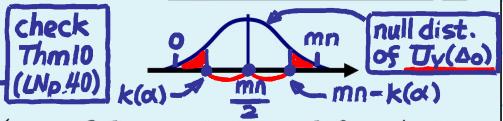


IV8

Assume it is an integer

irrelevant to F

- * the test statistic: $U_Y(\Delta_0) = \#\{X_i < Y_j - \Delta_0\} = \#\{Y_j - X_i > \Delta_0\}$, fixed changed
- * the acceptance region: $k(\alpha) \leq U_Y(\Delta_0) \leq mn - k(\alpha)$, What if $\Delta_0 = 0$?
- (Note. The null distribution of $U_Y(\Delta_0)$ is symmetric about $mn/2$.)

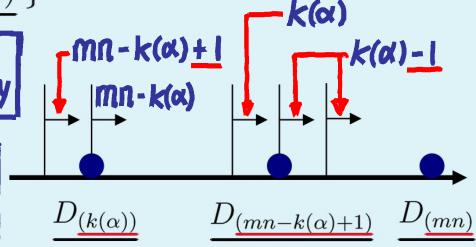


- By the duality of test and C.I., a $100(1 - \alpha)\%$ confidence interval for Δ is

$k(\alpha)$ can be obtained from the critical value of W_Y (check Thm11, LNp.39) in Table 8. TBp A21

$$\underline{C} = \{\Delta \mid \underline{k(\alpha)} \leq \underline{U_Y(\Delta)} \leq \underline{mn - k(\alpha)}\}.$$

- Let $D_{(1)}, D_{(2)}, \dots, D_{(mn)}$ denote the ordered mn differences $(Y_j - X_i)$'s. Then, $\underline{C} = [D_{(k(\alpha))}, D_{(mn-k(\alpha)+1)}]$.
- To see this,
 - * if $\Delta_0 \equiv D_{(k(\alpha))}$, then $U_Y(\Delta_0) = \#\{Y_j - X_i > \Delta_0\} \equiv mn - k(\alpha)$, accept
 - if $\Delta_0 \leq D_{(k(\alpha))}$, then $U_Y(\Delta_0) = \#\{Y_j - X_i > \Delta_0\} \geq mn - k(\alpha) + 1$, thus, $D_{(k(\alpha))}$ is the leftmost point of the confidence interval \underline{C} , reject
 - * if $\Delta_0 \leq D_{(mn-k(\alpha)+1)}$, then $U_Y(\Delta_0) = \#\{Y_j - X_i > \Delta_0\} \geq k(\alpha)$, reject
 - if $\Delta_0 \geq D_{(mn-k(\alpha)+1)}$, then $U_Y(\Delta_0) = \#\{Y_j - X_i > \Delta_0\} \leq k(\alpha) - 1$, thus, $D_{(mn-k(\alpha)+1)}$ is the rightmost point of the confidence interval \underline{C} .



pivotal quantity
What is its dist.?

Example 6 (C.I. for Δ , heat of fusion of ice, cont. Ex.4 in LNp.34 & Ex.5 in LNp.42)

- $n = 13$ (method A), $m = 8$ (method B), $W_B = 51$. Under null, $E(W_B) = 88$.
- Under the significant level $\alpha = 0.05$, the critical value for W_B^* is 60 (Ex.4, LNp.34) \Rightarrow acceptance region: $61 \leq W_B \leq 88 + (88 - 61) = 115$
- After sorting the $mn = 8 \times 13 = 104$ differences $(Y_j - X_i)$'s, we get

$$D_{(k(\alpha)=25)} = -0.07 \text{ and } D_{(mn-k(\alpha)+1=80)} = -0.01.$$

consistent with the test result in Ex.4

normality seems valid in this case (check box plot in LNp.4)

A 95% confidence interval for Δ is $(-0.07, -0.01)$, which does not contain 0. cf. the C.I. (0.015, 0.065) given in Ex.2 (LNp.12) $L \times (-1) = (0.01, 0.07)$

– Note that the Δ here is the $-\Delta$ in Ex.2. under normality

check Note8 (LNp.39)

In this case, the C.I. based on the nonparametric model is slightly wider than the one based on the normal model.

Δ can be defined as "difference of medians" under (□)

– But, the latter C.I. relies on the validity of normality assumption.]

Theorem 15 (Bootstrap confidence interval for $\pi_{\Delta} (\leftrightarrow \Delta)$)

Consider the nonparametric model (◊) in LNp.35 or the nonparametric model (□) in LNp.27. (Note. (1) (□) has more models than (◊) (2) $\pi_{\Delta} = P(X < Y)$ is well-defined in (◊) and (□) (3) Δ is well-defined only in (◊))

TBp. 284 - 285

• Bootstrapping is a numerical method that can be used to gain information about the sampling distribution of $\hat{\pi}_{\Delta} = \frac{1}{mn} (\#\{X_i < Y_j\}) \xrightarrow{e} \pi_{\Delta}$, and the estimated standard error of $\hat{\pi}_{\Delta}$. a r.v. only has one obs. of this r.v.

Under H₀
Under H_a

• In bootstrap, we

$\hat{\pi}_\Delta \leftarrow \left\{ \begin{array}{l} X_1, \dots, X_n \sim \text{i.i.d. from } \bar{F} \\ Y_1, \dots, Y_m \sim \text{i.i.d. from } \bar{G} \end{array} \right\} \leftarrow \text{independent} \quad \text{cf.}$

– replace the true cdf F (unknown) by the empirical cdf \hat{F}_n (known) of $(X_1, \dots, X_n) = (x_1, \dots, x_n)$ [\hat{F}_n : assigns x_i 's equal probabilities $1/n$]

– replace the true cdf G (unknown) by the empirical cdf \hat{G}_m (known) of $(Y_1, \dots, Y_m) = (y_1, \dots, y_m)$ [\hat{G}_m : assigns y_j 's equal probabilities $1/m$]

• Re-sample (generate data $X'_1, \dots, X'_n, Y'_1, \dots, Y'_m$ using simulation) from this model:

joint distribution of these r.v.s: completely known $\left\{ \begin{array}{l} X'_1, \dots, X'_n \sim \text{i.i.d. from } \hat{F}_n \\ Y'_1, \dots, Y'_m \sim \text{i.i.d. from } \hat{G}_m \end{array} \right\} \leftarrow \text{independent} \quad \text{Are they similar?}$

– X'_1, \dots, X'_n is a with-replacement sample from the population $\{x_1, \dots, x_n\}$

– Y'_1, \dots, Y'_m is a with-replacement sample from the population $\{y_1, \dots, y_m\}$ we can control this

• Repeat the re-sampling procedure many times, say B times, and

– at each time, compute $\hat{\pi}'_\Delta = \frac{1}{mn} \# \{X'_i < Y'_j\}$ from $(X'_1, \dots, X'_n, Y'_1, \dots, Y'_m)$

– this produces a bootstrap sample: $(\hat{\pi}'_{\Delta,1}, \dots, \hat{\pi}'_{\Delta,B})$ can be regarded as a sample of $\hat{\pi}_\Delta$

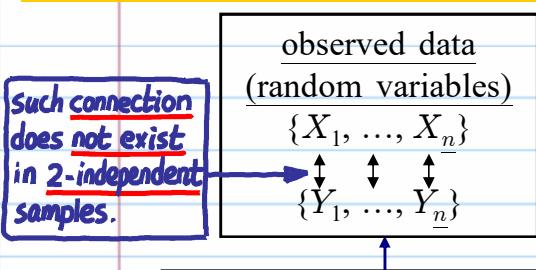
• A histogram of $(\hat{\pi}'_{\Delta,1}, \dots, \hat{\pi}'_{\Delta,B})$ offers an indication of the sampling distribution of $\hat{\pi}_\Delta$ (\Rightarrow a $100(1 - \alpha)\%$ C.I. of π_Δ is $[\hat{\pi}'_{\Delta,(B(\alpha/2))}, \hat{\pi}'_{\Delta,(B(1-\alpha/2))}]$),

• the standard deviation of $(\hat{\pi}'_{\Delta,1}, \dots, \hat{\pi}'_{\Delta,B})$ \xrightarrow{e} the standard error of $\hat{\pi}_\Delta$.

❖ Reading: textbook, 11.2.3

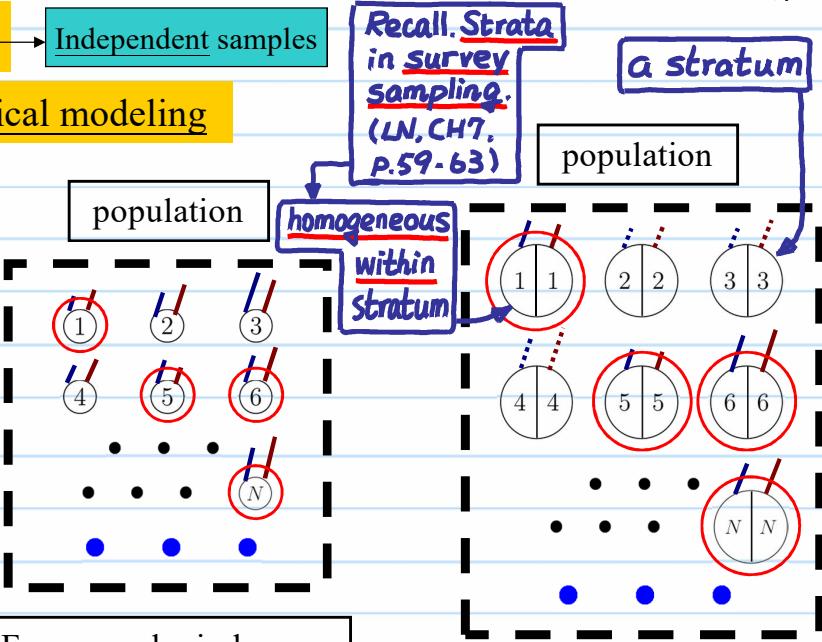
• Comparing paired samples \leftarrow Independent samples

• Problem formulation and statistical modeling



- X_i 's, Y_i 's are continuous quantities
- $X - Y$ is meaningful

the comparison of their means is meaningful.



U	block	V
1	1	X_1
1	2	X_2
:	:	\vdots
1	n	X_n
2	1	Y_1
2	2	Y_2
:	:	\vdots
2	n	Y_n

s.r.s., $N \rightarrow \infty$:
without replacement \approx with replacement
(\Rightarrow i.i.d.)

- $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n) \sim$ i.i.d. with a common continuous joint distribution $\bar{F}(x, y) \leftarrow$ population distribution
- (X_i, Y_i) , i.e., F , might not be independent

Estimation of a ratio \leftarrow cf. (LN, CH7, P.38~39)

- Let random variables Z_1, \dots, Z_n represent the variability of the n members sampled from the population.

∴ S.R.S.,
 $N \rightarrow \infty$

Assume Z_1, \dots, Z_n are i.i.d. from a population distribution $H(z)$.

check
LNp.2

use e.g.'s
in LNp.46
to under-
stand

Let $\underline{X} = \phi(\underline{Z})$ and $\underline{Y} = \psi(\underline{Z})$, where ϕ, ψ contain random components, and denote

- $F(x, y)$: the joint distributions of (X, Y) ,
- μ_X and μ_Y : the means of X and Y , respectively,

$$-\Delta = \mu_X - \mu_Y.$$

- Then, for $1 \leq i \leq n$,

same ball

$$\begin{cases} X_i = \phi(Z_i) \\ Y_i = \psi(Z_i) \end{cases}$$

Because $Z_1, \dots, Z_n \sim$ i.i.d. $H(z)$,
 $(X_1, Y_1), \dots, (X_n, Y_n)$
 \sim i.i.d. $F(x, y)$

$\psi^*(Z)$

$t = s - \Delta$ different balls

cf.

$$\begin{cases} X_i = \phi(Z_i) = \mu_X + \epsilon_{1i} \\ Y_j = \psi(Z_{n+j}) = \mu_Y + \epsilon_{2j} \end{cases}$$

mean zero

in two independent samples case.

check LNp.2

- Further assume that

(1) $\phi(Z) = \phi^*(Z) + \delta_1$ and $\psi(Z) = \psi^*(Z) + \delta_2$, where ϕ^*, ψ^* are fixed functions and δ_1, δ_2 are independent random variables with mean 0

(2) Z, δ_1, δ_2 are independent

can have different dist

same r.v.

(3) $\psi^*(Z) = \phi^*(Z) - \Delta \Rightarrow \Delta = \phi^*(Z) - \psi^*(Z)$

$$\mu_X = E[\phi^*(Z)]$$

$$\mu_Y = E[\psi^*(Z)]$$

Δ : shift
in r.v.'s.
not only
in their
dist's

★

Then,

$$\begin{cases} X_i = \phi^*(Z_i) + \delta_{1i} \\ Y_i = \psi^*(Z_i) + \delta_{2i} \end{cases} \quad \begin{array}{l} \text{cf.} \\ \dots (3) \end{array} \quad \begin{cases} \phi^*(Z_i) + \delta_{1i} = \mu_X + [\phi^*(Z_i) - \mu_X] + \delta_{1i} \\ \phi^*(Z_i) - \Delta + \delta_{2i} = \mu_Y + [\phi^*(Z_i) - \mu_X] + \delta_{2i} \end{cases}$$

same
marginal
distribution

- Q: What are the sources of variation in ϵ 's and δ 's? If we apply the above formulation to the case of two independent samples, then add (3)

$$\begin{cases} X_i = \mu_X + \epsilon_{1i} = \phi^*(Z_i) + \delta_{1i} \\ Y_j = \mu_Y + \epsilon_{2j} = \psi^*(Z_{n+j}) + \delta_{2j} \end{cases} \quad \begin{array}{l} \text{cf.} \\ \dots (3) \end{array} \quad \begin{cases} \mu_X + (\phi^*(Z_i) - \mu_X) + \delta_{1i} \\ \mu_Y + (\phi^*(Z_{n+j}) - \mu_X) + \delta_{2j} \end{cases}$$

Change
data
collection
procedure

- A comparison variation in ϵ ← variation in Z & variation in δ $\text{Var}(\epsilon) \downarrow \text{Var}(\delta)$
 - Increase sample sizes: increase information about μ_X and μ_Y (signal)
 - 2 independent → paired: suppress the variation of error (noise)

cf.
Recall
comparison
of S.R.S.
& stratified
random
sampling
in LN, CH7,
P. 73-74

Theorem 16 (A brief variance comparison of paired and independent samples) Under (3)

Consider the models in the dashed frames. Under the two models,

- $\epsilon = [\phi^*(Z) - \mu_X] + \delta \Rightarrow \text{Var}(\epsilon) = \text{Var}[\phi^*(Z)] + \text{Var}(\delta) \geq \text{Var}(\delta)$
- 2 independent samples ($n = m$)
 - $X_i - Y_j = (\mu_X - \mu_Y) + (\epsilon_{1i} - \epsilon_{2j}) \equiv \sigma_\epsilon^2$ due to the variation of members in the population
 - $= (\mu_X - \mu_Y) + [\phi^*(Z_i) - \phi^*(Z_{n+j})] + (\delta_{1i} - \delta_{2j})$
 - $\bar{X} - \bar{Y} = (\mu_X - \mu_Y) + (\bar{\epsilon}_1 - \bar{\epsilon}_2) \xrightarrow{\text{cf.}} \text{paired samples} \Rightarrow \bar{X} - \bar{Y} \xrightarrow{e} \Delta$ and $\text{Var}(\bar{X} - \bar{Y}) = (\sigma_{\epsilon_1}^2 / n) + (\sigma_{\epsilon_2}^2 / n)$

Var(D_i) $= \sigma_{\delta_1}^2 + \sigma_{\delta_2}^2$

- paired samples $D_i \equiv X_i - Y_i = (\mu_X - \mu_Y) + (\delta_{1i} - \delta_{2i})$ $\phi^*(Z_i) - \mu_X$ cancelled out $\xleftarrow{\text{cf.}}$
- $\bar{D} = \bar{X} - \bar{Y} = (\mu_X - \mu_Y) + (\bar{\delta}_1 - \bar{\delta}_2)$
- $\Rightarrow \bar{X} - \bar{Y} \xrightarrow{e} \Delta = \mu_X - \mu_Y$ and $\text{Var}(\bar{X} - \bar{Y}) = (\sigma_{\delta_1}^2 / n) + (\sigma_{\delta_2}^2 / n)$ $\xleftarrow{\text{cf.}} \text{larger}$ $\xleftarrow{\text{cf.}} \text{smaller}$

z-indep. samples

same estimator of Δ as in 2 indep. samples

Paired sample is more effective than independent samples in this case.

$\text{Var}(\bar{X} - \bar{Y})$ under the 2-independent-sample model with the sample size $n' = \frac{\sigma_{\epsilon}^2}{\sigma_{\delta}^2} n$ ($\geq n$).

Theorem 17 (Conditions under which paired sample is more effective)

remove assumption (3)

Consider the models in the dotted frames of LNP.48. Under the two models,

- $E(X) = E[\phi^*(Z) + \delta_1] = E[\phi^*(Z)] = \mu_X$ $E(Y) = E[\psi^*(Z) + \delta_2] = E[\psi^*(Z)] = \mu_Y$ **Note. X (or Y) have same marginal dist. in 2-indep & paired cases.**
- $\text{Var}(X) = \text{Var}[\phi^*(Z) + \delta_1] = \text{Var}[\phi^*(Z)] + \text{Var}(\delta_1) \equiv \sigma_X^2 (= \sigma_{\epsilon_1}^2)$ $\text{Var}(Y) = \text{Var}[\psi^*(Z) + \delta_2] = \text{Var}[\psi^*(Z)] + \text{Var}(\delta_2) \equiv \sigma_Y^2 (= \sigma_{\epsilon_2}^2)$
- 2 independent samples ($n = m$)
 - $\text{Cov}(X_i, Y_j) = \text{Cov}[\phi^*(Z_i) + \delta_{1i}, \psi^*(Z_{n+j}) + \delta_{2j}] = 0$ $\xleftarrow{\text{cf.}} \text{paired samples}$
 - $E(\bar{X} - \bar{Y}) = \mu_X - \mu_Y = \Delta$
 - $\text{Var}(\bar{X} - \bar{Y}) = (\sigma_X^2 + \sigma_Y^2) / n$ $\xleftarrow{\text{cf.}} \text{paired samples}$

- paired samples
 - $\text{Cov}(X_i, Y_i) = \text{Cov}[\phi^*(Z_i) + \delta_{1i}, \psi^*(Z_i) + \delta_{2i}] \xrightarrow{\text{cov}} \text{cov} \left[\begin{array}{l} Z_i \leftrightarrow Z_i \\ Z_i \leftrightarrow \delta_{1i} \\ Z_i \leftrightarrow \delta_{2i} \\ \delta_{1i} \leftrightarrow \delta_{2i} \end{array} \right] \xrightarrow{\text{indep.}} 2\text{-indep. samples}$
 - * Note. We do not observe $(\phi^*(Z_i), \psi^*(Z_i))$'s. But, σ_{XY} can be estimated using (X_i, Y_i) 's data.
 - * Denote the correlation of (X_i, Y_i) by $\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$
 - * Notice that $\rho_{XY} \neq$ (in absolute value) $\text{Cor}[\phi^*(Z), \psi^*(Z)] = \frac{\sigma_{XY}}{\sigma_{\phi^*(Z)} \sigma_{\psi^*(Z)}}$
 - Let $D_i = X_i - Y_i$, $i = 1, \dots, n$. Then, $\uparrow \leq \sigma_X \uparrow \leq \sigma_Y$
 - * D_1, \dots, D_n are i.i.d. $\leftarrow \because (X_1, Y_1), \dots, (X_n, Y_n)$ are independent
 - * $E(D_i) = \mu_X - \mu_Y$
 - * $\text{Var}(D_i) = \text{Var}(X_i) + \text{Var}(Y_i) - 2 \text{Cov}(X_i, Y_i) = \sigma_X^2 + \sigma_Y^2 - 2 \sigma_{XY}$
 - Since $\bar{D} = \bar{X} - \bar{Y}$ ($\xrightarrow{e} \Delta$)
 - * $E(\bar{D}) = \mu_X - \mu_Y = \Delta$
 - * $\text{Var}(\bar{D}) = \text{Var}(\bar{X} - \bar{Y}) = (\sigma_X^2 + \sigma_Y^2 - 2 \rho_{XY} \sigma_X \sigma_Y) / n$
 - $= (\sigma_X^2 + \sigma_Y^2 - 2 \rho_{XY} \sigma_X \sigma_Y) / n \xleftarrow{\text{cf.}} 2\text{-indep. samples}$

Why?

Under
(3)

13

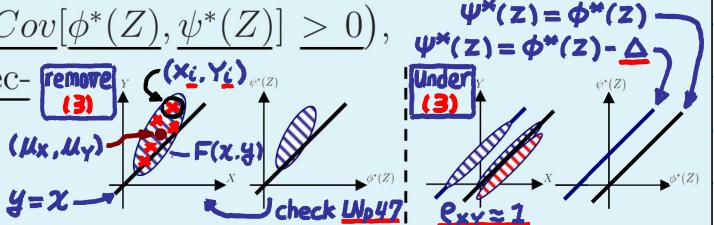
- If $\rho_{XY} > 0$ ($\Leftrightarrow \sigma_{XY} > 0 \Leftrightarrow \text{Cov}[\phi^*(Z), \psi^*(Z)] > 0$) then paired sample is more effective than independent samples.

When $\underline{\psi^*(Z)} = \underline{\phi^*(Z)} - \underline{\Delta}$,

$$\begin{aligned} & \underline{Cov}[\phi^*(Z), \psi^*(Z)] \\ &= \underline{Cov}[\phi^*(Z), \phi^*(Z) - \underline{\Delta}] \\ &= \underline{Var}[\phi^*(Z)] \geq 0. \end{aligned}$$

- **Q:** Why are independent samples more effective than paired samples when $\sigma_{XY} < 0$? $X - Y = (1)$

$$X - Y = \underline{(1, -1)} * \begin{pmatrix} X \\ Y \end{pmatrix}$$



- paired
n X_i 's
n Y_i 's
- 2-independent
2n X_i 's
2n Y_j 's

- **Q:** Why are independent samples more effective than paired samples when $\rho_{XY} < 0$?
$$X - Y = (1, -1) * \begin{pmatrix} X \\ Y \end{pmatrix}$$

$$\rho_{XY} \approx -1$$
- If $\sigma_X^2 = \sigma_Y^2 = \sigma^2$, then in the paired case
$$\sigma_{\bar{D}}^2 = \text{Var}(\bar{D}) = [2\sigma^2(1 - \rho_{XY})]/n$$
 and
$$\sigma_{\bar{X} - \bar{Y}}^2 = \text{Var}(\bar{X} - \bar{Y}) = 2\sigma^2/n$$
 in the unpaired case. The relative efficiency is
$$\frac{\sigma_{\bar{D}}^2}{\sigma_{\bar{X} - \bar{Y}}^2} = 1 - \rho_{XY}$$
.
- If $\rho_{XY} = 0.5$, a paired design with n pairs of subjects yields the same precision as an unpaired design with $2n$ subjects per treatment.
- From now on, the analyses of paired data are based on

$$D_i = X_i - Y_i, \quad i = 1, \dots, n.$$

- Statistical modeling for D_i 's: $D_1, \dots, D_n \sim \text{i.i.d. } F \Leftarrow \text{one-sample model}$

$$\frac{\sigma^2}{\sum}$$

under (3)