

Comparing two samples (Chapter 11)

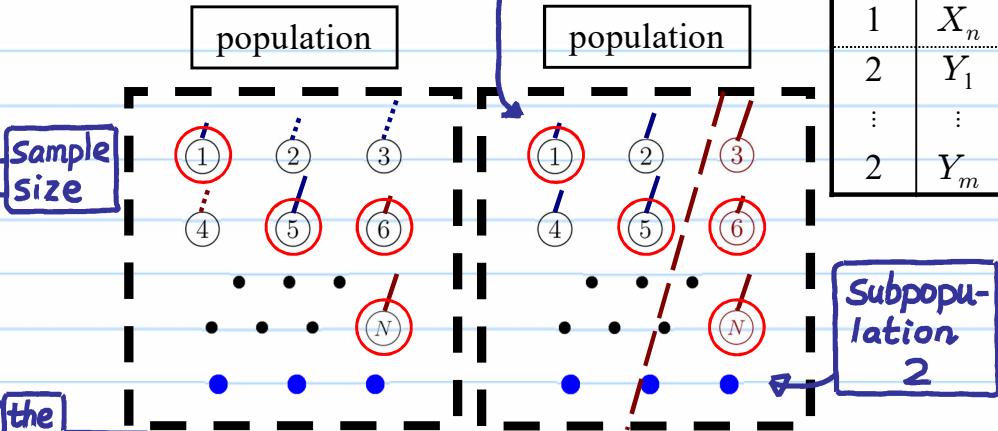
- Comparing two independent samples

- Problem formulation and statistical modeling

observed data from s.r.s (random variables)
 $\{X_1, \dots, X_n\}$
 $\{Y_1, \dots, Y_m\}$

- X_i 's, Y_j 's are continuous quantities of same characteristic
- $X - Y$ is meaningful

s.r.s., $N \rightarrow \infty$:
without replacement
 \approx with replacement
 $(\Rightarrow \text{i.i.d.})$



For example, in medical study,
• X_i 's: treatment
• Y_j 's: control

For example, in human population,
• X_i 's: heights of males
• Y_j 's: heights of females

Why?

- $X_1, \dots, X_n \sim \text{i.i.d.}$ with a common continuous distribution F
- $Y_1, \dots, Y_m \sim \text{i.i.d.}$ from a common continuous distribution G
- $\{X_1, \dots, X_n\}$ and $\{Y_1, \dots, Y_m\}$ are independent

- Let random variables Z_1, \dots, Z_n and Z_{n+1}, \dots, Z_{n+m} represent the variability of the $n + m$ members sampled from the population.

Ch 11, p. 2

- Assume Z_1, \dots, Z_{n+m} are i.i.d. from a population distribution H .

- Let F and G be the distributions of $X = \phi(Z)$ and $Y = \psi(Z)$, respectively.
- The transformations ϕ and ψ might contain random components, e.g., $\phi(Z) = \phi^*(Z) + \delta$, where ϕ^* : a fixed function and δ : a random variable.
- Let μ_X and μ_Y be the means of F and G , respectively.

If $\psi(Z) = \phi(Z) + \Delta$, F, G : cdf, $G(Y) = P(Y \leq y) = P(X + \Delta \leq y) = P(X \leq y - \Delta) = F(y - \Delta)$

add restriction

(a)

F, G : any continuous distribution \rightarrow nonparametric

- Let $X_i = \phi(Z_i)$, $i = 1, \dots, n$, $\Rightarrow X_i \sim F$ $\xrightarrow{\text{cf.}}$ r.v.

(b)

$\psi(Z) = \phi(Z) + \Delta$ $\xrightarrow{\text{a parameter}}$ $\mu_Y - \mu_X$

(c)

F, G : normal $\xrightarrow{\text{can use likelihood}}$

(d)

F, G : normal, same σ^2

(e)

F, G : normal, μ_X, μ_Y, σ^2

(f)

F, G : normal, μ_X, μ_Y, σ^2

(g)

F, G : normal, μ_X, μ_Y, σ^2

(h)

F, G : normal, μ_X, μ_Y, σ^2

(i)

F, G : normal, μ_X, μ_Y, σ^2

(j)

F, G : normal, μ_X, μ_Y, σ^2

(k)

F, G : normal, μ_X, μ_Y, σ^2

(l)

F, G : normal, μ_X, μ_Y, σ^2

(m)

F, G : normal, μ_X, μ_Y, σ^2

(n)

F, G : normal, μ_X, μ_Y, σ^2

(o)

F, G : normal, μ_X, μ_Y, σ^2

(p)

F, G : normal, μ_X, μ_Y, σ^2

(q)

F, G : normal, μ_X, μ_Y, σ^2

(r)

F, G : normal, μ_X, μ_Y, σ^2

(s)

F, G : normal, μ_X, μ_Y, σ^2

(t)

F, G : normal, μ_X, μ_Y, σ^2

(u)

F, G : normal, μ_X, μ_Y, σ^2

(v)

F, G : normal, μ_X, μ_Y, σ^2

(w)

F, G : normal, μ_X, μ_Y, σ^2

(x)

F, G : normal, μ_X, μ_Y, σ^2

(y)

F, G : normal, μ_X, μ_Y, σ^2

(z)

F, G : normal, μ_X, μ_Y, σ^2

(aa)

F, G : normal, μ_X, μ_Y, σ^2

(bb)

F, G : normal, μ_X, μ_Y, σ^2

(cc)

F, G : normal, μ_X, μ_Y, σ^2

(dd)

F, G : normal, μ_X, μ_Y, σ^2

(ee)

F, G : normal, μ_X, μ_Y, σ^2

(ff)

F, G : normal, μ_X, μ_Y, σ^2

(gg)

F, G : normal, μ_X, μ_Y, σ^2

(hh)

F, G : normal, μ_X, μ_Y, σ^2

(ii)

F, G : normal, μ_X, μ_Y, σ^2

(jj)

F, G : normal, μ_X, μ_Y, σ^2

(kk)

F, G : normal, μ_X, μ_Y, σ^2

(ll)

F, G : normal, μ_X, μ_Y, σ^2

(mm)

F, G : normal, μ_X, μ_Y, σ^2

(nn)

F, G : normal, μ_X, μ_Y, σ^2

(oo)

F, G : normal, μ_X, μ_Y, σ^2

(pp)

F, G : normal, μ_X, μ_Y, σ^2

(qq)

F, G : normal, μ_X, μ_Y, σ^2

(rr)

F, G : normal, μ_X, μ_Y, σ^2

(ss)

F, G : normal, μ_X, μ_Y, σ^2

(tt)

F, G : normal, μ_X, μ_Y, σ^2

(uu)

F, G : normal, μ_X, μ_Y, σ^2

(vv)

F, G : normal, μ_X, μ_Y, σ^2

(ww)

F, G : normal, μ_X, μ_Y, σ^2

(xx)

F, G : normal, μ_X, μ_Y, σ^2

(yy)

F, G : normal, μ_X, μ_Y, σ^2

(zz)

F, G : normal, μ_X, μ_Y, σ^2

(zzz)

F, G : normal