

Ch7, p.35

- Many confidence intervals have the form:
 - $\underline{\text{estimate}} \pm |\underline{\text{critical value}}| \times |\underline{\text{(estimated)}}| \underline{\text{standard error}}|$

- ⇒ C.I. combines information of estimate and (estimated) standard error
- The width of a confidence interval often depends on:

Under same α , Smaller width ⇒ more accurate C. 1.

어<u>又</u>

- \underline{n} : sample size $n\uparrow$, width \downarrow
- $\underline{\sigma}$: population standard deviation
- $\sigma \uparrow$, width \uparrow [e.g., use previously] collected ' $1-\alpha$: confidence level information $(1-\alpha)\uparrow$, width \uparrow of population

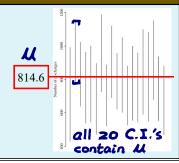
For example, consider the C.I.:

$$\frac{\overline{X}_n \pm \underline{z(\alpha/2)} \times \underline{\sigma_{\overline{X}_n}}}{= \underline{X}_n \pm \underline{z(\alpha/2)} \times \underline{\underline{\sigma_{\overline{X}_n}}}} \quad \mathbf{S} = \underline{\underline{X}_n} = \underline{\underline{X}_n} \times \underline{\underline{\sigma_{\overline{X}_n}}} = \underline{\underline{\sigma_{\overline{X}_$$

• If α is fixed and σ is (approximately) known, n can be chosen so as to obtain confidence intervals close to some desired length. i.e., use estimated st.e. to \Rightarrow a common way to determine an adequate survey sample size n determine n

Example 11 (repeated construction of confidence intervals, cont. Ex.2 in LNp.4)

- 20 samples each of size n = 25 were drawn from the population of hospital discharges (N = 393).
- From each of the samples, an (approximate) 95% confidence interval for μ was computed and displayed in Figure 7.4 (textbook).
- On average 5%, or 1 out of 20, would not include μ .



parameter -

Ch7, p.36

Example 12 (construction of confidence intervals for μ , τ , p)

- A particular area contains 8000 (population size N) condominium units.
- To understand the numbers of motor vehecles owned by the units, a s.r.s. without replacement of size n = 100 was drawn. λ_i , $i = 1, \cdots, 8000$
- The sample yields that Data: XI,..., X100
 - the average number of motor vehicles per unit is $\overline{X} = 1.6$, estimate
- with a sample standard deviation s=0.8.4 52 estimates population Sx estimates $\underline{So}, \underline{s}_{\overline{X}} = \frac{s}{\sqrt{n}} \sqrt{1 - \frac{n}{N}} = \frac{0.8}{\sqrt{100}} \sqrt{1 - \frac{100}{8000}} = \underline{0.08}. \Rightarrow \text{shows accuracy}$ the variance

• When $\alpha = 0.05$, we have $z(\alpha/2) = z(0.025) = 1.96$. Therefore, a 95% confi-

ran interval estimate: dence interval for the population average μ is $\frac{X}{X} \pm \underline{1.96} \times \underline{s_X} = \underline{(1.44, 1.76)}$ a collection of many possible \underline{u} 's C.I. combines 2 information

- For the population total $\underline{\tau} = \underline{N} \mu$ (i.e., total number of motor vehicles owned **L**parameter by the 8000 units),
 - an estimate of $\underline{\tau}$ is $\underline{T} = \underline{N} \times \overline{\underline{X}} = 8000 \times \underline{1.6} = \underline{12,800}$,
 - with an estimated standard error $s_T = N \times s_{\overline{X}} = 640$. Shows accuracy
- So, a 95% confidence interval for τ is Why? $\underline{T\pm 1.96} \times \underline{s_T} = (11,546,14,054)$. \leftarrow an interval estimate

<< N≈8000

Reading: textbook, 7.3