

Note 3 (Some notes about  $z$ - and  $t$ -tests)

c.f.

2-Sided  
tests in  
LNp.13Q: Are  
these  
tests  
good  
tests? $\mu_x - \mu_y$  $\mu_x + \mu_y$   
 $\sigma^2$ a measure of  
the accuracy  
of the est'orfunctions  
as the  
scale of  
a rulerFor the null and alternative hypotheses:or  $H_0: \Delta = \Delta_0$  (or  $\Delta \leq \Delta_0$ ) vs.  $H_A^*: \Delta > \Delta_0$  (need domain knowledge)  
or  $H_0: \Delta = \Delta_0$  (or  $\Delta \geq \Delta_0$ ) vs.  $H_A^{**}: \Delta < \Delta_0$  (need domain knowledge)where  $H_A^*$  and  $H_A^{**}$  are one-sided alternatives, the  $z$ - and  $t$ -tests are

- $\sigma^2$  known:  $Z \geq z(\alpha)$  for  $H_A^*$ , and  $Z \leq -z(\alpha)$  for  $H_A^{**}$  (reasonable?)
- $\sigma^2$  unknown:  $T \geq t_{m+n-2}(\alpha)$  for  $H_A^*$ , and  $T \leq -t_{m+n-2}(\alpha)$  for  $H_A^{**}$

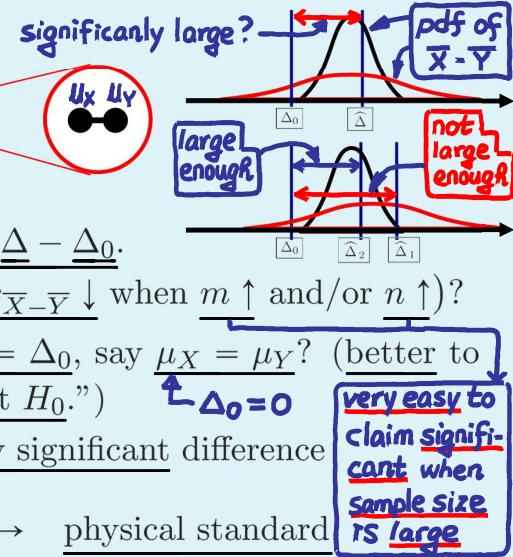
FYI. All the tests presented in LNp.13-14 are uniformly most powerful unbiased (UMPU) tests. (Note. Its proof follows a theorem of UMPU tests for exponential family with nuisance parameters)

- The test statistics are of the form:

$$(\bar{X} - \bar{Y}) - \Delta_0 \quad \text{(estimated std. error of } \bar{X} - \bar{Y} \text{ (Note 2, LNp.12))}$$

- In the numerator,  $(\bar{X} - \bar{Y}) - \Delta_0$  estimates  $\Delta - \Delta_0$ .
- Q: why is this estimate divided by  $s_{\bar{X} - \bar{Y}}$  ( $s_{\bar{X} - \bar{Y}} \downarrow$  when  $m \uparrow$  and/or  $n \uparrow$ )?
- Q: if  $H_0$  not rejected, do we really accept  $\Delta = \Delta_0$ , say  $\mu_X = \mu_Y$ ? (better to claim "sample size is not large enough to reject  $H_0$ ."  $\Delta_0 = 0$ )
- statistically significant difference vs. physically significant difference (example?)

statistical standard  $\longleftrightarrow$  physical standard

Theorem 6 (likelihood ratio tests for  $\Delta = \Delta_0$ , 2-sample normal model)All the tests presented in LNp.13-14 are likelihood ratio tests.check  
Textbook  
Sec. 9.4Proof: We only prove the case of two-sided hypothesis. For the case of one-sided hypothesis, its proof is similar (exercise).  $\uparrow H_A$ 

- Recall that

– the log-likelihood is

$$\text{Thm 2 (LNp.9)} \rightarrow l = \log(\mathcal{L}) \underset{\text{likelihood}}{\propto} -\frac{m+n}{2} \log(\sigma^2) - \frac{\sum_{i=1}^n (X_i - \mu_X)^2}{2\sigma^2} - \frac{\sum_{j=1}^m (Y_j - \mu_Y)^2}{2\sigma^2},$$

– the test statistic of likelihood ratio test is  $\rightarrow$  used to determine what data is3 parameters:  $\mu_X, \mu_Y, \sigma^2$ 

$$\text{Substitute MLEs} \rightarrow \Lambda = \frac{\sup_{\omega} \mathcal{L}}{\sup_{\Omega} \mathcal{L}} \quad \text{or} \quad \log(\Lambda) = \sup_{\omega} \log(\mathcal{L}) - \sup_{\Omega} \log(\mathcal{L}) = \sup_{\omega} l - \sup_{\Omega} l, \quad \uparrow \text{an increasing function. "more extreme" support } H_A$$

$\Delta \in \mathbb{R}$   $\rightarrow$  where  $\Omega = H_0 \cup H_A$  and  $\omega = H_0$ ,  $\Delta = \Delta_0$

– a likelihood ratio test rejects  $H_0$  for small values of  $\Lambda$  (or  $\log \Lambda$ ).parameter  
space

- $\sigma^2$  known

– The parameter spaces  $\Omega$  and  $\omega$  are

$$\Omega = \{(\mu_X, \mu_Y) \mid \mu_X \in \mathbb{R}, \mu_Y \in \mathbb{R}\} \quad \Omega (= \mathbb{R}^2)$$

$$\omega = \{(\mu_X, \mu_Y) \mid \mu_X \in \mathbb{R}, \mu_Y = \mu_X - \Delta_0\}$$

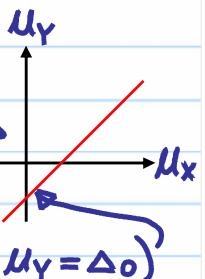
– Under  $\Omega$ , the MLE's of  $(\mu_X, \mu_Y)$  are

Thm 3 (LNp.9)

$$\hat{\mu}_{X, \Omega} = \bar{X}, \quad \hat{\mu}_{Y, \Omega} = \bar{Y},$$

$\uparrow$  Why are they  
more extreme?

$\Omega$   
 $\omega$   
a parallel  
universe



$$l \text{ in } LNp.15 \leftarrow c.f. \Rightarrow \sup_{\Omega} l = l(\hat{\mu}_{X,\Omega}, \hat{\mu}_{Y,\Omega}) \propto -\frac{\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{j=1}^m (Y_j - \bar{Y})^2}{2\sigma^2} - \frac{m+n}{2} \log(\sigma^2) \quad \text{Ch 11, p. 16}$$

Under  $\omega$ , the log-likelihood is proportional to

$$l^*(\mu_X) = -\frac{m+n}{2} \log(\sigma^2) - \frac{\sum_{i=1}^n (X_i - \mu_X)^2}{2\sigma^2} - \frac{\sum_{j=1}^m [Y_j - (\mu_X - \Delta_0)]^2}{2\sigma^2}, \quad \sigma^2: \text{known constant}$$

$X_1, \dots, X_n$ , and the MLE's of  $(\mu_X, \mu_Y)$  are  $0 = \frac{d\ell^*}{d\mu_X} \propto 2 \left[ \sum_i X_i - n\mu_X + \sum_j (Y_j + \Delta_0) - m\mu_X \right]$

$$Y_1 + \Delta_0, \dots, Y_m + \Delta_0 \quad \mu_X - \Delta_0 = \hat{\mu}_{X,\omega} = \frac{\frac{n}{m+n} \bar{X} + \frac{m}{m+n} (\bar{Y} + \Delta_0)}{\frac{m}{m+n} \Delta_0 - \frac{n}{m+n} \Delta_0}$$

c.f. one-sample

normal data

(LNp.6) with

$n+m$  obser-  
vations

by invariance property of MLE

$$\Rightarrow \sup_{\omega} l = l(\hat{\mu}_{X,\omega}, \hat{\mu}_{Y,\omega}) \propto -\frac{\sum_{i=1}^n (X_i - \hat{\mu}_{X,\omega})^2 + \sum_{j=1}^m (Y_j - \hat{\mu}_{Y,\omega})^2}{2\sigma^2}$$

Therefore, the log-likelihood-ratio is

$$-\frac{m+n}{2} \log(\sigma^2)$$

$\frac{\text{Sup } l}{\omega} - \frac{\text{Sup } l}{\Omega}$

$$\begin{aligned} \log(\Lambda) &= l(\hat{\mu}_{X,\omega}, \hat{\mu}_{Y,\omega}) - l(\hat{\mu}_{X,\Omega}, \hat{\mu}_{Y,\Omega}) \\ &= -\frac{1}{2\sigma^2} \left[ \left( \sum_{i=1}^n \bar{X}_i^2 - 2n\bar{X}\hat{\mu}_{X,\omega} + n\hat{\mu}_{X,\omega}^2 + \sum_{j=1}^m \bar{Y}_j^2 - 2m\bar{Y}\hat{\mu}_{Y,\omega} + m\hat{\mu}_{Y,\omega}^2 \right) \right. \\ &\quad \left. + \left( \sum_{i=1}^n \bar{X}_i^2 + \bar{X}^2 + \sum_{j=1}^m \bar{Y}_j^2 + \bar{Y}^2 \right) \right] \frac{m^2 n}{(m+n)^2} + \frac{n^2 m}{(m+n)^2} \\ &= -\frac{1}{2\sigma^2} [n(\bar{X} - \hat{\mu}_{X,\omega})^2 + m(\bar{Y} - \hat{\mu}_{Y,\omega})^2] \\ &= -\frac{1}{2\sigma^2} \left( \frac{mn}{m+n} \right) (\bar{X} - \bar{Y} - \Delta_0)^2 \end{aligned}$$

$$\bar{X} - \hat{\mu}_{X,\omega} = \frac{m}{m+n} (\bar{X} - \bar{Y} - \Delta_0)$$

$$\bar{Y} - \hat{\mu}_{Y,\omega} = \frac{-n}{m+n} (\bar{X} - \bar{Y} - \Delta_0)$$

The likelihood ratio test rejects  $H_0$  for  $\Delta = \Delta_0$

Ch 11, p. 17

10/25

small values of  $\log(\Lambda) \Leftrightarrow$  large values of  $|(\bar{X} - \bar{Y}) - \Delta_0|$ ,

which is the z-test apart from constants that do not depend on the data.

parameter

The parameter spaces  $\Omega$  and  $\omega$  are

$$\begin{aligned} \Omega, \omega \text{ in LNp.15} \leftarrow c.f. \Rightarrow \Omega &= \{(\mu_X, \mu_Y, \sigma^2) \mid \mu_X \in \mathbb{R}, \mu_Y \in \mathbb{R}, \sigma^2 > 0\} \\ \omega &= \{(\mu_X, \mu_Y, \sigma^2) \mid \mu_X \in \mathbb{R}, \mu_Y = \mu_X - \Delta_0, \sigma^2 > 0\} \end{aligned}$$

Under  $\Omega$ , the MLE's of  $(\mu_X, \mu_Y, \sigma^2)$  are  $\hat{\mu}_{X,\Omega} = \bar{X}, \hat{\mu}_{Y,\Omega} = \bar{Y}$

Thm 3 (LNp.9~10)

$$\hat{\mu}_{X,\Omega} = \bar{X}, \quad \hat{\mu}_{Y,\Omega} = \bar{Y},$$

$$\hat{\sigma}_{\Omega}^2 = \frac{1}{m+n} \left[ \sum_{i=1}^n (X_i - \hat{\mu}_{X,\Omega})^2 + \sum_{j=1}^m (Y_j - \hat{\mu}_{Y,\Omega})^2 \right] = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{m+n} \quad \text{c.f.}$$

$\frac{m+n-2}{m+n} S_p^2$

$$\Rightarrow l(\hat{\mu}_{X,\Omega}, \hat{\mu}_{Y,\Omega}, \hat{\sigma}_{\Omega}^2) \propto -\frac{m+n}{2} \log(\hat{\sigma}_{\Omega}^2) - \frac{\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{j=1}^m (Y_j - \bar{Y})^2}{2\hat{\sigma}_{\Omega}^2}$$

$\frac{\text{Sup } l}{\Omega} =$

$$\begin{aligned} l^* \text{ in LNp.15} \leftarrow c.f. \Rightarrow &= -\frac{m+n}{2} \log(\hat{\sigma}_{\Omega}^2) - \frac{m+n}{2} \\ &= (m+n) \hat{\sigma}_{\Omega}^2 \end{aligned}$$

Under  $\omega$ , the log-likelihood is proportional to

$$X_1, \dots, X_n, Y_1 + \Delta_0, \dots, Y_m + \Delta_0 \text{ i.i.d. } N(\mu_X, \sigma^2) \quad l^* = -\frac{m+n}{2} \log(\sigma^2) - \frac{\sum_{i=1}^n (X_i - \mu_X)^2}{2\sigma^2} - \frac{\sum_{j=1}^m [Y_j - (\mu_X - \Delta_0)]^2}{2\sigma^2} \quad \sigma^2: \text{para-} \\ \text{meter}$$

and the MLE's of  $(\mu_X, \mu_Y, \sigma^2)$  are  $\hat{\mu}_{X,\omega} = \bar{X} + \frac{m}{m+n} \Delta_0, \hat{\mu}_{Y,\omega} = \bar{Y} + \Delta_0$

$$\hat{\mu}_{X,\omega} = \frac{n}{m+n} \bar{X} + \frac{m}{m+n} (\bar{Y} + \Delta_0), \quad \text{same as } \sigma^2 \text{ known (LNp.16)}$$