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Ch 11, p. 38
<::I o Test Hy:ma=1/2(&A=0) vs. Hy:mpa #1/2(& A #0)

— intuitively, should reject Hy if A is too small (closer to 0) or too large

(closer to 1) order statistics o5 { Y. > o e Yy Ya
— test statistic Uy (or Ux)
« Define - Lmdranks I 234 567 86910 11 12
= - J=a 23 2 2 L
Uy = (mn) fa = EZIEZ ZZV Thhnt (¥, ¥}
I <—)OReJect Hy if Uy is too small or too large (closer to 0 or mn).
x Let Ry( , be the rank of Y(;) in the pooled sample. Then,
m in {Yi, ,Ym}I X, X, ‘ﬁ, .Ym}
L 1RY( , = rank sum of V;’s (or Y(;)’ s)=Rpi1+--+ Rn+mj Wy
* Notice that check LNp 32
= e = m+ 1
=3 (0 =2 -0 = (LRy) -
J=1 =1 N——
—E_. #{X( ) < Y(J)}
. - = W — 2.
# {XLZYQ}‘] cha@e j——f:ﬁxed g [m(m )]/

* Similarly, Ux can be defined by changing “X;) < Y(;” in Vj; to
“X) > Y(;)”, and - check graph in ThmI0 (LNp.36)

LUy 51— ma =Pr(X >Y) «Ee 2Ty 2o Ma= R(X<Y)

Ch 11, p. 39

- Ux = mn — Uy €= Wy = L""’%_m'""'u - Wy

- Ux =Wx — in(n+1) <bs Ty = Wy - Tm(m+1)
- reject Hy if Ux is too small or too large

— null distribution of Uy: the pmf of Uy under Hy can be obtained from

.Pﬂﬁ the null distribution of Wy by gr'rtfsymme{:nc about m(m+n+1)

’ +1 +1
Spmneen Py —w) = (- "D ) - p(wy - s 22D

2
Check — The tests based on Uy and Wy (or Ux and W) are actually equivalent.

gﬂoﬁ%ﬁ Note 8 (A comparison of ¢-test and Mann-Whitney (M-W) test)

NoteT || ¢ Unlike t-test, the M-W test does not depend on normality assumption.

(INp:30) Lo can be applied when E & G are not normal, e.g..Cauchy
Ls(e) The M-W test is insensitive to outliers, where as the t-test is sensitive.
% based on ranks based on X v—7

_qn@ When the normality assumption holds, the ¢-test is more powerful.

Checkl_| e However, under normality assumption, the M-W test is nearly as powerful

?"L’:I'P“;z”“ as the t-test. It has been shown that to attain the same power < different
PS5

— the total sample size required for the t-test is approximately sample sizes

m 0.95 times the total sample size required for the M-W test.
(Wp25)| |(® The M-W test is generally preferable, especially for small sample sizes.
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Theorem 12 (means and variances of Uy and Wy -under H)

Ch 11, p. 40
—{Hol —
Their || Consider the nonparametric model (¢) in LNp.35. If A L (& @ma=1/2),
pmfs
are

(& E(Wx) =n(m+n+1)]/2 and Var(Wx) = [mn(m+n+ 1)]/12 <
since Wy = [(m +n)(m +n+1)]/2 — Wy)

E(Wy) =[mm+n+1)]/2 and Var(Wy)=[mn(m+n+1)]/12 €—

® E(Uy) =mn/2 and Var(Uy) = [mn(m+n+1)]/12 same
Ty=Wy| (& E(Ux) =mn/2 and Var(Uy) = [mn(m+n +1)]/12 « 022
—(mily :
2 Sl Uhe — i — Uy)

Note. ° 1?4: U-x/mn
Proof. It is enough to prove the case of Wy. Under Ho, E(T.)=Y2.

N
o Note that  {Ajp 32~ Wy 3 Rpi1+ -+ Ropen. Var(Ta)= ﬂlz"ﬂmk";' —>0
Under Hy: A =0, (Ryg1,---

- s mn g0

, Ry i) can be viewed as a

without-replacement simple random sample from the population [4)? 4)’!)3
Lc.heckLNp:32 {1,...,n,n+1,....m+n}. e o--jz""“
e Let N =m + n. Since - - N
popalation}— —n  N(N+1) N o, N(N+1)2N+1))
size Dy k= and )~ K= = ,
the population mean p and variance 0_2 of this population distribution are
1 N N+1 g 1 N , N?2-1
ﬁ:E<Zk=1k>: p— and O—:E(Zkﬂk)_”—: 12
e Let R (= Wy/m) be the average of this without-replacement cnthp &
sample | ——

mean sample (Rni1,. .., Rmin). Then (by Thms 1 & 3 in LN, Ch7, p.16-18),

f—samPlesize=m E(R)=p and Var(R) = (a*/m)[(N —m)/(N —1)].= nin+msl)

== =2
= S (N-IXN+1)/12 N fiite population correction

e The results follows from E(Wy) = m E(R) and Var(Wy) = m?Var(R).

Theorem 13 (Asymptotic null distribution of Uy)

Consider the nonparametric model (¢) in LNp.35 and the null Hy : A =0
(& ma = 1/2). For m,n both greater than*g, the null distribution of Uy
(or Ux) is well approximated by a normal distribution, i.e., t

- ﬂbeas'edéa’
=4 Uy — E(U: Ux — BEU ermine
ot e e 2N (or B R (0,1 )b
Nlo.D) Var(Uy) Var(Ux —— || & rejection
| =N(o.1) ]

rega‘gn

RIS

The proof is omitted, but some notes are given below.

e This Thm does not follow immediatedly from the ordinary CLT although

.  rid
Uy = ZZ Zj Zi; and  Zj P binomial(1, 7). .':'a"sf
Uy = 22 % . 1,ma ¢
But, Z;;’s are not independent. f_k,ig% X.i.d.?

g Similarly, the null distribution of Wy (or Wx) can be approximated by
‘ "o W'Y‘&

normal, i.e.

nommg, L&,y pew Wy — E(Wx) b

are linear transformation y — EWy) NO,1) |or == W) ~ N(©0,1) | .
\/V&T‘(Wx)

QIS

|of Ty .Uy, respectively v/ Var(Wy)
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Example 5 (Asymptotic null dist. of Wy, heat of fusion of ice, cont. Ex.4 in LNp.34)
e n =13 (method A), m =8 (metho B), Wg = 51.
e Under the null, Hwp = E(Wg) =[8(8 +13+1)]/2 =88,
Known constatt N~ ;1 — . /Var(Wg) = /[(8 x 13)(8 + 13 + 1)]/12 = 13.8.
not parameter | . — W—— T T
e Because N(o.1) % WB = kwp — ﬂ-@zﬂ’

o, 133

the approximate p-value is P(|N(0,1)| > 2.68) = 2 x [1 — ®(2.68)] = 0.0074

(= reject Hy at o = 0.01 = consistent with the testing result using exact
null distribution in Ex.4) check Np.33

Theorem 14 (Nonparametric confidence interval for A)

Consider the nonparametric model ({) in LNp.35.

(1® Q: How can we test Hi:A=Ay vs. Hi:A#A,,
Q] where A is a k tant? —unknown  known
between| Where Ay is a known constant runknawn known.-—-‘l
C_I-tf — Under Hg, we have (1) X; ~ F, (2) Y; ~ G, and (3) G(z) = F(z — Ay).
testing Then, X X Y Y ————7est
dital | e VB Vo By~ Lid. E « B o azo
Al

— The test of Hy vs. H} using the data X;’s and Y}’s is equivalent to
testing Hy : A = 0 vs. Hy : A # 0 using the data X;’s and (¥; —Ay)’s.
— To test Hj : A = Ay, can use

\/* Ch 11, p. 43
Y
* the test statlstlc Uy Ao # Xi < o= Aog d #{Y X; > AO}
Ass

yme .« the acceptance region: k:(_) < Uy(Ao) <mn —k(a), (What if Ao—o'>

it isan
integer| where k(a) is the critical value determined by the signiﬁcance level a
Check Il dist.
Py (Note. The null distribution of Uy (Do) check | o T IERETE
t to|E 1s Symmetrlc about mn /2 L,-A(wpyo) ko) =" L S—mn=k(e)

e By the duality of test and C.L., a 100(1 — )% confidence interval for A is
#changed
heon) €= (2] Ha) < T(AT Sn k(o) ) ”
H ixe <
— Let DQ)7 D@) coog D(mn) denote the PWOtal mn k(“)i" [-‘ k(d’ -1

uanti
ordered mn differences (Y; — X;)’s. -g-—‘ty ’-»fn!' k() k»f’—»
Then, What

€ = [D(@)); Dimn—t@)+n)] is‘its? Dk(a)) Donn—k(a)+1) DLZ
— To see this, =

* if Ag = Dk(a)), then Uy (Ag) = #{Y; — Xi > Ag} = mn — k(o) ac
lfﬁ SD(k(a))7 then Uy(Ao) = ﬁ{y‘} - XZ = ﬁ} i mn — ki(Oé) = l,
thus, D((a) is the leftmost point of th fid interval C, L&

! us, Do) is the leftmost point of the confidence interval C' J_E:cxﬁﬁ
=l ﬁ = D(mn—k(a)—l—l)7 then Uy(AO) = ﬁ{Y; - X; > ﬁ} ik(a)
if @ iD(mn—k(a)—}—l)) then Uy(Ao) = ﬁ{Y; - X; > &} ék(()é) —

thus, D(mn—k(a)+1) is the rightmost point of the confidence interval C.
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