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E(z) Note 10 (Some notes about the mean and variance of R) IloW Tkt Ke

e To study the estimation properties of R, we wish ©) accuracy of estimator
to derive expressions for E(R) and Var(R). — @) estimated standard error

Up_.-—g Y e 2
® Since R is a nonlinear function of X and Y @ MsE = V&.r+b(as‘
E— " ® asymptotic normality
we cannot always do this in closed form. NCin . G2)
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e Q: How can we derive approximate expressions for E(R) and Var(R)?

e Consider the problem. we have a zay,gh idea about the s _E of Fg

— Z = g(U), where U is a random variable and g is a known function.

»
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— Suppose we know only the mean py and variance 0[2] of U,
but not the exact distribution Fy of U

Qg (i.e., do not know the cdf or pdf/pmf of U).

9: Can we derive the exact distribution of _Z_ ?

No_in general (But, consider
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n Ex.S, LNp.21
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— If not, can we “roughly” characterize the mean and variance of Z7

-»(Note. E(Z) =E[g(U)] # g[E(U)] in general.}» E and g cannot:

Theorem 14 (&-method, propagation of error) e—"d‘—“'55 i $ neral,

e univariate case Z = g(U): r—known /‘E(U' Uo)=0. Var(T-Mv)=Var(T)=Gg

] Z=90) = g(w)+ U - p)g (pw) B> (by Taylor expansion)
= " E(Z) ~ g(uu) < only need to know g
I§ U=X with repl. Var(Z) =~ Var(U)[d (pv)? = _?J[g’(u_U)]2¢
or Z=g(U) = glm)+U—p)g () +1/2)U - pw)* g (p) B
= E(2) ~ g(p)+(1/2)0f ¢"(pw) < only need to know Mg, 62

neighborhood of py and on the size of oy . < Recall. Chebychev's (negaah'fy

e case of 2 random variables U,V and Z = g(U,V): Let p = (uu, pv).
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or Z=gUV) ~ gp)+U—pv) 8(:)

s approximated by a ?g(

t characteristics do i g(p) 1 - I
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o Let Z=g(U,V)=V/U. Then, for g(u,v) = v/u,

T=-X dg _ v dg _ 1 0%g _ 2v 0%g _0 0%g _ -1
voy| 2w B W W 32 Budy W
O -:\— e By d-method, after substituting (uy, uv) for (u,v), we have
=(ov(X Y 1 2 1 -1 1
_Co;(_[) E(Z)~ M—VJr—U[Q] ,ugv -+ = U%/Q+0Uv—2 ZM—V+—2(012J i —0'Uv)
=T — WU 2— py  2— T upg MU D KU
e Similarly, by d-method
o 1 —py 11
Var(Z) ~ 0¥ ’u%—i—o%/ 'LLV = <0'[2] ,u,;/ + o2 — QJUV'LL—V)
- My My T HU HrU HU U — KU
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Theorem 15 (Covariance of the two sample mean)
' T | |® Under s.r.s. with replacement $vom Fo -—l "
- — Og
= Cor(X.¥)= 65—/(6;61) oxy =Cov(X,Y) = ity x
=Safekep e n
=0zg | |® Under s.r.s. without replacement T Z axn
= Cor(Xx.Yx) — G n—1 (k.Q)th enf;ry
Proof: First, under s.r.s., no matter with or without replacement, we have ﬁ
— Xk: = Y, — py
s (265 (£22)
(Xx.Yi) 1 B B =
~ By = 2 (LT E[Ke )0
— \k=ll=1
Cov(Xe.Ye) o LCov(Xk.Yg)
= 1 1
gz-#- = B Z (X — pa) (Vg — :uy ﬁ [(Xk — pa) (Y1 — My)}
k=g ——20 0 Loy _Ezl%ii
Ty E—

(diagonal) — — + SN Con(X, YD) L :

T Uk (of¥ - diagonal))
e Under s.r.s. with replacement, when k # [, X, and Y} are independent. Thus,
for k # I, Cov(Xg, Y)) = 0, and (k) equals oyy/n.
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e Under s.r.s. without replacement, fo l, (X,Y;) are correlated, and " P47

)—g
oy

Cov(Xy,Y)) = E(XyY)) — E(Xyg) E(Y)) = E(XpYl) — pa pry 1 (#5.20) fsy
where my My (Xo, Xe) all pos%b%/;dues
() B(XeY) =Y > o P(Xg = s Y1 = ) o all possible
P(Ye=2v) s=lo] — G values of Xg.
n’(l;/N - ZZ CSnU ZZ‘P((_kaL):(éa n_)a(Xlai/'l)_(C_a_U_)):I
I s=1 v=1 t=1 y=1 O —F

Mx ntv Mg My (

tr=:| N = ZZ Cstw P (X@ Yk) (Cs/’]v) (Xb YL) = (C§a 772) )
Bag| =50
L—"_l CheCk + ZZ Csnv [Zzlezu:yl P( (Xﬁa YE) — (Csang)v (Xb YL) = (Cb 771)) )]

Ns./N INp#l} s=lo=t (Cartm)#(Ctm) —(diferent
]
P(x‘:: S) s Ngy nsv - e NNty
= AL WAET IR 9 3D 3 vk (—;’ﬂ*)
s=1 =1 gl ol (Csmu)#(Ct,nv

Eﬁxk) ey ey - P_'_"%gf_g s~ u
EesZH —122%@ ) S () |ai ey

slvl t=1 u= s—v—

m . (@)5——
(..____)EZU%E - O (S )(%) - g By |O%F E%Iﬂ;‘

ﬂ-———‘ & .
E(Ys) T N[E(K) EOD Ml 00y + oy 1 l-magmal pmS§s of
- N -1 N_1 = N_17w Tty X & Yo (LNp.39)
_ Oxy . Ch7, p.48
rJ:“hui, Cov(Xy,Y)) = N1 if k£ # [, and e Yaor Yo
Why negai:we 2\ gy L i Ooy \ _ Tay (| 1= 1 :.'
"xs>° wp46.(i>_7+ﬁwn—_)](_N—1)_ n ( _N—l)' :
C *a asn
CYz uiie Under s.r.s. with replacement,
Ky Ky 1 1
*What |1k = E(R) ~ MY Tz (_2 MY ny) = Tayt o X F(Tﬂa_:%_%y)
i Exls~n, == X = X = £—0:46x8y
Sy <OlIe Under s.r.s. without replacement, 0 222 —
? i L, _n-1y 1 ) bias
= = —(1- X — -
p— eN_R (_) Tﬂ + i <$) //L_:%(rm_y& O.xy) e with replacement,
= Y/iz <> =My 1 n—1 1 S——’ ke oy =k
R X /ax — B (1 — ) o (@ = Do)« = cE =
n N-1/" pi —ew r— oxy = %
4

A # PI‘OOf: From 5—meth0d, EX15 e without replacement,
LL,. Q-Fo-’ r uv Wy = Has Hy = Hy,
[ (LNp.45), and Theorem 15 (LNp.46), | o2 -2 (1-42). o2=%(1-2=),
X ";{‘” the results follows. oxy =2 (1- 4%).

Note 11 (Some notes about the approximate mean of R)

]if‘;s“ @ strong correlation pyy of the same sign as ryy = /i, decreases the bias
ue T

Ibias|t] ® the bias is large if |y, | is small & R= Y/“' if X=0 usually, R is more variable
MsE(R)= ® the bias is of the order 1/n, denoted by “bias ~ O(n~1),” and its contribu-

Var(®* | tion to the MSE is of the order 1/n?, ie., bias® ~ O(n~?2)
) T—
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Theorem 17 (approximate variance of R?)

e Under s.r.s. with replacement,
2
1 M7 v 1 1
ézVar(R)%T(azy—%/+a 2UXY'M—Y):— 2(rwyax+a — 27gy Oay) -
R Exlsnal X X == *
‘-"— ’ . ' _I
Y&x e Under s.r.s. without replacement, elzd"c#
e
1 n—1 Il
Tx a3 EV@T(R)%—(l— ) X —(r2 aw—l—a — 27y Oy)

[} £ n & /’LQ ? % e with replacement,
Uy Jux 1 n—1 1 — bx = b by = iy,
— — ﬁ(l N 1) K (rzyaw + a — 27gy Pry0z0y) - == j: =

v [CFRu3)— L R pai
XY ¥4
X Proof: From §-method, Ex.15 " mlobeiomed,
Yy “41INe (LNp.45), and Theorem 15 (LNp.46), (,% o (1-73). U; _d (1-73).
Ry %| the results follows. oxy =2 (1-§7).
per]| Note 12 (Some notes about the approximate variance of R)
varb . : .
F;qu"j.? strong correlation pg, of the same sign as r;y = 1/, decreases the variance
AT e the variance is large if |pz| is small (Note. small values of X in the ratio
g';’_lg, R=Y/X cause R to fluctuate wildly) very common properfy
.'é.:l‘_a’:__hcl e the variance is of the order 1/n, i.e., “Var ~ O(n_1)” +Var rules
§oster || ® the contributions of the Var and the bias? to the MSE (= Var—l—blas ) are of
than the order 1/n and 1/n?, respectively = for samples of large n, the bias is
Y@ 20 : negligible compared to the standard error of the estimator <

»to evaluate 7. P50
Definition 14 (an intuitive estimators of the standard error of ) the accuracy of R

»® Under s.r.s. with replacement, an estimator of the 0% = Var(R) is
Se.Se: 1 2 .2 T 1
same F’SR:—-X—-—‘(R S, +8 —QRS:L’y) g%z—x —2(7’3?/0 —|—0‘ 2Tmy0xy)
nqkab‘on, X LNp. u_z‘j — n i Y
di The quantity sgr ( = \/s%) is an estimated standard error of R.
Formula =L VR 4¢
Le@®| Under s.r.s. without replacement, an estimator of the 012% = Var(R) is
1 n—1\/N=% 1 o -1
2 2.2, 2 g R
@Zﬁ_(l—m J)( N )::YQ(R 8y + 8y = 2R $ay) x(1- 1)
TS che ck estimators of 62 & Gxy
-(1 . --) x —5(R2s% + 52 — 2Rsyy) anzz,mj(w,m&gﬁ_
17N X Np.42)
The quantity sr ( = \/5%) is an estimated standard error of R.

Theorem 18 (asymptotic sampling distribution of R) J0J:aezl 5" of error(9)C.1.
For samples of large size n, =VYa /Xan

higher-
order |,
terms:| |© truncating the Taylor series (in Thm 14, LNp.44) to the 1lst order provides a

(%-ux¥|| good approximation, since the deviations X, — Mg and Y, — py are likely to

"("6“3)& be small (by LLN}> Xn-L» Uz, Yn Lo Uy —2 L

1 —
e to this order of approximation, R ~ Py My(X — pz) + — (Y — ly) (from
fo  pE=———= =4

__ D
Ex. 15, LNp.45), where X,, = ﬂ(@, O‘% ) and Y, = ﬂ(,uy,U% ) (by CLT).
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e an argument based on the CLT can be used to show that R is approximately

D
normally distributed, i.e., R~ N <u R, UR), when sample size n 1s large.

e Applications (‘:bias-»o)rgg_ n-»90 %Cﬂﬂb@ replaced by s (" Sk '—’O-R)
Borey | s g) ~ 2[1 — ®(6)]

— probability of estimation error € [a, b], e.g., P( =
lO/Z) NO.1)R el —
— approximate 100(1 — )% confidence interval of r4,: R+ z(a/2) sg

Example 16 (estimate population ratio r,,
e Suppose that 100 people who recently bought houses are surveyed, and

y: mortgage payment Z: gross income

are observed. The r;, = 7,/7, is the percentage of the total mortgage
amount to the total gross income of all people who recently bought houses.

e Suppose that the populatlon size N is missing, but it is known that 100 << N.
e Suppose that X = 3100, sm > 1200, Y = 868, sy = 250, pxy = 0.85. wi{-h}out'
4_5.:!7 e

My ey, .
L Wehave™ R = 868/3100 = 0.2 %e1y, ~ly Beey o Sl gy S with
e Neglecting the finite population correction, the estimated Standard error
(Shows L of R i 18/1 Def 1y, Sr.S._with (LNp. S'O)

accurac = 0.282(12002) 4 2502 — 2(0.28)(0.85)(250)(1200) = 0.006.
accuratyl— s £ 75 <1V )+ (028)(0.85) (250) (1200)

Note that sg is small because x and y are highly positively correlated,
Tgy > 0, and X is large. e—check the graphin LNp 49
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