

1. (18pts)

(a) (4pts) Because

$$E(\bar{X}_c) = E\left(\sum_{i=1}^n c_i X_i\right) = \sum_{i=1}^n c_i E(X_i) = \left(\sum_{i=1}^n c_i\right) \mu,$$

The estimator \bar{X}_c is unbiased if and only if

$$\sum_{i=1}^n c_i = 1.$$

(b) (6pts) The variance of \bar{X}_c is

$$\begin{aligned} \text{Var}(\bar{X}_c) &= \text{Var}\left(\sum_{i=1}^n c_i X_i\right) = \sum_{i=1}^n c_i^2 \text{Var}(X_i) + \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n c_i c_j \text{Cov}(X_i, X_j) \\ &= \sum_{i=1}^n c_i^2 \sigma^2 + \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n c_i c_j \left(-\frac{\sigma^2}{N-1}\right) = \left(\sum_{i=1}^n c_i^2 - \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \frac{c_i c_j}{N-1}\right) \sigma^2 \end{aligned}$$

(c) (8pts) We need to minimizes $\sum_{i=1}^n c_i^2 - \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \frac{c_i c_j}{N-1}$ subject to the constraint $\sum_{i=1}^n c_i = 1$. We can introduce a Lagrange multiplier λ and define

$$g(c_1, \dots, c_n, \lambda) = \left(\sum_{i=1}^n c_i^2 - \sum_{i=1}^n \sum_{\substack{j=1 \\ j \neq i}}^n \frac{c_i c_j}{N-1}\right) + \lambda \left(\sum_{i=1}^n c_i - 1\right).$$

By setting

$$\begin{aligned} \frac{\partial g}{\partial c_i} &= 2c_i - \sum_{\substack{j=1 \\ j \neq i}}^n \frac{c_j}{N-1} + \lambda = 2c_i + \frac{c_i}{N-1} - \frac{1}{N-1} \left(\sum_{j=1}^n c_j\right) + \lambda \\ &= \frac{2N-1}{N-1} c_i - \frac{1}{N-1} + \lambda = 0, \quad \text{for } i = 1, \dots, n \end{aligned} \tag{I}$$

$$\frac{\partial g}{\partial \lambda} = \sum_{i=1}^n c_i - 1 = 0 \tag{II}$$

we can obtain $c_i = \frac{N-1}{2N-1} \left(\frac{1}{N-1} - \lambda\right)$, $i = 1, \dots, n$, from (I). That is, we have $c_1 = \dots = c_n$. Hence, from (II), we know that c_i must be $1/n$, for $i = 1, \dots, n$.

2. (30pts)

(a) (4pts) Notice that the population variance σ_f^2 equals $Var(Y_1) = Var[f(X_1)]$. Since $E(Y_1) = E[f(X_1)] = \mu_f$, and the pdf of X_1 is $1/2$ when $-1 \leq X_1 \leq 1$ and 0, otherwise, we have

$$\sigma_f^2 = E(Y_1^2) - [E(Y_1)]^2 = \int_{-1}^1 f(x)^2 \times \frac{1}{2} dx - \mu_f^2. \quad (\text{III})$$

(b) (6pts) Because $\hat{I}(f) = \bar{Y}$ is the sample mean and Y_1, \dots, Y_n is a with-replacement simple random sample, the standard error of $\hat{I}(f)$ is

$$\sigma_{\hat{I}(f)} = \sqrt{Var(\bar{Y})} = \sqrt{Var(Y_1)/n} = \sigma_f/\sqrt{n}.$$

Since the population variance σ_f^2 can be estimated by $\hat{\sigma}_f^2 = \frac{\sum_{i=1}^n (Y_i - \bar{Y})^2}{n-1}$, the standard error $\sigma_{\hat{I}(f)}$ can be estimated by

$$\hat{\sigma}_{\hat{I}(f)} = \frac{\hat{\sigma}_f}{\sqrt{n}} = \frac{1}{\sqrt{n}} \sqrt{\frac{\sum_{i=1}^n (Y_i - \bar{Y})^2}{n-1}} = \frac{1}{\sqrt{n}} \sqrt{\frac{\sum_{i=1}^n [f(X_i) - \hat{I}(f)]^2}{n-1}}.$$

(c) (4pts) By the central limit theorem and the law of large number, we have

$$\frac{\hat{I}(f) - I(f)}{\hat{\sigma}_{\hat{I}(f)}} \xrightarrow{D} N(0, 1)$$

when the sample size n is large. The resulting $100(1 - \alpha)\%$ confidence interval of $I(f)$ is

$$\hat{I}(f) \pm z(\alpha/2) \times \hat{\sigma}_{\hat{I}(f)},$$

where $z(\alpha/2)$ is the $1 - (\alpha/2)$ quantile of $N(0, 1)$.

(d) (12pts) Let $l = 1$ and $l = 2$ represent the strata $[-1, 0)$ and $[0, 1]$, respectively. It is clear that for the two strata, their stratum fractions W_l 's are $1/2$. Denote the subpopulation mean of the l th stratum by $\mu_{f,l}$.

- Case (i). When $f(x) = x^2$, from (III), we can obtain that
 - the population mean and variance are

$$\mu_f = \int_{-1}^1 x^2 \times \frac{1}{2} dx = \frac{1}{3} \quad \text{and} \quad \sigma_f^2 = \int_{-1}^1 \frac{x^4}{2} dx - \left(\frac{1}{3}\right)^2 = \frac{4}{45},$$

- for the first stratum $[-1, 0)$,

$$\mu_{f,1} = \int_{-1}^0 x^2 \times 1 dx = \frac{1}{3} \quad \text{and} \quad \sigma_{f,1}^2 = \int_{-1}^0 \frac{x^4}{1} dx - \left(\frac{1}{3}\right)^2 = \frac{4}{45},$$

- for the first stratum $[0, 1]$,

$$\mu_{f,2} = \int_0^1 x^2 \times 1 dx = \frac{1}{3} \quad \text{and} \quad \sigma_{f,2}^2 = \int_0^1 \frac{x^4}{1} dx - \left(\frac{1}{3}\right)^2 = \frac{4}{45}.$$

Therefore, $Var(\bar{Y}) = \frac{4}{45n}$ and $Var(\bar{Y}_S) = \frac{1}{n}(\frac{1}{2} \times \frac{4}{45} + \frac{1}{2} \times \frac{4}{45}) = \frac{4}{45n}$. Because the relative efficiency is 1, this stratified random sampling cannot produce a more accurate estimator in this case.

- Case (ii). When $f(x) = x(x-1)$, from problem (III), we can obtain that
 - the population mean and variance are

$$\mu_f = \int_{-1}^1 x(x-1) \times \frac{1}{2} dx = \frac{1}{3} \quad \text{and} \quad \sigma_f^2 = \int_{-1}^1 \frac{x^2(x-1)^2}{2} dx - \left(\frac{1}{3}\right)^2 = \frac{19}{45},$$

– for the first stratum $[-1, 0]$,

$$\mu_{f,1} = \int_{-1}^0 x(x-1) \times 1 dx = \frac{5}{6} \quad \text{and} \quad \sigma_{f,1}^2 = \int_{-1}^0 \frac{x^2(x-1)^2}{1} dx - \left(\frac{5}{6}\right)^2 = \frac{61}{180},$$

– for the first stratum $[0, 1]$,

$$\mu_{f,2} = \int_0^1 x(x-1) \times 1 dx = -\frac{1}{6} \quad \text{and} \quad \sigma_{f,2}^2 = \int_0^1 \frac{x^2(x-1)^2}{1} dx - \left(-\frac{1}{6}\right)^2 = \frac{1}{180}.$$

Therefore, $Var(\bar{Y}) = \frac{19}{45n}$ and $Var(\bar{Y}_S) = \frac{1}{n}(\frac{1}{2} \times \frac{61}{180} + \frac{1}{2} \times \frac{1}{180}) = \frac{31}{180n}$. Because the relative efficiency is $\frac{19 \times 180}{45 \times 31} \approx 2.4516 > 1$, this stratified random sampling can produce a much more accurate estimator than the simple random sample in this case.

(e) (4pts) In the optimal allocation, the subsample sizes n_1 and n_2 for the two strata are proportional to $W_1\sigma_{f,1}$ and $W_2\sigma_{f,2}$. Therefore,

$$n_1 : n_2 = \left(\frac{1}{2} \times \sqrt{\frac{61}{180}}\right) : \left(\frac{1}{2} \times \sqrt{\frac{1}{180}}\right) = \sqrt{61} : 1 \approx 7.81 : 1,$$

and $n_1 = \frac{7.81}{8.81} \times n$, $n_2 = \frac{1}{8.81} \times n$.

3. (14pts)

(a) (5pts) When α and σ are fixed, the length of the confidence interval is proportional to $\sqrt{\frac{1}{n} + \frac{1}{m}}$. The solution of minimizing $\frac{1}{n} + \frac{1}{m}$ subject to the constraint $n + m = N$ gives the confidence interval with the shortest length. By substituting $m = N - n$ into $\frac{1}{n} + \frac{1}{m}$, we have

$$\frac{1}{n} + \frac{1}{N-n} = \frac{N}{n(N-n)} = -\frac{N}{[n - (N/2)]^2 - (N^2/4)},$$

which is minimized when $n = N/2$. The answer is $n = m = N/2$.

(b) (3pts) When α is fixed, the power β_Δ increases along with the increase of $\left| \frac{\mu_x - \mu_Y}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \right|$. Because μ_X, μ_Y, σ are fixed parameters, the solution of minimizing $\frac{1}{n} + \frac{1}{m}$ subject to the constraint $n + m = N$ also gives the most powerful test. The answer is also $n = m = N/2$.

(c) (6pts) The solution of minimizing $\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}$ subject to the constraint $n + m = N$ gives the confidence interval with the shortest length. By substituting $m = N - n$ into $\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}$, differentiating it with respect to n , and setting it to be 0, we have

$$\frac{d}{dn} \left(\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{N-n} \right) = -\frac{\sigma_X^2}{n^2} + \frac{\sigma_Y^2}{(N-n)^2} = \frac{n^2\sigma_Y^2 - (N-n)^2\sigma_X^2}{n^2(N-n)^2} = 0.$$

Because

$$n^2\sigma_Y^2 - (N-n)^2\sigma_X^2 = 0 \Leftrightarrow \left(\frac{N}{n} - 1 \right)^2 = \frac{\sigma_Y^2}{\sigma_X^2} \Leftrightarrow \frac{n}{N} = \frac{\sigma_X}{\sigma_X + \sigma_Y}$$

The answer is $n = \frac{\sigma_X}{\sigma_X + \sigma_Y}N$ and $m = \frac{\sigma_Y}{\sigma_X + \sigma_Y}N$. The population with large population variance should be allocated more subjects, and the optimal sample sizes should be proportional to the population standard deviations.

4. (20pts)

(a) (8pts) Using the hints, we can get

$$E(W_X) = E(U_X) + \frac{n(n+1)}{2} = n^2E(\hat{\pi}) + \frac{n(n+1)}{2} = n^2\pi + \frac{n(n+1)}{2}.$$

Because $X \sim N(0, 1)$, $Y \sim N(1, 1)$, and (X, Y) are independent, we know that $Y - X \sim N(1, 2)$ and $\frac{(Y-X)-1}{\sqrt{2}} \sim N(0, 1)$. Since $\pi = P(X > Y)$, we have

$$\pi = P(Y - X < 0) = P\left(\frac{(Y-X)-1}{\sqrt{2}} < -\frac{1}{\sqrt{2}}\right) = \Phi\left(-\frac{1}{\sqrt{2}}\right),$$

and

$$E(W_X) = n^2 \times \Phi\left(-\frac{1}{\sqrt{2}}\right) + \frac{n(n+1)}{2}.$$

(b) (12pts) Using the hints, we can get

$$Var(W_X) = Var(U_X) = Var\left(\sum_{i=1}^n \sum_{j=1}^n Z_{ij}\right) = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n \sum_{l=1}^n Cov(Z_{ij}, Z_{kl}).$$

For the value of $Cov(Z_{ij}, Z_{kl})$, we need to consider the following four cases.

- If $i = k$ and $j = l$, then $Cov(Z_{ij}, Z_{kl}) = Var(Z_{ij}) = \pi(1 - \pi)$. There are n^2 covariances of this case.
- If $i \neq k$ and $j \neq l$, then Z_{ij} and Z_{kl} are independent so that $Cov(Z_{ij}, Z_{kl}) = 0$.
- If $i = k$ but $j \neq l$, then

$$Cov(Z_{ij}, Z_{kl}) = E(Z_{ij}Z_{kl}) - E(Z_{ij})E(Z_{kl}) = E(Z_{ij}Z_{il}) - \pi^2.$$

Because

$$E(Z_{ij}Z_{il}) = 1 \times P(X_i > Y_j \text{ and } X_i > Y_l) + 0 \times [1 - P(X_i > Y_j \text{ and } X_i > Y_l)] = \tau,$$

we have $Cov(Z_{ij}, Z_{kl}) = \tau - \pi^2$ when $i = k$ but $j \neq l$. There are $n^2(n-1)$ covariances of this case.

- If $i \neq k$ but $j = l$, then similarly, we can get $Cov(Z_{ij}, Z_{kl}) = \tau - \pi^2$. There are $n^2(n-1)$ covariances of this case.

Therefore,

$$Var(W_X) = n^2\pi^2 + 2n^2(n-1)(\tau - \pi^2) = 2n^2(n-1)\tau - n^2(2n-3)\pi^2,$$

where $\pi = \Phi(-1/\sqrt{2})$.

5. (18pts)

(a) (2pts) Because the joint pdf of the data X_1, \dots, X_n is

$$f(x_1, \dots, x_n; \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} = (2\pi)^{-n/2} \times (\sigma^2)^{-n/2} \times e^{-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (x_i-\mu)^2 \right]},$$

the log-likelihood function is

$$l(\mu, \sigma^2) = \log(f(x_1, \dots, x_n; \mu, \sigma^2)) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2.$$

(b) (10pts) Because $\log(\Lambda) = \sup_{\omega} \log(\mathcal{L}) - \sup_{\Omega} \log(\mathcal{L}) = \sup_{\omega} l(\mu, \sigma^2) - \sup_{\Omega} l(\mu, \sigma^2)$, and

$$\begin{aligned} \sup_{\Omega} l(\mu, \sigma^2) &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\hat{\sigma}_{\Omega}^2) - \frac{1}{2\hat{\sigma}_{\Omega}^2} \sum_{i=1}^n (x_i - \hat{\mu}_{\Omega})^2 \\ &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\hat{\sigma}_{\Omega}^2) - \frac{1}{2} \times \frac{n}{\sum_{i=1}^n (x_i - \hat{\mu}_{\Omega})^2} \times \sum_{i=1}^n (x_i - \hat{\mu}_{\Omega})^2 \\ &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\hat{\sigma}_{\Omega}^2) - \frac{n}{2}, \end{aligned}$$

and

$$\begin{aligned} \sup_{\omega} l(\mu, \sigma^2) &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\hat{\sigma}_{\omega}^2) - \frac{1}{2\hat{\sigma}_{\omega}^2} \sum_{i=1}^n (x_i - \mu_0)^2 \\ &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\hat{\sigma}_{\omega}^2) - \frac{1}{2} \times \frac{n}{\sum_{i=1}^n (x_i - \mu_0)^2} \times \sum_{i=1}^n (x_i - \mu_0)^2 \\ &= -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\hat{\sigma}_{\omega}^2) - \frac{n}{2}, \end{aligned}$$

we have

$$\log(\Lambda) = \sup_{\omega} l(\mu, \sigma^2) - \sup_{\Omega} l(\mu, \sigma^2) = -\frac{n}{2} \log(\hat{\sigma}_{\omega}^2) + \frac{n}{2} \log(\hat{\sigma}_{\Omega}^2) = -\frac{n}{2} \log \left(\frac{\hat{\sigma}_{\omega}^2}{\hat{\sigma}_{\Omega}^2} \right).$$

(c) (6pts) The likelihood ratio test rejects H_0 when Λ (or $\log(\Lambda)$) is small. Because

$$\begin{aligned} \frac{\hat{\sigma}_{\omega}^2}{\hat{\sigma}_{\Omega}^2} &= \frac{\sum_{i=1}^n (X_i - \mu_0)^2}{\sum_{i=1}^n (X_i - \bar{X})^2} = \frac{\sum_{i=1}^n (X_i - \bar{X} + \bar{X} - \mu_0)^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \\ &= \frac{[\sum_{i=1}^n (X_i - \bar{X})^2] + n(\bar{X} - \mu_0)^2}{\sum_{i=1}^n (X_i - \bar{X})^2} = 1 + \frac{1}{n-1} \times \frac{(\bar{X} - \mu_0)^2}{[\frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2]/n} \\ &= 1 + \frac{1}{n-1} \times \frac{(\bar{X} - \mu_0)^2}{s_{\bar{X}}^2} = 1 + \frac{t^2}{n-1}, \end{aligned}$$

the likelihood ratio test rejects $H_0 \Leftrightarrow \frac{\hat{\sigma}_{\omega}^2}{\hat{\sigma}_{\Omega}^2}$ is large $\Leftrightarrow t^2$ is large $\Leftrightarrow |t|$ is large.