z Z'M_X+{¢*(Zz')—,ux}+@:

i) — pix] + 02

(3)

e g What are the sources of variation in €’s and &? If we apply the

)

above formulation to the case of two independent samples, then |add(3)
................................................. ;
Xi=px+eau=i¢"(Z)+ou  Srpx+(0(Z) —px) +0u
ﬁ = [y + €5 :§¢*(Zn+z') + 0y _'LMY + (¢*(Zn+3 ) IUX) + 52] I

data Lo A comparison gaeiatipn in £ « wariation in Z & varitionind Var(€) ¥ Var(d)
collgc?on, — Increase sample sizes: Increase information about s1x and iy (signal) ,
pa:oce ae 2 independent — paired: suppress the variation of error (noise)
(4
] .
Recall L_| Consider the models in the dashed frames. Under the two models,
‘:fw = [¢*§Z! - ,LLX] +6 = Var(e) =Var[¢*(Z)]+ Var(d) > Var!dz
& 4 - — | ——— s —
&d ]o 2 independent samples (n =m) 1 — Em t
et Xi—Y; (x — pv) + (€1 — €25) — &%&n =0
. 73-74
L I e R CAe A a9 B Ve
~X-Y=(ux—py)+ (@& —-&) L, paired samples 4—-—3
e cf
= X-YV S5 A and Var(X -Y) = (62 /n) + (02 /n) < '
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Ch 11, p. 49
@ Le paired samples - ¢"(2i)-Uy cancelled out <<= [V (X — V) under
Zarﬁ(_g_:’g Di=Xi—Y: = (ux — py) + (01 — 02) 2-indep] | the 2-independent-
LTl Y _V . = samples| | sample model with
ng-. J_g_,g = (”X ﬂ) (5—1 6—2) larger = the sample size
<ame elbimator] > X — Y S A=px—py and |<E. 2
ofA:;‘}"n; = 5"‘“"‘33 i = UZ n (>n).
ndep shoes | Var(X =Y) = (o3 /) + (o} /m)e k| — A~ =

e Paired sample is more effective than independent samples in this case.

Theorem 17 (Conditions under which paired sample is more effective) assump%on(B)
Consider the models in the dotted frames of LNp.48. Under the two models,

e E(X) = E[¢"(2) + &] = E[¢"(2)] = NX] Note. X (or ¥) have same

mar | di 2=1 d
B(Y) = B[(2) + 8] = E0(2)] = oy I |8 Baied cases

e Var(X) =Var|¢*(2) + 4] = Var|¢*(2)] + Var(8,) = 0% (= (7_621)}_

Var(Y) =Var w*(Z) +@] — W*(Z)} +Var(6y) = o2 (=02)

€2

e 2 independent samples (n = m)
~ Cou(X,Yy) = Cov[¢*(Z:) + b1, ¥ (Zusy) + 23] = 0 - paired samples
~EX-Y)=px—py=A
~Var(X -Y) = (0% + %) /n £ paired samples ,

<j : : Ch 11, p. 50
e paired samples some .V Zier2Z,
‘ ‘ _r’cov- Zi > gll. nde
— Cov(X;,Y;) = Cov|¢*(Zy) + 614, ¥*(Zs) + %} %—.‘LZ ::3'_2

* Note. We do not observe (¢*(Z;),%*(Z;))’s. But, oxy can be esti-
mated using (X, Y;)’s data.
* Denote the correlation of (X;,Y;) by pxy =
* Notice that PXY # (< inabsolute valug)
XYy
Cor[§(2),4"(2)] = —2X
. | O4r(2) Ty(2)
— et D) — 20 00— 100 . Then, LSO'x LSO'Y
* Dy,...,D, are i.id. =" (X,Yi),---,(Xn,Ya) are independent
* B(D;) = px — py
* Var(D;) = Var(Xy) + Var(V;) —2Cov(X;,Y;) = 0% + 0% —20xy

= Cov[¢"(Z:), ¥"(Z)] = oxv «E-s 2-indep. samples

OXy

0x Oy

— Smce D =X ¥ (A}
* ED)=px —py =A
* Var(D) = Var(X = Y) = (o} + 0y — 2UXY) /n
(0% + 0% —2pxy ox ov) /n «—> 2-indep. samples
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Ch 11, p. 51
9 ]
<:I F‘J@If pxy >0 (& oxy > 0 < Cov[p*(2),4*(2)] > 0), wn(z)(z%*(:)(ﬂ
Why? then paired sample is more effec- [femove (.Y
tive than independent samples.
Under{| ~ =1

(53 H® When v(2) = 9'(2) - A,
Cov[¢*(2), 4*(2)] | et
D - Cov[¢°(2),(2) -~ Al ey HE
13 = Var|¢*(Z)] > 0. = x " :
_——_0_'9 Why are independent samples
more effective than paired sam- 4=-Z~
ples when oxy < 07 X-Y=(_.‘l;-;l)u(’é)

o If 0% = oy = 0, then in the paired case

.f)'z_; 02_ = Var(D) z [20°(1 = pxy)]/n and azy__
.%_,.Yis | in the unpaired case. The relative efficiency is 075 / O% o = 1 — pxy.
2n X.,'S 5 If pxy = 0.5, a paired design with n pairs of subJects yields the same
2n Y75 precision as an unpaired design with 2n subjects per treatment.
e From now on, the analyses of paired data are based on
Di=X,—-Y, i1=1...,n ““de'(3)
e Statistical modeling for D;’s: Dy, ..., D, ~i.i.d. F < one-sample model
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