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Example 3 (Chlorpheniramine maleate, Kruskal-Wallis test, cont. Ex.1, LNp.3)

e Statistical modeling of data: assume the nonparametric model in LNp.23.

Ji

(EL)I\(iZIQ) e [ =7and J; =10 = can use x%_, to approximate null distribution of K
AL :P:;!p 005
cf.

Because K = 29.51 and x3(0.005) = 18.55 = p-value < 0.005, the non-
parametric analysis, too, indicates a systematic difference among the labs.

[+ 2+ +(m+N)

Note 6 (Some notes about the Kruskal-Wallis Test)

e Connection between the Mann-Whitney test (2 samples) = 2
and the Kruskal-Wallis test (I samples):

—test statistii&ecall: Thm 9, LN, CH11, p.31—33,5iz = R|+ +Rn Rnwll'""*Rn»u
nX'smY's = Ry.. Ry Rn+1,... Rm+ni WX and T3

Y ™ “ar
m+n (M) mrzn (WX m)

N=min] * Ry = Wx/n, ﬁ% Wy /m, amdﬁIé

B | L e
S (W _Wey? g, m S
= (m+n)? n m — (m+n)? n
mn [ W (metn)(mtntl) 2
= min [z~i< 2 wWX>]
mn [ m+n m+n _ n(mtntl) 2
- m+n mn &_ mn 2 ) =
<j Ch12, p. 27
2
E N L-ie 19 I WX . m+n+1) = H
if Wylorgel » o >, (m4n)(imtn+1)— /mn(m+n+1)
orsmall | ==X 1 Var(WSQ under Ho
|&> k> w (check Thm 12, LN, CH11, p.40) L‘:?',N(O, )

— K and Wx have equivalent exact null distribution; The ] ution OF '
for asymptotic null distribution: Wk is n-dmﬁgll'ﬁl'c about E(W)

TBp/921+if Z ~ N(0,1), then Z2 ~ x] (check Thm 13, LN, CH11, p.41)

— the Mann-Whitney test is a special case of the Kruskal-Wallis test where

only two groups are being compared ([ = 2)

éﬁ—'@ Advantages of Kruskal-Wallis test

Note8( — it makes no assumption of normality, thus has a wider range of applica-

- IN g

in uv, By

CHIL, bﬂ}tX thag does the F -test . ‘

p.39 — it is especially useful in small-sample situations
— outliers have less influence on this nonparametric test than on F-test
— in some applications, the data consist of ranks, e.g., wine tasting

« The problem of multiple comparisons «—| 7his 3uesl:a‘on does not

Question 6. arise in 2-samgle case.

What is the next question we should ask if the null Ho : pg = --- = py of
ANOVA analysis was rejected? 2>Ui’s significantly different = How differ ?
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e When H, was rejected, we concluded that the means are chizp.28

not all equal. But, the ANOVA test gives no information about how they
differ, e.g., we do not know whether all treatment means are different from
each other, or just a few of them are.
e In many applications, real interest may be focused on comparing pairs or
compare groups of treatments, and estimating the treatment means and differences.

minimum e ) . . :
vs. Definition 3 (Multiple comparisons based on pairwise comparison)

%‘mﬂ Consider the model (®) in LNp.1, and assume that i, (= g+ o), ..., pr
(i1, i) | (= @ + o) are the means (or medians) of Fi,..., Fy, respectively.

:(27: .i?,: 70_ Comparison of two treatments: For a specific pair (i1,42), 1 <43 < iy < 1,
2 2 where the choice of this pair does not depend on the data (i.e., i1 and iy

%.V. VR are not random variables, priori planned L, post-hoc), test
*—0—0-

- (41,32) . (i1,32) .
(1, 62) ﬂ- Dy = pip (O g = Q) Vs, ﬂ__ Dy # iy (OF Qi # Q)

=(2.3)

e Multiple comparisons: Simutaneously test these pairwise comparisons
|(I!)teSts U(’L—I’Z—Q) o e = M. ([P e = A ) va (il’ig) 1. == 1.
J.J.O . 7 - 7 \UL l/LZl - \1622 } Vioe J.LA . I.l/z_l i g ’101,2

(

\
i1,12)’s of treatment means. allmodels Q=Ho HAl Hig-Ld
T 4 Ha = Ho® H (Hg“ u\)c

-
Hyo= (] H2? and Hy= U H(“’”)

Ho of OVA 1<ip<ia<I Ha ofANWA l<zl<7’2<£

Consider the model () in LNp.5, and define L+ (4:.42) fixed in advance

assume normali Nipiy = Hiy — Hiy = Qiy — Q. 2> HE™: Aiia=0

e Since i N (i 0?/Ji,), Yiy. ~ ﬁ(@,JQ/J_u), and l and Y,,. are

[Np.20] independent, we have W W s NA TS Yo (T e T, (o léj

Lo@ Since (N —1) s2 Se & SSW ~a*x%_,and Y, ., Y, and 3 are independent
we have §_.€f Under N=HoUHa & ~N(0.2

|

S —_ . 2

Q . (Y& — Y&) - Ai1,i2 [(u 7'1 2 /\/O- Jiy Jiy ‘h
i1,02,A = = -

:IT ts—p iJrJZ \/( _Iﬁx 1 . jﬂ_de&

-4z = N_1I
guantity e 7:;-1"':

It
of Aivia (<C:> pivotal quantity for 2-independent samples, LN, CH11, p.11)

$
(i1,82) . Y i1 Y
—a(e) Test statistic for H .22 Dy = iy T = —1—1
Ai,ia=0 4—-' e Jiy I Jiy
e Null distribution of T3, ;,: Under H{™™ T3, 5, ~ ty_s %gged

%@ Rejection region at significance level a:: Reject Hé“ﬁ) if |15, 00| > tn_i1(a/ 2)J
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m multiple testing ch 12, p. 30

Can we use these (é) level-a rejection regions Yi.§s
RRy s = { data | |Ty 5| > ty1(0/2) },

1 <4 <y < I, to simutaneously test all pairs of treatment means?

e Difficulty with this approach: If there are multiple comparisons, each at

significance level a, the probability of the overall type-I error across all

comparisons will be inflated, i.e., larger than a. N parameter
— Suppose that there are K null and alternative hypotheses: space) H
HE2 Y Ht = 0
:J “ :ﬂ]q—H(—) VS. ng, — H(K) VS. H(K Ho
HEYu HE= 0 e

Let RRj, be alevel-o/ rejection region of HO-), k=1 K
1

ARR]

RKk B Consider the null and alternative hypotheses: R R RR,
—— x o [aEleasEone E
Check }t[o—_ﬂk =7 ) vs. Hp: U;T:1H( ) Ha™ is true evel

Def3 all Ha™ are £rue _f level

(Np-28) and the reJecmon region RR = [ J= | RRy. RR, :?jf;

F o0t — Let a* be the probability of ozerall type-I error. t sample space

a*>0.05| Then, C’ Zku P(RRk[Ho) € —

T o 0" = P(RR|Ho) = P(UL, RR, | Ho) < S P(RE, | HYY) = Koo
<:| — For example, 1z P 31
* in ANOVA the null Ho : gy = --- = py is equivalent to the .. ¢
i EO(Z—H—Q) in multiple comparisons._ruin = Uiy > X

 if the significance levels for ANOVA and for each T; ;, in multiple

comparisons are chosen to be the same q, it will be more often to

claim “at least one of u;’s not equal” in multiple comparisons than in
ANOVA = need to adjust the significance levels of T;, ;,’s (Q: How?)

e By the duality of confidence intervals and hypothesis tests, at significance

4
A"' iiad oyl a, finding rejection regions RR;, ;,’s such that

AR RRC RR U1<21<12<I RRH i2 | HO ) a — (%)

" is equivalent to finding confidence intervals C'I;, ;,’s for A;, ;,’s such that

.n. RR&.LC =.n. ARil.iz-.P(A'Ll is € 0121 72 for any (7’1722) ) =z1—a.

Theorem 11 (multiple comparisons, Tukey’s method, I-sample normal model)
Consider the model () in LNp.5. For simplicity, assume

assyme normality —3 7 _ ... _ ], =J = N=1J< #o0fallobs.
e Recall. (1) 71 “‘E(ﬂ702/}_].)7£: "'7I7 (2> [I J—1 ]312) ~0_2X§§J—127

(3)Yy,... ,71.,i are independent ( ) e =| [ = 7&)/(\@%/\[7)
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<:I e Simultaneous rejection regions RR;, ;,’s ( RR; i, = {data| |Tj,i,| > ¢* })
— Note. Let YQ, . YQ be the order statistic of 71., e ,71.. Then,
Yo —Yu|<Yp-Yoy= max Yy -Ye| % WB%N%EY
1<ip<io</
for any 1 <4y <o < I. Ui=Uiy 71_1 7&17@7(_2 YS_).
- — 11,12 "——H
i’b‘;’fgn — Under Hy: pn = --- = pir = I = [ \1<j,<ip<r A2, l range Yis)-Yoy
%) x
( @:P(U1<i1<@2<1{‘TM[>C_}) P (at least one of |1}, ;,|’s > c*) L
‘\'&‘0‘1! tRRLLt_".i ]?21 — ?zz|
I (uasa = W W RN et max —— > 4/2c°
—( 1< <2<II 1,2| ) £ 1<E<I Sp/\/j SVELC
~N(0.1) Z(1y-Zg1) L= ==
I Yin-o Yar- o l
Yoy - Y T oI
>V2c | = — =——_ > +/2c" ||indep
o-n1s
o2 IX 17-1 )

i

@/ﬁ

Y
= C = q1,1J-1)( )/\F

2
XI(J-I)
= P (SRpru-1 > qr,10-1(a))
where ¢, ;g1 (@) 1)(a) is the (1 — a)-quantile of SR r(y—1). / L(J-1
— Studentized range (SR) distribution with parameters n and v:
x Z1,..., 2, ~iid. N(0,1), and v 6% ~ Xz is independent of 71, ..., Z,.
<j Ch 12, p. 33
* Let Zq), ..., Zn) be the order statistics of Z1,..., Z,. Hof 2i's
Th gg_nng the d.5.
9< max \/27/ —————— ind 'NSRn,V
<11 <19<n vao |4 Shl&ﬁn_- 2 - e
E 22 (ﬂﬁLj UHow o derive
— Simultaneous rejection reglons RR;, ;,’s: Reject Hj (ai2) 3¢ |its pdf orcdf?
Vi — Yie| > ar,10-1(@)(5/VJ)
irrelevant to ¢ . {2

ITZ112‘ > q1,1(J— 1)( )/\/7 =2
I.

ity if Spv or J4

F:I: is related to accuracy.

for any 1 < iy < ip <
e Simultaneous confidence intervals C'[;, ;,’
— Because under Hy U Hy,
ivotal
; 3 Yo =Ya) = Diip| _ 0
- max V2 |Qa|= max = Mi,- Uiz
of Divia| 1<i<in<! — 1<ig<ip<d S_ﬁ/ﬁ
in Np.29 N(0.1)~ — ~N(0.1)
‘=1Y“ _Mu | IYQ @' > c
— —
a/VJ a/vJ = -
- max indep| ~ I, 1(—1)
1<i1<i2<1\/ [I(J —1)]s2 1 =
= X
C o2 1 -1)
we have B“X?ﬂ-q
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é —

Vi —Vip )= Ai iy Can test
l-—a= B( AL L < QLI(J—D(Q)) Ho: Aiiia=Q n
1<ii<io<] SN =
: if set Divia=0 > Tukey's test
‘Fdato | _ p(|(V. - Vi)~ Auk| < anroon(@) (sp/V), for any ir < ip)

— A set of 100(1 — )% simultaneous confidence intervals for all differences

Ail,ig 'S is

> (YQ

~ Vi) = auwn(@) (sp/vV7) @@y

Example 4 (Chlorpheniramine maleate in tablet, Tukey’s method, cont. Ex.1

,LNp.3)

s, = 0.06 and order statistics of Yi..--. Yz.
JFBO_F'T Lab 4_6 5 2 7 3
(WNp.18) Mean 3.920 3.955 3.957 3.997 3.998 4.003 4. 062 ~—
Tukey’s . $ " + Ls -0.082
test ¢ - ¢ - 'ﬁ&
t-test using s : > ®
k= 0.05 to-n(a/2)y > e

Li@ Tukey’s test L"'eé‘ed«' if |V vl:a l>0 053
— two parameters are [ =7 and I(J — 1) = 63

* q7.63(0.05) = 4.34 (Table 6, Appendix B, textbook)
% 7,63(0.05)(sp/v/J) = 0.082

— Conclusions:

T % irrelevant to 41, iz
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