

Definition 15 (estimated standard error of ratio estimator; C.I. based on ratio estimator)

as $n \rightarrow \infty$, $R \approx \text{normal}$, $\Rightarrow \bar{Y}_R \approx \text{normal}(\mu_y, \sigma_{\bar{Y}_R}^2)$

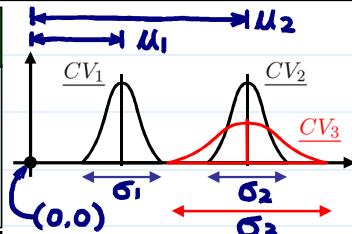
- By Thm. 19 (LNp.55) and Def. 13 (LNp.42), the variance of \bar{Y}_R can be estimated by
$$s_{\bar{Y}_R}^2 = \frac{1}{n} \left(1 - \frac{n}{N}\right) (R^2 s_x^2 + s_y^2 - 2 R s_{xy}), \quad \text{cf. } S_R^2$$

$$\text{Def.14, LNp.50}$$
- The quantity $s_{\bar{Y}_R}$ ($= \sqrt{s_{\bar{Y}_R}^2}$) is an estimated standard error of \bar{Y}_R . $\text{known constant} \rightarrow \text{C.I. of } \bar{Y}_R$
- Since $\bar{Y}_R = \mu_x R$, by Thm. 18 (LNp.51), an approximate $100(1 - \alpha)\%$ confidence interval for μ_y ($= \mu_x r_{xy}$) is $\bar{Y}_R \pm z(\alpha/2) s_{\bar{Y}_R}$ (cf. the C.I. of μ_y based on \bar{Y} : $\bar{Y} \pm z(\alpha/2) s_{\bar{Y}}$ in App. 2, LNp.33.)

When can $\frac{\sigma_{\bar{Y}_R}}{\sigma_{\bar{Y}}} < 1$? (check Note 3, LNp.55) $\rightarrow Q$: which C.I. of μ_y has a shorter width? under what condition?

Definition 16 (coefficient of variation)

For a distribution F with mean $\mu \neq 0$ and variance σ^2 , its **coefficient of variation** is defined as $CV = \sigma/\mu$, which gives σ as a proportion of μ . $\text{parameter when } F \text{ unknown}$

**Note 14** (Some notes about coefficient of variation)

- In some cases, CV is more meaningful in explaining variation than σ , e.g., communication systems.
- $CV = \sigma/\mu$ is sometimes called **noise-to-signal ratio**.
- The value of CV is free of unit.

$\text{CV}_1 > \text{CV}_2$, but $\sigma_1 = \sigma_2$
 $\text{CV}_3 > \text{CV}_2$, but $\text{CV}_3 \approx \text{CV}_1$

μ : (average) sent signal.
 ϵ : random noise
 $(E(\epsilon) = 0, \text{Var}(\epsilon) = \sigma^2)$

$\mu + \epsilon$: received signal (mean = μ , var = σ^2)

Example 18 (Comparison of sample mean and ratio estimator, cont. Ex.17 in LNp.53)

- In the population of 393 hospitals, χ : # of beds, γ : # of discharges

$\mu_x = 274.8, \sigma_x = 213.2, \mu_y = 814.6, \sigma_y = 589.7, r_{xy} = 2.96, \rho_{xy} = 0.91$.

- For a sample of size $n = 64$, \uparrow parameters (unknown) \uparrow cf.

\times : unknown in sampling survey

the standard error of the ratio estimator \bar{Y}_R is (by Thm.19, LNp.55)

$$s_{\bar{Y}_R} \approx \sqrt{\frac{1}{64} \left(1 - \frac{63}{392}\right) \times \sqrt{(2.96^2)(213.2^2) + 589.7^2 - 2(2.96)(0.91)(213.2)(589.7)}} = 30.0 \quad \times$$

the standard error of the ordinary estimator \bar{Y} is (by Thm.3, LNp.18)

When the parameters are unknown, can compare $S_{\bar{Y}_R}$ & $S_{\bar{Y}}$ $\rightarrow s_{\bar{Y}} = \sqrt{\frac{1}{64} \left(1 - \frac{63}{392}\right) \times 589.7} = 67.5$

The comparison of $s_{\bar{Y}}$ to $s_{\bar{Y}_R}$ is consistent with the substantial reduction in variability shown in the graph of Ex.17 (LNp.53).

cf. the bias of the ratio estimator \bar{Y}_R is (by Thm.19, LNp.54)

\bar{Y} is unbiased $\rightarrow E(\bar{Y}_R) - \mu_y \approx \frac{1}{64} \left(1 - \frac{63}{392}\right) \times \frac{1}{274.8} [(2.96)(213.2^2) - (0.91)(213.2)(589.7)] = 1.0 \quad \times$ cf.

$\text{MSE}(\bar{Y}_R) < \text{MSE}(\bar{Y})$ which is a slight and negligible bias compared to the variation reduction.

$\text{Var} \sim O(n^{-1})$
 $\text{Bias}^2 \sim O(n^{-2})$

- An alternative interpretation of $\sigma_{\bar{Y}_R}^2 / \sigma_{\bar{Y}}^2$. Neglecting finite population correction, an ordinary estimator \bar{Y}_{n_1} from a sample of size n_1 will have about the same variance as a ratio estimator \bar{Y}_{R,n_2} from a sample of size n_2 if

Recall. For an unbiased estimator $\hat{\theta}$, $MSE(\hat{\theta}) = \text{Var}(\hat{\theta}) > C-R \text{ bound (TBp 300)}$

$$(1/n_1) \times 589.7^2 \approx (1/n_2) \times [(2.96^2)(213.2^2) + 589.7^2 - 2(2.96)(0.91)(213.2)(589.7)]$$

Thus, $n_2/n_1 \approx (30.0/67.5)^2 = \sigma_{Y_{R,n}}^2 / \sigma_{Y_n}^2 = 0.198$, i.e., we can obtain same precision from \bar{Y}_R using a sample about 80% smaller than the sample of \bar{Y} .

Note that this comparison neglects the bias of \bar{Y}_R , justifiable in this case.

This is a case in which a biased estimator performs substantially better than an unbiased estimator.

- In this case, the biased estimator is better because the bias is quite small and the reduction in variance is quite large.

$$\begin{array}{ll} \bar{Y} & \text{large} \\ \bar{Y}_R & \text{small} \end{array} \quad \begin{array}{ll} \text{large} & \text{large} \\ \text{small} & \text{small} \end{array} = 0 \neq 0$$

Definition 17 (ratio estimator of population total τ_y)

Since $\tau_y = N \mu_y = N \mu_x r_{xy} = \tau_x r_{xy}$, an intuitive ratio estimator of τ_y is $T_R = \tau_x (\bar{Y}/\bar{X}) = N \bar{Y} (\mu_x/\bar{X}) = N \bar{Y}_R$.

Note 15 (Some notes about the ratio estimator of population total)

- Since $E(T_R) = N E(\bar{Y}_R)$ and $\text{Var}(T_R) = N^2 \text{Var}(\bar{Y}_R)$, the approximate bias and variance of T_R can be derived from Thm. 19 (LNp.54).
- The condition for $\text{Var}(T_R)$ to be smaller than $\text{Var}(\bar{T})$, where $\bar{T} = N \bar{Y}$, is same as that given in Note 13 (LNp.55).
- An estimated standard error of T_R is $s_{T_R} = N s_{\bar{Y}_R}$, and an approximate $100(1 - \alpha)\%$ C.I. of τ_y is $T_R \pm z(\alpha/2) s_{T_R}$ (following from Def.15, LNp.56)

❖ Reading: textbook, 7.4

• Stratified random sampling

samples with large estimation errors

information about $\mu_x \geq \bar{x}$

s.r.s. without repl: $(N \choose n)$ samples

Ch7. p.59

- Recall. In the discussion of ratio estimator, extra information is used to adjust the sample mean of a biased sample and increase accuracy.
- Q: Is it possible to exclude some biased samples in s.r.s.? \rightarrow extra information \uparrow not representative

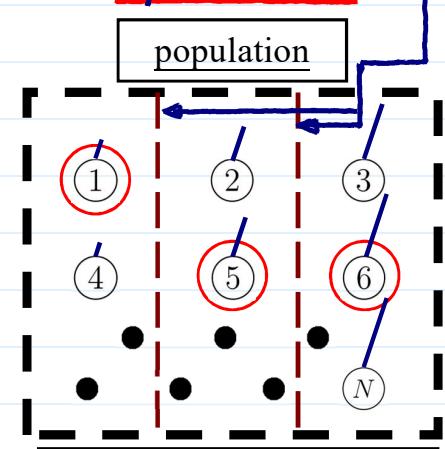
Some notations for stratified random sampling

- Let $\Omega = \{1, 2, \dots, N\}$ be the population.
- Let \mathbb{S}_l , $l = 1, \dots, L$, be a subset of Ω , and $\mathbb{S}_1, \dots, \mathbb{S}_L$ form a partition of Ω , i.e., \mathbb{S}_l 's are disjoint and $\mathbb{S}_1 \cup \dots \cup \mathbb{S}_L = \Omega$.
- Each \mathbb{S}_l is called a **stratum** of Ω , and the number of strata is L . assume known
- Denote the number of members in \mathbb{S}_l by N_l (subpopulation size), $l = 1, \dots, L$. Then,

w_1, w_2, \dots, w_L strata index

stratum fraction $N = N_1 + N_2 + \dots + N_L$.

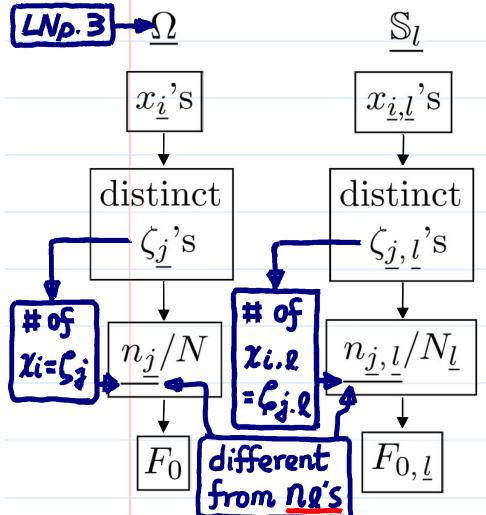
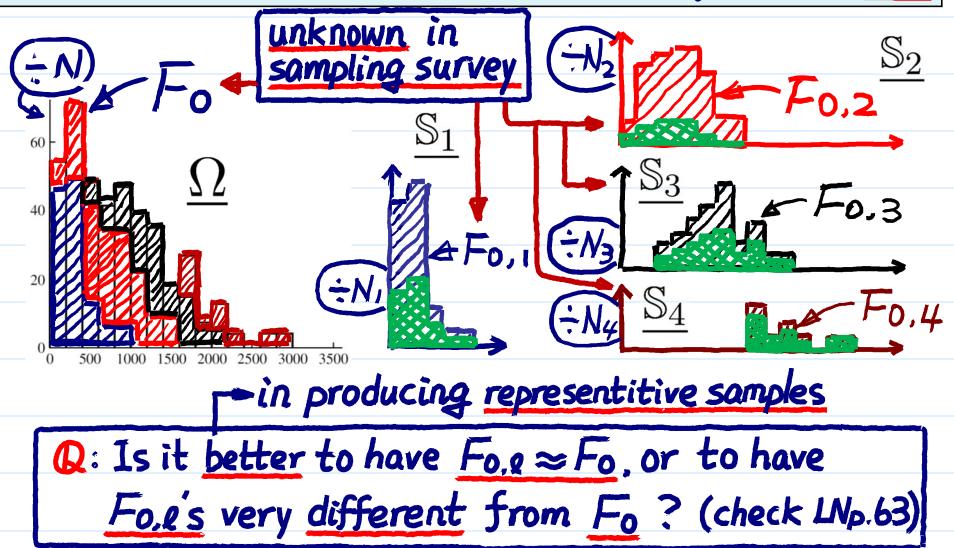
- Let $W_l = N_l/N$, $l = 1, \dots, L$, be the fraction of the population in the l th stratum.
- Let $x_{i,l}$, $i = 1, \dots, N_l$, $l = 1, \dots, L$, denote the value associated with the i th member in the stratum \mathbb{S}_l .



a stratum:
a sub-population (subset)
of the N members in the
population

the population is
partitioned
into L strata

- Let F_0 denote the population distribution of the whole population Ω .
- Let $F_{0,l}$, $l = 1, \dots, L$, denote the population distribution of the subpopulation \mathbb{S}_l . **Q1: What are stratum fractions $W_l = N_l/N$?** **Q2: What are sampling fractions $n_{l,l}/N_l$?**



Definition 18 (Some population parameters that are often of interest for F_0 and $F_{0,l}$)

- For Ω , population mean, total, variance, and standard deviation of F_0 , denoted by μ , τ , σ^2 , σ , respectively, are defined as in Def. 3 (LNp.5).
- For each \mathbb{S}_l , subpopulation mean, total, variance, and standard deviation of $F_{0,l}$, denoted by μ_l , τ_l , σ_l^2 , σ_l , respectively, are similarly defined as above.

Theorem 20 (some relations between the parameters of population and subpopulation)

- The two sampling schemes are equivalent: **identical sampling probability**
 - Perform an s.r.s. from Ω to get one observation X **same distribution**
 - $\frac{N_l}{N} \times \frac{1}{N_l} = \frac{1}{N}$ **identical sampling probability**
 - (1) Randomly select a stratum Z , say $Z = l$, with probability proportional to the stratum size N_l ; (2) Perform an s.r.s from \mathbb{S}_l to get an X
- Thus, we have the distributions of X , Z , and $X|Z$ as follows:

joint dist. of (X, Z)

$X \sim F_0$ (from [a]) **marginal dist. of X**

$Z \in \{1, \dots, L\}$ and $P(Z = l) = W_l = N_l/N$, $l = 1, \dots, L$ **marginal dist. of Z**

$X|Z = l \sim F_{0,l}$ (from [b].(2)) **conditional dist. of $X|Z$**

Law of total expectation (TBp.149)

Recall. $E(X) = E_Z [E_{X|Z}(X|Z)]$ **conditional mean $E(X|Z=l)$**

total: $\mu = \frac{1}{N} \sum_{l=1}^L \sum_{i=1}^{N_l} x_{i,l} = \frac{1}{N} \sum_{l=1}^L N_l \mu_l = \sum_{l=1}^L W_l \mu_l$ **weighted average**

variance: $\sigma^2 = \frac{1}{N} \sum_{l=1}^L \sum_{i=1}^{N_l} (x_{i,l} - \mu)^2$ **cross term = 0**

$= \frac{1}{N} \sum_{l=1}^L N_l \sigma_l^2 + \frac{1}{N} \sum_{l=1}^L N_l (\mu_l - \mu)^2 = \sum_{l=1}^L W_l \sigma_l^2 + \sum_{l=1}^L W_l (\mu_l - \mu)^2$ **weights**

variance decomposition (TBp.151)

Recall. $Var(X) = E_Z [Var_{X|Z}(X|Z)] + Var_Z [E_{X|Z}(X|Z)]$ **conditional variance**

the s.r.s. discussed before can be
regarded as a stratified random sampling
with only one stratum. ch7, p.62

Definition 19 (Stratified random sampling)

Note.
r.v.'s
(data)
appears
after
sampling

In a stratified random sampling, to obtain a sample of size n , a simple random sampling (either with replacement or without replacement, but consistent in all strata) is taken independently within each stratum \mathbb{S}_l to draw a subsample of size n_l , $l = 1, \dots, L$, where $n = n_1 + n_2 + \dots + n_L$. n_l is determined by investigators. Results from the strata are combined to estimate the population parameters.

Q: Are most excluded samples biased samples?
Ans. Not necessary.
Excluding itself is not enough to guarantee that will happen.

Theorem 21 (Q: how many different possible samples? how many s.r.s are excluded?)

Under with replacement, the number of all possible stratified random samples of size n is $N_1^{n_1} \times N_2^{n_2} \times \dots \times N_L^{n_L} < N^n$, where N^n = number of all possible s.r.s. of size n with replacement. Under without replacement, the number of all possible stratified random samples of size n is $\binom{N_1}{n_1} \times \binom{N_2}{n_2} \times \dots \times \binom{N_L}{n_L} < \binom{N}{n}$, where $\binom{N}{n}$ = number of all possible s.r.s. of size n without replacement.

$$\begin{cases} N_1 + \dots + N_L = N \\ n_1 + \dots + n_L = n \end{cases}$$

sampling fraction in \mathbb{S}_l : n_l/N_l
(check graph in LNp.60)

- Q: What is a good way of partitioning the population Ω into strata?
- Q: How to choose a good sampling scheme? \Rightarrow How to allocate the sample size n to each stratum, i.e., how to determine n_1, \dots, n_L ?

ch7, p.63

Example 19 (Applications of stratified random sampling)

- In auditing financial transactions, the transactions may be grouped into strata on the basis of their nominal values, e.g., high-value, medium-value, and low-value strata.
- In human populations, geographical area often form natural strata.

Note 16 (Advantages of stratified random sampling)

- It provides information about each subpopulation \mathbb{S}_l in addition to the population Ω as a whole, e.g., in an industrial application,
 - population = all items produced by a manufacturing process;
 - subpopulations = items produced from different shifts or lots.
- It guarantees a prescribed number n_l of observations from each \mathbb{S}_l .
- Stratified sample mean can be considerably more precise *i.e., Smaller variance* than the mean of a simple random sample (shown in later slides), especially if the partition of the population into strata
 - is homogeneous within each stratum, and
 - has large variation between strata.

not a feature in s.r.s. from Ω

defined in LNp.65
 \bar{x}_s

small σ^2 's

Thm 20 (LNp.61)

check the graph in LNp.60

weights (distribution)

$$\sum_{l=1}^L W_l$$

Recall.
population variation

σ^2
within-stratum variation

Small

between-strata variation

large