
NTHU STAT 3875 Midterm Solution Nov 27, 2018

1. (18pts)

(a) (4pts) Because

E(Xc) = E

(
n∑
i=1

ciXi

)
=

n∑
i=1

ciE(Xi) =

(
n∑
i=1

ci

)
µ,

The estimator Xc is unbiased if and only if

n∑
i=1

ci = 1.

(b) (6pts) The variance of Xc is

V ar(Xc) = V ar

(
n∑
i=1

ciXi

)
=

n∑
i=1

c2
iV ar(Xi) +

n∑
i=1

n∑
j=1
j 6=i

cicjCov(Xi, Xj)

=
n∑
i=1

c2
iσ

2 +
n∑
i=1

n∑
j=1
j 6=i

cicj

(
− σ2

N − 1

)
=

(
n∑
i=1

c2
i −

n∑
i=1

n∑
j=1
j 6=i

cicj
N − 1

)
σ2

(c) (8pts) We need to minimizes
∑n

i=1 c
2
i −
∑n

i=1

∑n
j=1
j 6=i

cicj
N−1

subject to the constraint∑n
i=1 ci = 1. We can introduce a Lagrange multiplier λ and define

g(c1, . . . , cn, λ) =

(
n∑
i=1

c2
i −

n∑
i=1

n∑
j=1
j 6=i

cicj
N − 1

)
+ λ

(
n∑
i=1

ci − 1

)
.

By setting

∂g

∂ci
= 2ci −

n∑
j=1
j 6=i

cj
N − 1

+ λ = 2ci +
ci

N − 1
− 1

N − 1

(
n∑
j=1

cj

)
+ λ

=
2N − 1

N − 1
ci −

1

N − 1
+ λ = 0, for i = 1, . . . , n (I)

∂g

∂λ
=

n∑
i=1

ci − 1 = 0 (II)

we can obtain ci = N−1
2N−1

( 1
N−1
− λ), i = 1, . . . , n, from (I). That is, we have

c1 = · · · = cn. Hence, from (II), we know that ci must be 1/n, for i = 1, . . . , n.
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2. (30pts)

(a) (4pts) Notice that the population variance σ2
f equals V ar(Y1) = V ar[f(X1)].

Since E(Y1) = E[f(X1)] = µf , and the pdf of X1 is 1/2 when −1 ≤ X1 ≤ 1
and 0, otherwise, we have

σ2
f = E(Y 2

1 )− [E(Y1)]2 =

∫ 1

−1

f(x)2 × 1

2
dx− µ2

f . (III)

(b) (6pts) Because Î(f) = Y is the sample mean and Y1, . . . , Yn is a with-replacement
simple random sample, the standard error of Î(f) is

σÎ(f) =

√
V ar(Y ) =

√
V ar(Y1)/n = σf/

√
n.

Since the population variance σ2
f can be estimated by σ̂2

f =
∑n
i=1(Yi−Y )2

n−1
, the

standard error σÎ(f) can be estimated by

σ̂Î(f) =
σ̂f√
n

=
1√
n

√∑n
i=1(Yi − Y )2

n− 1
=

1√
n

√∑n
i=1[f(Xi)− Î(f)]2

n− 1
.

(c) (4pts) By the central limit theorem and the law of large number, we have

Î(f)− I(f)

σ̂Î(f)

D
≈ N(0, 1)

when the sample size n is large. The resulting 100(1−α)% confidence interval
of I(f) is

Î(f)± z(α/2)× σ̂Î(f),

where z(α/2) is the 1− (α/2) quantile of N(0, 1).

(d) (12pts) Let l = 1 and l = 2 represent the strata [−1, 0) and [0, 1], respectively.
It is clear that for the two strata, their stratum fractions Wl’s are 1/2. Denote
the subpopulation mean of the lth stratum by µf,l.

• Case (i). When f(x) = x2, from (III), we can obtain that

– the population mean and variance are

µf =

∫ 1

−1

x2 × 1

2
dx =

1

3
and σ2

f =

∫ 1

−1

x4

2
dx−

(
1

3

)2

=
4

45
,

– for the first stratum [−1, 0),

µf,1 =

∫ 0

−1

x2 × 1 dx =
1

3
and σ2

f,1 =

∫ 0

−1

x4

1
dx−

(
1

3

)2

=
4

45
,

– for the first stratum [0, 1],

µf,2 =

∫ 1

0

x2 × 1 dx =
1

3
and σ2

f,2 =

∫ 1

0

x4

1
dx−

(
1

3

)2

=
4

45
.
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Therefore, V ar(Y ) = 4
45n

and V ar(Y S) = 1
n
(1

2
× 4

45
+ 1

2
× 4

45
) = 4

45n
. Because

the relative efficiency is 1, this stratified random sampling cannot produce a
more accurate estimator in this case.

• Case (ii). When f(x) = x(x− 1), from problem (III), we can obtain that

– the population mean and variance are

µf =

∫ 1

−1

x(x−1)×1

2
dx =

1

3
and σ2

f =

∫ 1

−1

x2(x− 1)2

2
dx−

(
1

3

)2

=
19

45
,

– for the first stratum [−1, 0),

µf,1 =

∫ 0

−1

x(x−1)×1 dx =
5

6
and σ2

f,1 =

∫ 0

−1

x2(x− 1)2

1
dx−

(
5

6

)2

=
61

180
,

– for the first stratum [0, 1],

µf,2 =

∫ 1

0

x(x−1)×1 dx = −1

6
and σ2

f,2 =

∫ 1

0

x2(x− 1)2

1
dx−

(
−1

6

)2

=
1

180
.

Therefore, V ar(Y ) = 19
45n

and V ar(Y S) = 1
n
(1

2
× 61

180
+ 1

2
× 1

180
) = 31

180n
. Because

the relative efficiency is 19×180
45×31

≈ 2.4516 > 1, this stratified random sampling
can produce a much more accurate estimator than the simple random sample
in this case.

(e) (4pts) In the optimal allocation, the subsample sizes n1 and n2 for the two strata
are proportional to W1σf,1 and W2σf,2. Therefore,

n1 : n2 =

(
1

2
×
√

61

180

)
:

(
1

2
×
√

1

180

)
=
√

61 : 1 ≈ 7.81 : 1,

and n1 = 7.81
8.81
× n, n2 = 1

8.81
× n.

3. (14pts)

(a) (5pts) When α and σ are fixed, the length of the confidence interval is propor-

tional to
√

1
n

+ 1
m

. The solution of minimizing 1
n

+ 1
m

subject to the constraint

n + m = N gives the confidence interval with the shortest length. By substi-
tuting m = N − n into 1

n
+ 1

m
, we have

1

n
+

1

N − n
=

N

n(N − n)
= − N

[n− (N/2)]2 − (N2/4)
,

which is minimized when n = N/2. The answer is n = m = N/2.

(b) (3pts) When α is fixed, the power β∆ increases along with the increase of∣∣∣ µx−µY
σ
√

1
n

+ 1
m

∣∣∣. Because µX , µY , σ are fixed parameters, the solution of minimiz-

ing 1
n

+ 1
m

subject to the constraint n + m = N also gives the most powerful
test. The answer is also n = m = N/2.
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(c) (6pts) The solution of minimizing
σ2
X

n
+

σ2
Y

m
subject to the constraint n+m = N

gives the confidence interval with the shortest length. By substituting m =

N −n into
σ2
X

n
+

σ2
Y

m
, differentiating it with respect to n, and setting it to be 0,

we have

d

dn

(
σ2
X

n
+

σ2
Y

N − n

)
= −σ

2
X

n2
+

σ2
Y

(N − n)2
=
n2σ2

Y − (N − n)2σ2
X

n2(N − n)2
= 0.

Because

n2σ2
Y − (N − n)2σ2

X = 0 ⇔
(
N

n
− 1

)2

=
σ2
Y

σ2
X

⇔ n

N
=

σX
σX + σY

The answer is n = σX
σX+σY

N and m = σY
σX+σY

N . The population with large

population variance should be allocated more subjects, and the optimal sample
sizes should be proportional to the population standard deviations.

4. (20pts)

(a) (8pts) Using the hints, we can get

E(WX) = E(UX) +
n(n+ 1)

2
= n2E(π̂) +

n(n+ 1)

2
= n2π +

n(n+ 1)

2
.

Because X ∼ N(0, 1), Y ∼ N(1, 1), and (X, Y ) are independent, we know that

Y −X ∼ N(1, 2) and (Y−X)−1√
2
∼ N(0, 1). Since π = P (X > Y ), we have

π = P (Y −X < 0) = P

(
(Y −X)− 1√

2
< − 1√

2

)
= Φ

(
− 1√

2

)
,

and

E(WX) = n2 × Φ

(
− 1√

2

)
+
n(n+ 1)

2
.

(b) (12pts) Using the hints, we can get

V ar(WX) = V ar(UX) = V ar

(
n∑
i=1

n∑
j=1

Zij

)
=

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

Cov(Zij, Zkl).

For the value of Cov(Zij, Zkl), we need to consider the following four cases.

• If i = k and j = l, then Cov(Zij, Zkl) = V ar(Zij) = π(1− π). There are n2

covariances of this case.

• If i 6= k and j 6= l, then Zij and Zkl are independent so that Cov(Zij, Zkl) = 0.

• If i = k but j 6= l, then

Cov(Zij, Zkl) = E(ZijZkl)− E(Zij)E(Zkl) = E(ZijZil)− π2.

Because

E(ZijZil) = 1×P (Xi > Yj and Xi > Yl)+0×[1−P (Xi > Yj and Xi > Yl)] = τ,

we have Cov(Zij, Zkl) = τ − π2 when i = k but j 6= l. There are n2(n − 1)
covariances of this case.
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• If i 6= k but j = l, then similarly, we can get Cov(Zij, Zkl) = τ − π2. There
are n2(n− 1) covariances of this case.

Therefore,

V ar(WX) = n2π2 + 2n2(n− 1)(τ − π2) = 2n2(n− 1)τ − n2(2n− 3)π2,

where π = Φ
(
−1/
√

2
)
.

5. (18pts)

(a) (2pts) Because the joint pdf of the data X1, . . . , Xn is

f(x1, . . . , xn;µ, σ2) =
n∏
i=1

1√
2πσ

e−
(xi−µ)2

2σ2 = (2π)−n/2×(σ2)−n/2×e−
1

2σ2

[∑n
i=1 (xi−µ)2

]
,

the log-likelihood function is

l(µ, σ2) = log(f(x1, . . . , xn;µ, σ2)) = −n
2

log(2π)−n
2

log(σ2)− 1

2σ2

n∑
i=1

(xi−µ)2.

(b) (10pts) Because log(Λ) = supω log(L)−supΩ log(L) = supω l(µ, σ
2)−supΩ l(µ, σ

2),
and

sup
Ω
l(µ, σ2) = −n

2
log(2π)− n

2
log(σ̂2

Ω)− 1

2σ̂2
Ω

n∑
i=1

(xi − µ̂Ω)2

= −n
2

log(2π)− n

2
log(σ̂2

Ω)− 1

2
× n∑n

i=1(xi − µ̂Ω)2
×

n∑
i=1

(xi − µ̂Ω)2

= −n
2

log(2π)− n

2
log(σ̂2

Ω)− n

2
,

and

sup
ω
l(µ, σ2) = −n

2
log(2π)− n

2
log(σ̂2

ω)− 1

2σ̂2
ω

n∑
i=1

(xi − µ0)2

= −n
2

log(2π)− n

2
log(σ̂2

ω)− 1

2
× n∑n

i=1(xi − µ0)2
×

n∑
i=1

(xi − µ0)2

= −n
2

log(2π)− n

2
log(σ̂2

ω)− n

2
,

we have

log(Λ) = sup
ω
l(µ, σ2)−sup

Ω
l(µ, σ2) = −n

2
log(σ̂2

ω)+
n

2
log(σ̂2

Ω) = −n
2

log

(
σ̂2
ω

σ̂2
Ω

)
.

(c) (6pts) The likelihood ratio test rejects H0 when Λ (or log(Λ)) is small. Because

σ̂2
ω

σ̂2
Ω

=

∑n
i=1(Xi − µ0)2∑n
i=1(Xi −X)2

=

∑n
i=1(Xi −X +X − µ0)2∑n

i=1(Xi −X)2

=
[
∑n

i=1(Xi −X)2] + n(X − µ0)2∑n
i=1(Xi −X)2

= 1 +
1

n− 1
× (X − µ0)2

[ 1
n−1

∑n
i=1(Xi −X)2]/n

= 1 +
1

n− 1
× (X − µ0)2

s2
X

= 1 +
t2

n− 1
,

the likelihood ratio test rejects H0 ⇔ σ̂2
ω

σ̂2
Ω

is large ⇔ t2 is large ⇔ |t| is large.
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