

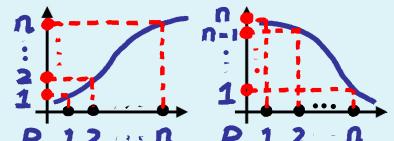
- Ranks are invariant under any monotonic transformation of data, i.e.,

$$R(X_1, \dots, X_n) = R(H(X_1), \dots, H(X_n)),$$

if H is a monotone increasing function and

$$R(X_1, \dots, X_n) = (n+1) - R(H(X_1), \dots, H(X_n)),$$

if H is a monotone decreasing function. (cf. z - or t -tests may change significantly under monotonic transformations of data).



- Replacing the data by their ranks also has the effect of moderating the influence of outliers.

- Many nonparametric methods are based on order statistics and/or ranks.

- Q: Why are many nonparametric methods based on replacement of the data by ranks? What information of data are contained in their ranks? nondecreasing

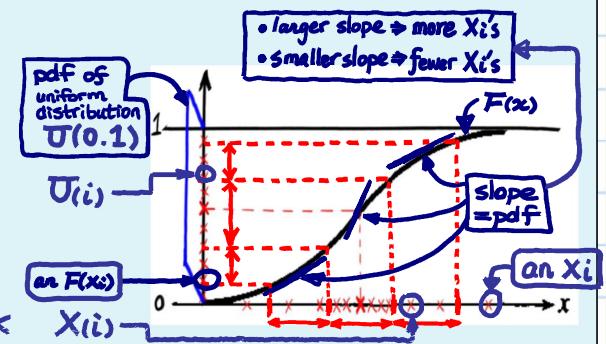
(exercise) – Recall. Let X_1, \dots, X_n be i.i.d. from a continuous cdf F , and let $U_i = F(X_i)$, $i = 1, \dots, n$. Then, U_1, \dots, U_n are i.i.d. from $U(0, 1)$.

(exercise) – Recall. If $U_1, \dots, U_n \sim i.i.d. U(0, 1)$, the pdf of the i th-order statistic $U_{(i)}$ is

$$f_{U_{(i)}}(u) = \frac{n!}{(i-1)!(n-i)!} u^{i-1} (1-u)^{n-i},$$

for $0 < u < 1$ and zero, otherwise.

Note that $E(U_{(i)}) = i/(n+1)$.



– $U_i = F(X_i)$ is not a statistic because F is an unknown function.

– But,

$$X_i = X_{(R_i)} \rightarrow U_{(R_i)} = F(X_{(R_i)}) \rightarrow R_i = (n+1) \frac{R_i}{n+1} \leftrightarrow (n+1)E[U_{(R_i)} | R_i].$$

cf. \uparrow statistics \uparrow data \uparrow unknown distribution \uparrow cf. \uparrow

Question 6. pivotal quantity

How to use ranks to compare two samples? Under the nonparametric model (□) in LNp.27, for the null and alternative hypotheses:

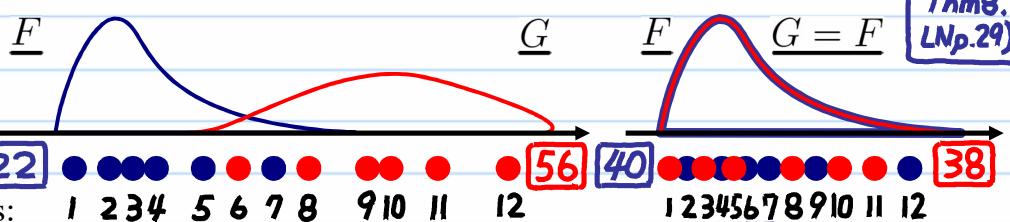
$$H_0 : F = G \quad \text{vs.} \quad H_A : F \neq G$$

what data are “more extreme,” i.e., cast more doubts on H_0 ?

Q: Why ranks are useful in this case? (cf., the information of ranks is useless in one sample case.)

Intuition.

$$\begin{aligned} 1+2+\dots+12 \\ = \frac{12 \times 13}{2} = 78 \end{aligned}$$



Theorem 9 (Mann-Whitney test or Wilcoxon rank sum test)

Consider the nonparametric model (□) in LNp.27.

- Pool all $m+n$ observations (i.e., $X_1, \dots, X_n, Y_1, \dots, Y_m$) together and rank them in order of increasing size, i.e.,

$$R(X_1, \dots, X_n, Y_1, \dots, Y_m) = (R_1, \dots, R_n, R_{n+1}, \dots, R_{m+n}).$$

• Test statistic W_X (or W_Y)

Let $W_X = \sum_{i=1}^n R_i$ and $W_Y = \sum_{j=1}^m R_{n+j}$. They are respectively the sums of the ranks of X_i 's and Y_j 's in the pooled data. Notice that

$$W_X + W_Y = 1 + 2 + \dots + (m+n) = \frac{(m+n)(m+n+1)}{2}$$

$$\Rightarrow W_Y = \frac{(m+n)(m+n+1)}{2} - W_X.$$

$\begin{array}{c} f_X(b) f_Y(a) \\ = f(b) f(a) \\ \hline Y \\ (b, a) \end{array}$ $\begin{array}{c} X = Y \\ \hline X \\ (a, b) \\ = f_X(a) f_Y(b) \\ = f(a) f(b) \end{array}$

$P(X < Y) = P(X > Y) = \frac{1}{2}$

$\begin{array}{c} X \ Y \\ \downarrow \downarrow \\ (R_1, R_2) \\ (1, 2) \leftarrow X < Y \\ (2, 1) \leftarrow X > Y \end{array}$ $\begin{array}{c} \text{Prob.} \\ Y_2 \\ \frac{1}{2} \end{array}$

• Null distribution of W_X

Under H_0 ($F = G$),

$\begin{array}{c} \text{ranks} \rightarrow \text{!} \\ \text{!} \\ \text{m+n} \\ \hline X_1, \dots, X_n, Y_1, \dots, Y_m \\ \downarrow \downarrow \downarrow \downarrow \downarrow \\ R_1, \dots, R_n, R_{n+1}, \dots, R_{m+n} \end{array}$

1-sample model with $m+n$ observations

Why irrelevant to F ? Check Thm 8 (UN p.29) \Rightarrow ranks carry no information of F

equal probability $\frac{1}{(m+n)!}$

Any assignments of the ranks $\{1, \dots, m+n\}$ to the pooled $m+n$ data are equally likely, and the total number of different assignments is $(m+n)!$.

Joint distribution of R_1, \dots, R_n :

$R(x_1, x_2, y_1) = (R_1, R_2, R_3) \quad a < b < c \quad \text{Prob.}$

$\begin{array}{c} (1, 2, 3) \leftarrow x_1 < x_2 < y_1 \\ (1, 3, 2) \leftarrow x_1 < y_1 < x_2 \\ (2, 1, 3) \leftarrow x_2 < x_1 < y_1 \\ (2, 3, 1) \leftarrow y_1 < x_1 < x_2 \\ (3, 1, 2) \leftarrow x_2 < y_1 < x_1 \\ (3, 2, 1) \leftarrow y_1 < x_2 < x_1 \end{array} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6} \quad \frac{1}{6}$

* Consider an urn containing $m+n$ balls, labelled by $1, 2, \dots, m+n$, respectively.

* Sequentially draw n balls without replacement from the urn \Rightarrow there are $\binom{m+n}{n} \times n!$ different outcomes, each with equal probability

Ch 11, p. 33

$\begin{array}{c} \text{Prob} \\ R_i = \frac{1}{m+n} \\ \frac{2}{m+n} \\ \vdots \\ \frac{m+n}{m+n} \end{array}$

$P(R_1 = r_1, \dots, R_n = r_n) = \frac{1}{\binom{m+n}{n} \times n!} = \frac{m!}{(m+n)!}.$

$E(R_i) = \frac{(m+n)(m+n+1)}{2(m+n)}$

• Let r_1, r_2, \dots, r_n be the numbers on the 1st, 2nd, ..., n th balls drawn, respectively. Then, all permutations of R_{n+1}, \dots, R_{m+n}

$E(R_i) = \frac{(m+n)(m+n+1)}{2(m+n)}$

The null distribution of $W_X = R_1 + \dots + R_n$ (W_X is the sum of the numbers on the n balls) can be obtained from the joint distribution of R_1, \dots, R_n .

• Rejection region \leftarrow 2-sided test \Rightarrow reject if W_X small ($\leftrightarrow W_Y$ large) or W_X large ($\leftrightarrow W_Y$ small)

For example, $n < m$.

$n=3, \{ \square \square \square \} \leftarrow R_{(1)}, \dots, R_{(n)}$

$W_X = 6$

$1=1+0 \quad m+n-0$

$2=1+1 \quad m+n-1$

$3=1+2 \quad m+n-2$

$W_X = 7$

$1=1+0 \quad m+n-0$

$2=1+1 \quad m+n-1$

$4=1+3 \quad m+n-3$

$W_X = 8$

$1=1+0 \quad m+n-0$

$3=1+2 \quad m+n-2$

$4=1+3 \quad m+n-3$

$1= \dots$

$2= \dots$

$5= \dots$

* Note that under H_0 ,

$E(W) = \begin{cases} \frac{E(R_1) + \dots + E(R_n)}{n}, & \text{if } n \leq m \\ \frac{E(R_{n+1}) + \dots + E(R_{m+n})}{m} & \text{if } n > m \end{cases} = \frac{n_1(m+n+1)}{2}.$

the null distribution of W is symmetric around $E(W)$ (exercise).

* Let $W' = n_1(m+n+1) - W$.

* Let $W^* = \min(W, W')$.

Reject H_0 when W^* is small, i.e., $W^* \leq w$.

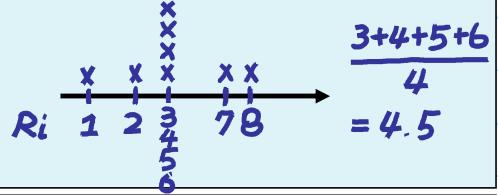
Table 8 of Appendix B in the textbook gives critical values w for W^* .

$\begin{array}{c} \frac{W+W'}{2} \\ = \frac{n_1(m+n+1)}{2} \\ \hline |Z| \\ |T| \end{array}$

$\begin{array}{c} 6 \ 7 \ 8 \\ \hline 3(m+n)-3 \\ n_1(m+n+1) \\ \hline 2 \end{array}$

$\begin{array}{c} W_x \\ W_x' \leftarrow W_x \leq w, W_x' \geq w \\ W_x' \end{array}$

- We have assumed here that there are no ties among the observations. If there are only a small number of ties; tied observations are assigned average ranks.



Example 4 (Mann-Whitney test, heat of fusion of ice, cont. Ex.1 in LNp.3)

- The ranks are (ties \Rightarrow average rank)

$n=13$	Method A	7.5	19.0	11.5	19.0	15.5	15.5	19.0	4.5
	V	21.0	15.5	11.5	9.0	11.5			
$m=8$	Method B	11.5	1.0	7.5	4.5	4.5	15.5	2.0	4.5

- $n_1 = 8$, $W = W_B = 51$, $W' = 8(8+13+1) - W = 125$, $W^* = \min(W, W') = 51$
- two-sided test at level $\alpha = 0.01$, critical value = 53 \leftarrow Table 8 (TBp. A21)
- two-sided test at level $\alpha = 0.05$, critical value = 60 \leftarrow Table 8 (TBp. A21)
- Therefore, the Mann-Whitney test rejects the null hypothesis at $\alpha = 0.01$.

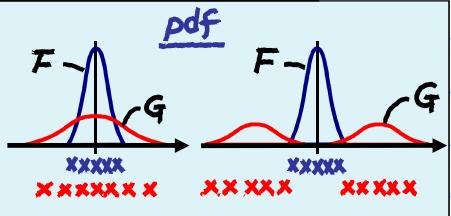
a comparison of parametric and nonparametric models

	model space	data reduction	parametric	power on	nonparametric	model space
parametric models	small	low-dim	robustness	H_A^p	$H_A^{np} \setminus H_A^p$	$H_A \leftarrow H_0$
nonparametric models	large	high-dim	worse e.g. sensitive to outlier better	higher	(usually) lower (usually) higher	nonparametric parametric

Question 7.

Does Mann-Whitney test have reasonably good powers over the whole $H_A : F \neq G$? Note that

$$H_0 \cup H_A = \{(F, G) \mid F, G \in \Omega\}, \quad H_0 = \{(F, G) \mid F \in \Omega, G = F\}.$$



Assume that the distributions (cdfs)

$F, G \in \Omega$ and F, G have same shape.

If $X \sim F$ and $Y = X + \Delta$, where Δ is an unknown constant, then for the cdf $G(y)$ of Y , we have

$$G(y) \equiv P(Y \leq y) = P(X + \Delta \leq y) = P(X \leq y - \Delta) = F(y - \Delta),$$

and for the pdfs $f(x)$ of X and $g(y)$ of Y , we have

$$g(y) = \frac{d}{dy} G(y) = \frac{d}{dy} F(y - \Delta) = f(y - \Delta).$$

- Thus, the statistical model is:

information about the shape of F is in order statistics, not ranks

1st sample: $X_1, \dots, X_n \sim$ i.i.d. from F
2nd sample: $Y_1, \dots, Y_m \sim$ i.i.d. from G

where $F \in \Omega$ and $G(x) = F(x - \Delta)$. Δ (dim=1): parameter of main interest
shape of F (dim= ∞): nuisance parameter

This model contains infinitely many parameters because $\dim(\Omega) = \infty$.

- Under this model, the null $H_0 : F = G$ becomes $H_0 : \Delta = 0$, and the alternative $H_A : F \neq G$ becomes $H_A : \Delta \neq 0$, i.e.,

$$H_A: \Delta \neq 0 \quad (\pi_{\Delta} \neq 1/2) \quad \begin{cases} H_0 \cup H_A = \{(F, G) \mid F \in \Omega, G(y) = F(y - \Delta), \Delta \in \mathbb{R} \text{ (or } \pi_{\Delta} \in [0, 1]\}) \\ H_0 = \{(F, G) \mid F \in \Omega, G(y) = F(y - \Delta), \Delta = 0 \text{ (or } \pi_{\Delta} = 1/2\}\} \end{cases}$$

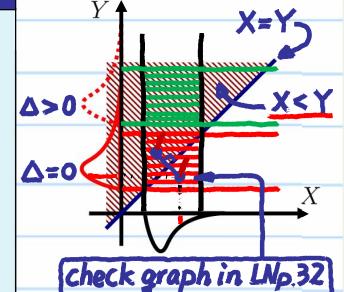
Theorem 10 (An alternative formulation of H_0 and H_A)

what if $\Delta < 0$?

1 observation from F ,
1 observation from G

Suppose that (1) $X \sim F \in \Omega$, (2) $Y \sim G$, where $G(x) = F(x - \Delta)$, and (3) X, Y are independent. The joint pdf of (X, Y) is $f(x)g(y) = f(x)f(y - \Delta)$.

- Define $\pi_{\Delta} = P_{\Delta}(X < Y)$. Clearly, $0 \leq \pi_{\Delta} \leq 1$.
- Then, $\pi_{\Delta} = 1/2$ if and only if $\Delta = 0$.

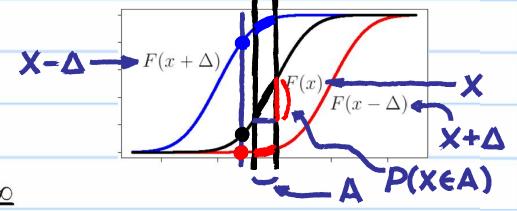


Proof.

$$(*) \quad P_{\Delta}(X < Y) = \int_{-\infty}^{\infty} \int_x^{\infty} f(x) f(y - \Delta) dy dx$$

$$= \int_{-\infty}^{\infty} f(x) [F(y - \Delta)] \Big|_x^{\infty} dx$$

$$= \int_{-\infty}^{\infty} [1 - F(x - \Delta)] f(x) dx = 1 - \int_{-\infty}^{\infty} F(x - \Delta) f(x) dx$$



If $\Delta > 0$, then $F(x - \Delta) \leq F(x) \leq F(x + \Delta)$, $\forall x$, and there must exist a region A of x in which the inequalities are strict and $\int_A f(x) dx > 0$.

What if $\Delta < 0$?

- Thus, for $\Delta > 0$,

$$\int_{-\infty}^{\infty} F(x - \Delta) f(x) dx < \int_{-\infty}^{\infty} F(x) f(x) dx < \int_{-\infty}^{\infty} F(x + \Delta) f(x) dx$$

By (*) in LNp.36

$$1 - P_{\Delta}(X < Y) > 1 - P_{\Delta=0}(X < Y) = 1/2$$

$$1 - P_{-\Delta}(X < Y) < 1/2$$

Then, the results follow from: $\int_{-\infty}^{\infty} F(x) f(x) dx = \int_0^1 z dz = \frac{1}{2} z^2 \Big|_0^1 = \frac{1}{2}$.

Let $z = F(x) \Rightarrow dz/dx = f(x)$

Theorem 11 (An alternative view of Mann-Whitney test)

Consider the nonparametric model (\diamond) in LNp.35.

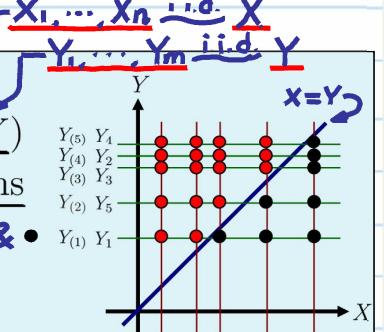
- Estimation of π_{Δ} : the parameter $\pi_{\Delta} = P_{\Delta}(X < Y)$ can be estimated by the proportion of the comparisons for which X was less than Y , i.e.,

$$mn = \# \text{ of } \bullet \& \bullet$$

– consider any pairs (X_i, Y_j) , $1 \leq i \leq n$, $1 \leq j \leq m$,

– let $Z_{ij} = \begin{cases} 1, & \text{if } X_i < Y_j, \\ 0, & \text{otherwise,} \end{cases} \Rightarrow \hat{\pi}_{\Delta} = \frac{1}{mn} \sum_{i=1}^n \sum_{j=1}^m Z_{ij}$

$\text{not independent} \leftarrow \text{Note that } Z_{11}, \dots, Z_{n1} \mid Y_1 = y \text{ i.i.d. } \text{Bin}(1, F(y))$



$$\sum Z_{ij} = \sum V_{ij} = \# \text{ of } \bullet$$

cf. graph in Thm10 (LNp.36)

– an alternative expression: consider the mn pairs $(X_{(i)}, Y_{(j)})$, and let

$$\text{Bin}(1, \pi_{\Delta}) \sim V_{ij} = \begin{cases} 1, & \text{if } X_{(i)} < Y_{(j)}, \\ 0, & \text{otherwise,} \end{cases} \Rightarrow \hat{\pi}_{\Delta} = \frac{1}{mn} \sum_{i=1}^n \sum_{j=1}^m V_{ij}$$

$$\hat{\pi}_{\Delta} = \frac{1}{mn} (\# \{X_{(i)} < Y_{(j)}\})$$

$$= \frac{1}{mn} (\# \{X_{(i)} < Y_{(j)}\})$$

e.g., $P(X_{(1)} < Y_{(2)}) > P(X_{(m)} < Y_{(1)})$