

1. (12pts)

(a) (6pts)

- The experiment includes one treatment factors, i.e., *glycemic index (GI)*, and one block factor, i.e., *children*. The treatment factor GI has 2 levels and the block factor children has 10 levels.
- This is a randomized block design.
- An appropriate statistical model for this data is

$$Y_{ij} = \bar{\mu} + \alpha_i + \beta_j + \epsilon_{ij}, \quad i = 1, 2, \dots, 10, \quad j = 1, \dots, 10,$$

where $\bar{\mu}$ is the grand mean, α_i 's are the treatment effects, β_j 's are the block effects, and ϵ_{ij} 's are i.i.d. random errors.

(b) (6pts)

- The experiment had one treatment factor, i.e., *species*, and no block factor. This treatment factor has 3 levels.
- This is a one-way layout.
- An appropriate statistical model for this data is

$$Y_{ij} = \bar{\mu} + \alpha_i + \epsilon_{ij}, \quad i = 1, 2, 3, \quad j = 1, \dots, 20,$$

where $\bar{\mu}$ is the grand mean, α_i 's are the treatment effects, and ϵ_{ij} 's are i.i.d. random errors.

2. (24pts) Let $Z_i = D_i - \xi_0$, $i = 1, \dots, n$. Then, Z_1, \dots, Z_n are i.i.d. from $f(x + \xi_0)$. Denote the median of $f(x + \xi_0)$ by $\xi^{(Z)}$. Because $f(x)$ has median ξ_0 if and only if $f(x + \xi_0)$ has median 0, testing $H_0 : \xi = \xi_0$ using the data D_1, \dots, D_n is equivalent to testing

$$H_0 : \xi^{(Z)} = 0 \quad \text{vs.} \quad H_0 : \xi^{(Z)} \neq 0$$

using the data Z_1, \dots, Z_n . We can apply the sign test or the signed-rank test on the data Z_i 's to test $H_0 : \xi^{(Z)} = 0$ (i.e., $\xi = \xi_0$).

(a) (12pts) Sign test using Z_i 's

- test statistic: $N_+ = \#\{Z_i > 0\} = \#\{D_i > \xi_0\}$ (or $N_- = \#\{Z_i < 0\} = \#\{D_i < \xi_0\}$)
- null distribution: under H_0 , $N_+ \sim \text{binomial}(n, 1/2)$ (or $N_- \sim \text{binomial}(n, 1/2)$)
- rejection region: reject H_0 if N_+ is small (close to 0) or large (close to n) (or N_- is small or large), i.e., $|N_+ - n/2| > c$ (or $|N_- - n/2| > c$), where c is the critical value from $\text{binomial}(n, 1/2)$.

(b) (12pts) Wilcoxon signed-rank test using Z_i 's

- test statistic
 - i. Let R_1, \dots, R_n be the ranks of $|Z_1|, \dots, |Z_n|$ (i.e., ranks of $|D_1 - \xi_0|, \dots, |D_n - \xi_0|$).
 - ii. Restore the signs of Z_i 's (i.e., signs of $(D_i - \xi_0)$'s) to the ranks R_i 's, obtaining signed ranks $R'_i = \text{sign}(Z_i) \times R_i$, $i = 1, \dots, n$.

iii. The test statistic W_+ is the sum of the signed ranks R'_i 's that have positive signs, i.e.,

$$W_+ = \sum_{i=1}^n I_{[Z_i > 0]} R'_i = \sum_{i=1}^n I_{[Z_i > 0]} R_i = \sum_{i=1}^n I_{[D_i > \xi_0]} R_i, \quad (\text{I})$$

where I is the indicator function.

• null distribution

- Under H_0 , each possible outcomes of R_i 's have equal probability $1/n!$, and $I_{[Z_1 > 0]}, \dots, I_{[Z_n > 0]} \sim \text{i.i.d. Bernoulli}(1/2)$. Furthermore, the two sets of random variables $\{R_i\}$ and $\{I_{[Z_i > 0]}\}$ are independent. The exact null distribution of W_+ can be exhaustively enumerated from all possible outcomes of $\{R_i\}$ and $\{I_{[Z_i > 0]}\}$, each with probability $1/(n! \times 2^n)$, via (I). An alternative way is to randomly assign positive or negative signs to each of the integers $1, \dots, n$ (the ranks). There are 2^n such assignments, and each of them has equal probability $1/2^n$. For each assignment, calculate the value of W_+ and assign the value a probability of $1/2^n$ to generate the exact null distribution of W_+ .
- When $n > 20$, the asymptotic null distribution of W_+ is the normal distribution with mean $\frac{n(n+1)}{4}$ and variance $\frac{n(n+1)(2n+1)}{24}$.
- rejection region: Let $W_- = \frac{n(n+1)}{2} - W_+$. Reject H_0 when $\min(W_+, W_-)$ is small (close to 0), i.e., $\min(W_+, W_-) < w$, where w is the critical value from the (exact or asymptotic) null distribution of W_+ . An alternative expression of this rejection region is

$$\left| W_+ - \frac{n(n+1)}{4} \right| > w.$$

3. (22pts) Notice that for each sample, the sample mean $\bar{Y}_{i \cdot}$ and sample variance s_i^2 are independent, and

$$\bar{Y}_{i \cdot} \sim N(\mu_i, \sigma^2/J_i) \quad \text{and} \quad (J_i - 1)s_i^2/\sigma^2 \sim \chi_{J_i-1}^2. \quad (\text{II})$$

Furthermore, we know that

$$\bar{Y}_1, \dots, \bar{Y}_I, s_1^2, \dots, s_I^2 \text{ are independent random variables.} \quad (\text{III})$$

(a) (6pts) We have

$$\frac{SS_W}{\sigma^2} = \sum_{i=1}^I \frac{(J_i - 1)s_i^2}{\sigma^2},$$

where

i. by (II), $\frac{(J_i - 1)s_i^2}{\sigma^2} \sim \chi_{J_i-1}^2$, $i = 1, \dots, I$, and

ii. by (III),

$$\frac{(J_1 - 1)s_1^2}{\sigma^2}, \dots, \frac{(J_I - 1)s_I^2}{\sigma^2} \text{ are independent.}$$

Because the sum of k independent chi-square random variables, each with n_i degrees of freedom, follows a chi-square distribution with $n_1 + \dots + n_k$ degrees of freedom, we know that

$$\frac{SS_W}{\sigma^2} \sim \chi_{(J_1-1)+\dots+(J_I-1)=N-I}^2.$$

(b) (6pts) Under the null $H_0 : \mu_1 = \dots = \mu_I \equiv \mu$, we have that the $N = J_1 + \dots + J_I$ observations

$$Y_{11}, \dots, Y_{1J_1}, Y_{21}, \dots, Y_{2J_2}, \dots, Y_{I1}, \dots, Y_{IJ_I} \sim \text{i.i.d. } N(\mu, \sigma^2),$$

which can be regarded as a one-sample model. Because $\bar{Y}_{..}$ is the sample mean of this one-sample data, we find that SS_{TOT} is the sample variance of this one-sample data. By the property of normal distribution, the sample variance

$$SS_{TOT} \sim \chi^2_{(J_1 + \dots + J_I) - 1 = N - 1}.$$

(c) (4pts) Note that SS_W is a function of s_1^2, \dots, s_I^2 and SS_B is a function of $\bar{Y}_1, \dots, \bar{Y}_I$. ($\bar{Y}_{..}$ is a weighted average of $\bar{Y}_1, \dots, \bar{Y}_I$). By (III), SS_W and SS_B are independent because they are functions of different random variables that are independent.

(d) (6pts) Denote $U = SS_W/\sigma^2$, $V = SS_B/\sigma^2$, and $W = SS_{TOT}/\sigma^2$. Then, we have

$$W = U + V \quad \text{and} \quad U, V \text{ are independent (by (c))}. \quad (\text{IV})$$

By (a), the moment generating function (mgf) of U is $M_U(t) = (1 - 2t)^{(N-I)/2}$. By (b), the mgf of W is $M_W(t) = (1 - 2t)^{(N-1)/2}$ under H_0 . Let $M_V(t)$ be the mgf of V . From (IV), we know $M_W(t) = M_U(t) \times M_V(t)$. Hence, under H_0 ,

$$M_V(t) = \frac{M_W(t)}{M_U(t)} = \frac{(1 - 2t)^{(N-1)/2}}{(1 - 2t)^{(N-I)/2}} = (1 - 2t)^{(I-1)/2},$$

which is the mgf of a chi-square distribution with $I - 1$ degrees of freedom. By the uniqueness theorem of mgf, we know that $V = SS_B/\sigma^2 \sim \chi^2_{I-1}$ under H_0 .

4. (30pts)

(a) (2pts) Yes, because we have equal replicates (4 observations) in each cell.

(b) (4pts) For Treatment B, the estimate of β_j is

$$\bar{Y}_{.2.} - \bar{Y}_{..} = 6.767 - 4.790 = 1.977.$$

For the cell of Poison I and Treatment B, the estimate of δ_{ij} is

$$\bar{Y}_{14.} - \bar{Y}_{1..} - \bar{Y}_{.4.} + \bar{Y}_{..} = 6.1 - 6.175 - 5.325 + 4.790 = -0.610.$$

(c) (12pts) The complete ANOVA table is

Source	SS	df	MS	F	p-value
Treatment	91.9	3	30.6333	14.013	0.000
Poison	103	2	51.500	23.558	0.000
Interaction	24.7	6	4.1167	1.883	0.110
Error	78.7	36	2.186		
Total	298.3	47			

(d) (2pts) The degrees of freedom are 2 and 36.

(e) (2pts) $\hat{\sigma}^2 = 2.186$.

(f) (2pts) Yes, because the F -test of Interaction has a p -value of 0.110, which is insignificant.

(g) (4pts) Under the main-effect-only model (no interaction), the sum of squares for errors is $24.7 + 78.7 = 103.4$ with degrees of freedom $6 + 36 = 42$. Hence,

$$\hat{\sigma}^2 = \frac{24.7 + 78.7}{6 + 36} = 2.4619.$$

(h) (2pts) Yes, because the plot shows that the error variance increases with the mean.

5. (12pts) Under $\bigcap_{1 \leq i_1 < i_2 \leq I} H_0^{(i_1, i_2)}$ (i.e., $\alpha_1 = \dots = \alpha_I = 0$), we have

(i) $\bar{Y}_{i \cdot} \sim N(\bar{\mu}, \sigma^2/J)$ because $\sum_{j=1}^J \beta_j = 0$,

(ii) $[(I-1)(J-1)]\hat{\sigma}^2/\sigma^2 \sim \chi^2_{(I-1)(J-1)}$,

(iii) $\bar{Y}_{1 \cdot}, \dots, \bar{Y}_{I \cdot}, \hat{\sigma}^2$ are independent.

From (i) and (iii), we know that

$$\bar{Y}_{1 \cdot}, \dots, \bar{Y}_{I \cdot} \sim \text{i.i.d. } N(\bar{\mu}, \sigma^2/J),$$

i.e., $\bar{Y}_{1 \cdot}, \dots, \bar{Y}_{I \cdot}$ is like a one-sample data under $\bigcap_{1 \leq i_1 < i_2 \leq I} H_0^{(i_1, i_2)}$. Then, by standardizing $\bar{Y}_{1 \cdot}, \dots, \bar{Y}_{I \cdot}$, we get

$$Z_1 \equiv \frac{\bar{Y}_{1 \cdot} - \bar{\mu}}{\sigma/\sqrt{J}}, \dots, Z_I \equiv \frac{\bar{Y}_{I \cdot} - \bar{\mu}}{\sigma/\sqrt{J}} \sim \text{i.i.d. } N(0, 1) \quad (\text{V})$$

and

$$\hat{\sigma}^2 \text{ is independent of } Z_1, \dots, Z_I \text{ (by (iii))}. \quad (\text{VI})$$

Let $\bar{Y}_{(1)}, \dots, \bar{Y}_{(I)}$ be the order statistics of $\bar{Y}_{1 \cdot}, \dots, \bar{Y}_{I \cdot}$. Then,

$$Q \equiv \max_{1 \leq i_1 < i_2 \leq I} \frac{|\bar{Y}_{i_1 \cdot} - \bar{Y}_{i_2 \cdot}|}{\hat{\sigma}/\sqrt{J}} = \frac{\bar{Y}_{(I)} - \bar{Y}_{(1)}}{\hat{\sigma}/\sqrt{J}} = \frac{\frac{\bar{Y}_{(I)} - \bar{\mu}}{\sigma/\sqrt{J}} - \frac{\bar{Y}_{(1)} - \bar{\mu}}{\sigma/\sqrt{J}}}{\sqrt{\frac{[(I-1)(J-1)]\hat{\sigma}^2}{\sigma^2} \times \frac{1}{(I-1)(J-1)}}}.$$

where

$$\frac{\bar{Y}_{(I)} - \bar{\mu}}{\sigma/\sqrt{J}} \text{ and } \frac{\bar{Y}_{(1)} - \bar{\mu}}{\sigma/\sqrt{J}} \text{ are the maximum and the minimum of } Z_1, \dots, Z_I, \text{ respectively.} \quad (\text{VII})$$

Thus, by (iii) and (V)-(VII), we know that Q follows the studentized range distribution with parameter I and $(I-1)(J-1)$ under $\bigcap_{1 \leq i_1 < i_2 \leq I} H_0^{(i_1, i_2)}$.