

Some probabilities in s.r.s. scheme. $\rightarrow \in \{1, 2, \dots, N\}$ Ch7, p.9

- Random variables I_1, I_2, \dots, I_n : Let $I_k, k = 1, \dots, n$, be the integer label on the k th member drawn from the population
- s.r.s. with replacement
 - marginal distribution of I_k : $P(I_k = i_k) = 1/N$, for $i_k = 1, \dots, N$.
 - conditional distribution: $P(I_k = i_k | I_1 = i_1, \dots, I_{k-1} = i_{k-1}) = 1/N = P(I_k = i_k)$ **Same marginal dist.**
 - joint distribution of I_1, I_2, \dots, I_n : $P(I_1 = i_1, \dots, I_n = i_n) = \prod_{k=1}^n P(I_k = i_k) = 1/N^n$ **(Δ) in LNp 8**
- s.r.s. without replacement
 - marginal distribution of I_k : $P(I_k = i_k) = 1/N$, for $i_k = 1, \dots, N$.
 - conditional distribution: for distinct i_k 's, $P(I_k = i_k | I_1 = i_1, \dots, I_{k-1} = i_{k-1}) = 1/(N - k + 1)$ **with repl.**
 - joint distribution of I_1, I_2, \dots, I_n : for distinct i_k 's, $P(I_1 = i_1, \dots, I_n = i_n) = P(I_1 = i_1)P(I_2 = i_2 | I_1 = i_1) \cdots P(I_n = i_n | I_1 = i_1, \dots, I_{n-1} = i_{n-1})$ **(by multiplication law)** $= \frac{(N-1)!}{(N-n)!} = \frac{1}{N}$ **(□) in LNp 8**

Most s.r.s. are s.r.s. without replacement. Ch7, p.10

Q: Why bother studying s.r.s. with repl?

probability related to s.r.s with is easier to calculate

Note 3 (Some notes about s.r.s.) **similar probabilities (Why?)**

- Similarly, the joint distribution of I_k and I_l , $1 \leq k < l \leq n$, is $P(I_k = i_k, I_l = i_l) = P(I_k = i_k)P(I_l = i_l | I_k = i_k) = \frac{1}{N(N-1)}$ if $i_k \neq i_l$, and zero if $i_k = i_l$.
- When $n \ll N$, s.r.s. with replacement \approx s.r.s. without replacement
- Recall. In dichotomous case, when $n \ll N$, **black & white balls in an urn** **without repl.** \rightarrow binomial distribution \approx hypergeometric distribution
- The actual composition of an s.r.s. is usually determined by using a table of random numbers or a random number generator on a computer.

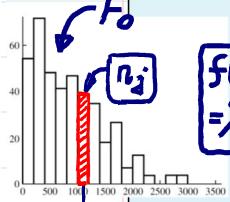
joint dist. of data

Statistical modeling of data collected from an s.r.s. of size n .

- Data X_1, X_2, \dots, X_n . Let $X_k, k = 1, \dots, n$, be the quantity of interest observed on the k th member in the sample. We have
- $f: i \rightarrow x_i$ $f(I_k) = X_k = x_{I_k}$, **r.v.** and X_1, \dots, X_n are random variables. **defined in LNp.3**
- Recall. The population distribution F_0 assigns probability n_j/N on ζ_j for $j = 1, \dots, m$. (Note. F_0 is unknown in a sampling survey)

- Statistical modeling of X_1, \dots, X_n under s.r.s. with replacement

– marginal distribution of X_k :



$f(I_k) = \chi_{I_k}$ * X_k can take values only on ζ_1, \dots, ζ_m , and $P(X_k = \zeta_j) = P(I_k \in \{i_k \mid x_{i_k} = \zeta_j\}) = n_j/N, j = 1, \dots, m$.

That is, $X_k \sim F_0, k = 1, \dots, n \rightarrow X_1, \dots, X_n$ have same marginal dist.

ζ_j

$$\begin{aligned} \because X_1 &= f(I_1) \\ X_2 &= f(I_2) \\ &\vdots \\ X_n &= f(I_n) \end{aligned}$$

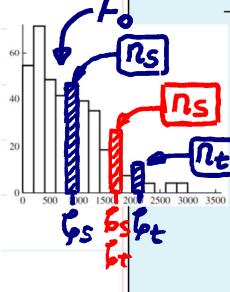
- Because I_1, \dots, I_n are independent, X_1, \dots, X_n are independent.

– joint distribution of X_1, \dots, X_n : X_1, \dots, X_n are independent and identically distributed (i.i.d.) random variables with the distribution F_0 , denoted by $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} F_0$.

cf.

- Statistical modeling of X_1, \dots, X_n under s.r.s. without replacement

$$\begin{aligned} \because X_k &= f(I_k) \\ &= \chi_{I_k} & \text{check LN p.9} \end{aligned}$$



marginal distribution of X_k : $X_k \sim F_0, k = 1, \dots, n$ (same marginal distribution as in the with-replacement case)

– X_1, \dots, X_n are not independent. \leftrightarrow with repl.

– joint distribution of X_k and X_l , $1 \leq k < l \leq n$:

$$\begin{aligned} P(X_k = \zeta_s, X_l = \zeta_t) &= P(X_k = \zeta_s)P(X_l = \zeta_t | X_k = \zeta_s) \\ &= P((I_k, I_l) \in \{(i_k, i_l) \mid x_{i_k} = \zeta_s, x_{i_l} = \zeta_t, i_k \neq i_l\}) \\ &= \begin{cases} \frac{n_s}{N} \times \frac{n_t}{N-1} = \frac{n_s n_t}{N(N-1)}, & \text{if } \zeta_s \neq \zeta_t \text{ (i.e., } s \neq t\text{),} \\ \frac{n_s}{N} \times \frac{n_s-1}{N-1} = \frac{n_s(n_s-1)}{N(N-1)}, & \text{if } \zeta_s = \zeta_t \text{ (i.e., } s = t\text{).} \end{cases} \end{aligned}$$

- joint distribution of X_1, \dots, X_n is more complicated, e.g. 3 r.v.'s but its derivation follows the same rule. $P(X_k = \zeta_s, X_l = \zeta_t, X_m = \zeta_u)$

• Estimation of population mean (and population total)

- population mean: mean μ of F_0 (unknown parameter)
- data: X_1, \dots, X_n (random variables) with distribution related to F_0
- estimation of population mean: use (a function of) the data to estimate μ

$$\begin{aligned} \bullet \zeta_s &\approx \zeta_t \approx \zeta_u \\ \bullet \zeta_s &= \zeta_t = \zeta_u \\ \bullet \zeta_s &\approx \zeta_t = \zeta_u \\ \bullet \zeta_s &= \zeta_u \approx \zeta_t \\ \bullet \zeta_s &= \zeta_t = \zeta_u \end{aligned}$$

Definition 7 (statistic, sampling distribution, estimator, estimate, standard error)

統計量

• A statistic is a function of data only, not involving any unknown parameter. Any statistic is a random variable. $\leftarrow \because \text{data are random}$

估計式

• An estimator $\hat{\theta}$ of a parameter θ is a statistic used to estimate θ , and an estimate is an observed value (an observation, a realization) of $\hat{\theta}$ computed based on a specific sample.

估計值

• The distribution of $\hat{\theta}$ is called sampling distribution, denoted by $F_{\hat{\theta}}$.

standard deviation of $\hat{\theta}$

• The standard error (st.e.) of an estimator $\hat{\theta}$ is the squared root of the variance of $\hat{\theta}$, i.e., $\sqrt{Var_{\theta}(\hat{\theta})}$.

pdf, pmf
cdf
mgf, ch.f
a function of F_0 , involving parameters

• An estimate of the standard error of $\hat{\theta}$ is called an estimated standard error of $\hat{\theta}$.

smaller variance, often more accurate estimator