

Why?

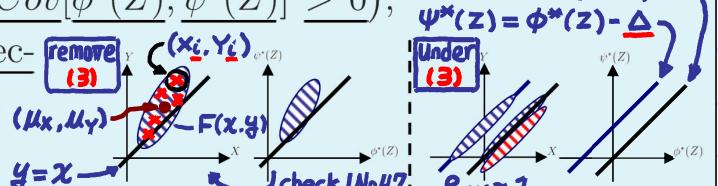
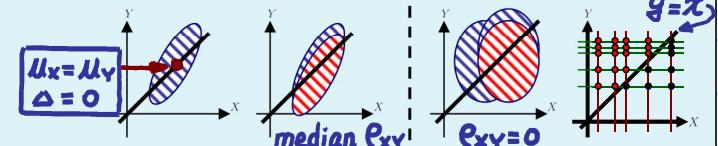
Under (3)

1/13

- If $\rho_{XY} > 0$ ($\Leftrightarrow \sigma_{XY} > 0 \Leftrightarrow \text{Cov}[\phi^*(Z), \psi^*(Z)] > 0$), then paired sample is more effective than independent samples.

- When $\psi^*(Z) = \phi^*(Z) - \Delta$,

$$\begin{aligned}\text{Cov}[\phi^*(Z), \psi^*(Z)] \\ = \text{Cov}[\phi^*(Z), \phi^*(Z) - \Delta] \\ = \text{Var}[\phi^*(Z)] \geq 0.\end{aligned}$$



- Q: Why are independent samples more effective than paired samples when $\sigma_{XY} < 0$? $x - y = \sqrt{2} \times (1/\sqrt{2}, -1/\sqrt{2}) \times (x, y)$
- If $\sigma_X^2 = \sigma_Y^2 = \sigma^2$, then in the paired case $\sigma_D^2 = \text{Var}(\bar{D}) = [2\sigma^2(1 - \rho_{XY})]/n$ and $\sigma_{\bar{X} - \bar{Y}}^2 = \text{Var}(\bar{X} - \bar{Y}) = 2\sigma^2/n$ in the unpaired case. The relative efficiency is $\sigma_D^2/\sigma_{\bar{X} - \bar{Y}}^2 = 1 - \rho_{XY}$.
- If $\rho_{XY} = 0.5$, a paired design with n pairs of subjects yields the same precision as an unpaired design with $2n$ subjects per treatment.
- From now on, the analyses of paired data are based on $D_i = X_i - Y_i$, $i = 1, \dots, n$.
- Statistical modeling for D_i 's: $D_1, \dots, D_n \sim \text{i.i.d. } F$ \Leftarrow one-sample model

$$\frac{\sigma_D^2}{\sigma_{\bar{X} - \bar{Y}}^2}$$
under (3)

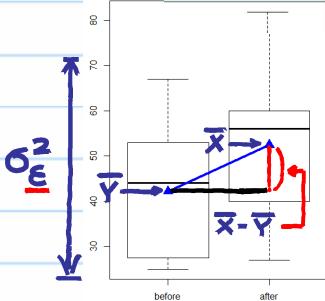
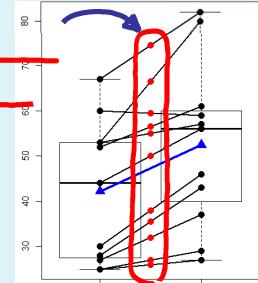
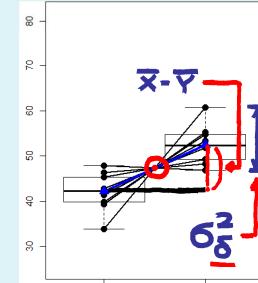
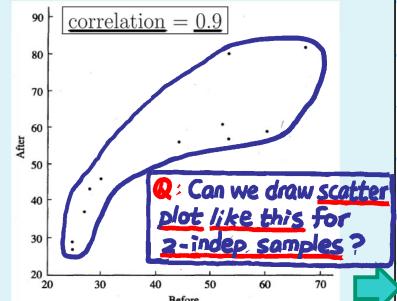
Example 7 (Effect of cigarette smoking on platelet aggregation, Levine, 1973)

- Blood samples were drawn from 11 individuals before and after they smoked a cigarette to measure the extent to which the blood platelets aggregated.
- data: maximum percentage of all platelets that aggregated after being exposed to a stimulus.

Q: Can we take this difference on the x's, y's data from 2-indep. samples?

block (LNp.46) \rightarrow	1	2	3	4	5	6	7	8	9	10	11
paired $\begin{cases} \text{before (Y)} \\ \text{after (X)} \end{cases}$	25	25	27	44	30	67	53	53	52	60	28
difference (D)	2	4	10	12	16	15	4	27	9	-1	15
	27	29	37	56	46	82	57	80	61	59	43

- Q: Do the differences D_i 's indicate a clear pattern of $\Delta = \mu_X - \mu_Y \neq 0$?
- The two-sample (unpaired) t -test for the before and after data gives a p -value = 0.1721 \Rightarrow the null $H_0: \mu_X = \mu_Y$ is not rejected under $\alpha = 0.1$ ($s_p^2 = 289.34$).
 - Q: Why did the 2-sample t -test not reject H_0 when the differences showed such a clear pattern of $\mu_X > \mu_Y$?
 - Note that in 2-sample t -test, the test statistic is $|T| = \frac{|\bar{X} - \bar{Y}|}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$, where s_p^2 estimates σ_ϵ^2 , rather than σ_δ^2 .



- Figure 11.7 (textbook, p.447) plots after-values vs. before-values. They are positively correlated with a sample correlation coefficient 0.9. Pairing was a natural and effective experimental design in this case: relative efficiency = 0.1.

• Methods based on normality assumptions

- Recall. $D_i = X_i - Y_i$, $i = 1, \dots, n$, and $D_1, \dots, D_n \sim \text{i.i.d. } F$. \leftarrow **1-sample model**
- Assume that F is Normal.
- Thus, the statistical model for D_i 's is

where $\mu_D = \mu_X - \mu_Y$. $D_1, \dots, D_n \sim \text{i.i.d. } N(\mu_D, \sigma_D^2)$, \leftarrow **1-sample normal model** \triangle

– This model contains two parameters: μ_D ($\in \mathbb{R}$) and σ_D^2 (≥ 0).

– Under this model, we can only examine whether there exists "difference" between the means of the two paired samples, i.e.,

$$\mu_D = \mu_X - \mu_Y = 0 \Rightarrow \text{no difference or no effect}$$

cannot examine
 $\sigma_x^2 \neq \sigma_y^2$

Theorem 18 (test and confidence interval for μ_D , 1-sample normal model, paired data)

Consider the model \triangle .

- Recall (Review 1 in LNp.6-7).
 - $\bar{D} = \frac{1}{n} \sum_{i=1}^n D_i \xrightarrow{e} \mu_D$, and $\bar{D} \sim N(\mu_D, \sigma_D^2/n) \Rightarrow \sqrt{n}(\bar{D} - \mu_D)/\sigma_D \sim N(0, 1)$
 - $s_D^2 = \frac{\sum_{i=1}^n (D_i - \bar{D})^2}{n-1} \xrightarrow{e} \sigma_D^2$, and $(n-1)s_D^2 \sim \sigma_D^2 \chi_{n-1}^2 \Rightarrow (n-1)s_D^2/\sigma_D^2 \sim \chi_{n-1}^2$
 - \bar{D} and s_D^2 are independent

standardization

statistic

pivotal quantity

for μ_D if σ_D known

statistic

pivotal quantity for σ_D^2

• Pivotal quantity for μ_D

– σ_D known: $Q_{Z, \mu_D} \equiv \frac{\bar{D} - \mu_D}{\sigma_D/\sqrt{n}} = \frac{\bar{D} - \mu_D}{\sigma_D/\sqrt{n}} = \frac{\sqrt{n}(\bar{D} - \mu_D)}{\sigma_D} \sim N(0, 1)$

– σ_D unknown: $Q_{T, \mu_D} \equiv \frac{\bar{D} - \mu_D}{s_D/\sqrt{n}} = \frac{\bar{D} - \mu_D}{s_D/\sqrt{n}} = \frac{\sqrt{n}(\bar{D} - \mu_D)/\sigma_D}{\sqrt{\frac{(n-1)s_D^2/\sigma_D^2}{n-1}}} \sim t_{n-1}$

**UD: fixed,
data: changed**

– Test the null and alternative hypotheses at significance level α :

$$H_0: \mu_D = \mu_{D,0} \quad \text{vs.} \quad H_A: \mu_D \neq \mu_{D,0}$$

where $\mu_{D,0}$ is a known constant.

(Note. if $\mu_{D,0} = 0$, this is equivalent to $H_0: \mu_X = \mu_Y$ vs. $H_A: \mu_X \neq \mu_Y$.)

– σ_D known: reject H_0 if

The two tests are likelihood ratio tests (exercise)

**estimate
difference
between
 μ_D & $\mu_{D,0}$**

scale

$$Z \equiv \frac{\bar{D} - \mu_{D,0}}{\sigma_D/\sqrt{n}} \left| > z(\alpha/2) \right. \Leftrightarrow \left| \bar{D} - \mu_{D,0} \right| > z(\alpha/2) \sigma_D/\sqrt{n} = z(\alpha/2) \frac{\sigma_D}{\sqrt{n}}$$

– σ_D unknown: reject H_0 if

**2-sided
tests**

**paired
samples**

**one-sample Z-test
one-sample T-test**

$$T \equiv \frac{\bar{D} - \mu_{D,0}}{s_D/\sqrt{n}} \left| > t_{n-1}(\alpha/2) \right. \Leftrightarrow \left| \bar{D} - \mu_{D,0} \right| > t_{n-1}(\alpha/2) s_D/\sqrt{n} = t_{n-1}(\alpha/2) \frac{s_D}{\sqrt{n}}$$

• A $100(1 - \alpha)\%$ confidence interval for μ_D is **(data fixed, UD: changed)**

– σ_D known: $\bar{D} \pm z(\alpha/2) \times \sigma_D/\sqrt{n} \Leftrightarrow \bar{D} \pm z(\alpha/2) \times (\sigma_D/\sqrt{n})$

– σ_D unknown: $\bar{D} \pm t_{n-1}(\alpha/2) \times s_D/\sqrt{n} \Leftrightarrow \bar{D} \pm t_{n-1}(\alpha/2) \times (s_D/\sqrt{n})$

Example 8 (Effect of smoking, t -test for paired data, cont. Ex.7 In LNp.52)

Same as
 $\bar{X} - \bar{Y}$
 in 2-sample
 t -test (Ex 7)

- $n = 11$, $D_i = \text{after}_i - \text{before}_i$ estimate of population variance σ_D^2
- $\bar{D} = 10.27$, $s_{\bar{D}} = 2.405$ ($\Rightarrow s_D^2 = 11 \times 2.405^2 = 63.62$)
 $\Rightarrow 63.62/2 = 31.81 \xrightarrow{\text{cf.}} \sigma_{\delta}^2 \leftrightarrow s_p^2 = 289.34 \xrightarrow{\text{cf.}} \sigma_{\epsilon}^2$ in Ex.7
- A 90% confidence interval for μ_D is $\bar{D} \pm t_{10}(0.05) s_{\bar{D}} = 10.27 \pm 1.812 \times 2.40 = (5.9, 14.6)$, \rightarrow reject $\Delta = \mu_x - \mu_y = 0$
 which does not contain zero ($\leftrightarrow H_0$ not rejected in Ex.7 using 2-sample t -test)
- The (one-sample) t -statistic is $T = (10.27 - 0)/2.40 = 4.28 > t_{10}(0.005) = 3.169$.
 The p -value of a two-sided test is less than 0.01 . There is little doubt that smoking increases platelet aggregation.

If
 $\sigma_{\delta_1}^2 = \sigma_{\delta_2}^2 = \sigma_{\delta}^2$,
 then \downarrow (LNp.49)
 $\text{Var}(D_i) = 2\sigma_{\delta}^2$

Note 9 (Some notes about one-sample t -test when normality assumption does not hold)

Check
 Thm 12
 in LN,
 CH7, p.29

- Consider the model: $D_1, \dots, D_n \sim \text{i.i.d. } F$,
 where F can be any continuous distributions with finite variance.
- By CLT and LLN, when $n \rightarrow \infty$ (sample size is large), \rightarrow can use 1-sample T -test
 $\rightarrow \bar{D} \xrightarrow{D} N(\mu_D, \sigma_D^2/n)$ and $s_D^2 \xrightarrow{P} \sigma_D^2$. $\xrightarrow{D} N(0, 1)$
- Thus, by Slutsky's Thm, $Q_{T, \mu_D} = \frac{(\bar{D} - \mu_D)/(\sigma_D/\sqrt{n})}{\sqrt{s_D^2/\sigma_D^2}} \xrightarrow{P} 1$
 and t_{n-1} tends to $N(0, 1)$ as $n \rightarrow \infty$. \downarrow not a function of σ_D^2
- Q: What if the sample size n is small or population variance $= \infty$? $\xleftarrow{\text{cf.}}$