

$$1 - \alpha = P\left(\max_{1 \leq i_1 < i_2 \leq I} \frac{|(\bar{Y}_{i_1} - \bar{Y}_{i_2}) - \Delta_{i_1, i_2}|}{s_p/\sqrt{J}} \leq q_{I, I(J-1)}(\alpha)\right)$$

can test
 $H_0: \Delta_{i_1, i_2} = \text{a constant}$

if set $\Delta_{i_1, i_2} = 0 \Rightarrow \text{Tukey's test}$

$$= P(|(\bar{Y}_{i_1} - \bar{Y}_{i_2}) - \Delta_{i_1, i_2}| < q_{I, I(J-1)}(\alpha) (s_p/\sqrt{J}), \text{ for any } i_1 < i_2)$$

A set of $100(1 - \alpha)\%$ simultaneous confidence intervals for all differences

Δ_{i_1, i_2} 's is $(\bar{Y}_{i_1} - \bar{Y}_{i_2}) \pm q_{I, I(J-1)}(\alpha) (s_p/\sqrt{J})$

12/11

Example 4 (Chlorpheniramine maleate in tablet, Tukey's method, cont. Ex.1, LNp.3)

- $s_p = 0.06$ and

order statistics of $\bar{Y}_{i_1}, \dots, \bar{Y}_{i_7}$

	Lab	4	6	5	2	7	3	1
Mean	3.920	3.955	3.957	3.997	3.998	4.003	4.062	
Tukey's test								-0.082 = 3.98
t -test using $t_{I(J-1)}(\alpha/2)$								
$\alpha = 0.05$								

Tukey's test

reject if $|\bar{Y}_{i_1} - \bar{Y}_{i_2}| > 0.053$

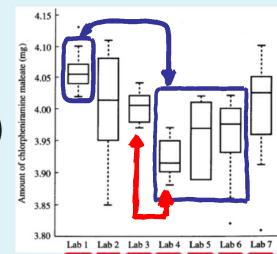
- two parameters are $I = 7$ and $I(J-1) = 63$

$$* q_{7, 63}(0.05) = 4.34 \text{ (Table 6, Appendix B, textbook)}$$

$$* q_{7, 63}(0.05) (s_p/\sqrt{J}) = 0.082$$

- Conclusions:

irrelevant to i_1, i_2



* Mean from Lab 1 is significantly different from those of Labs 4, 5, 6

* Mean from Lab 3 is significantly different from that of Lab 4

* No other comparisons are significant at 0.05 level $H_0^{(1,2)}: \mu_1 = \mu_2$ not rejected

$H_0^{(3,5)}: \mu_2 = \mu_5$ not rejected

Note. These conclusions are not deductive (e.g., Labs 1 and 2 are not significantly different, Labs 2 and 5 are not significantly different)

\Rightarrow cannot deduct that Labs 1 and 5 are not significantly different,

Check LN. CH11, p.14

Q: Why cannot? \Rightarrow How to interpret " H_0 not rejected"? Really accept H_0 is true?

Thm10 (LNp.29)

For t -tests using the critical value $t_{I(J-1)}(\alpha/2)$, two labs would have been declared significantly different if their means have differed by more than

$$t_{63}(0.025) (s_p \sqrt{2/J}) = 0.053 \leq 0.082 \quad \text{easier to reject if significance level not adjusted.}$$

no need to assume equal sample size

Theorem 12 (multiple comparisons, Bonferroni method, I -sample normal model)

Consider the model (*) in LNp.5.

Note. do not need any assumption when derive this result.

- Recall. $\alpha' \leq \alpha^* \leq K\alpha'$ (LNp.30) α' overall type I error rate
- If we set $K\alpha' = \alpha \Leftrightarrow \alpha' = \alpha/K$, then $\alpha^* \leq \alpha$. α desired type I error rate
- A desired overall type-I error rate at most α can be guaranteed by testing each null $H_0^{(i_1, i_2)}$ at significance level $\alpha' = \alpha/K = \alpha/\binom{I}{2}$, i.e., irrelevant to i_1, i_2

$$RR_{i_1, i_2} = \left\{ |T_{i_1, i_2}| > t_{N-I} \left(\frac{\alpha}{2 \times K} \right) = \alpha / [2 \times \binom{I}{2}] = \alpha / [I(I-1)] \right\}$$

- Equivalently, a set of simultaneous $100(1 - \alpha)\%$ confidence intervals for all differences Δ_{i_1, i_2} 's is $\text{Tukey's CI}_{i_1, i_2}$'s (parameters)

$$\text{Tukey's CI}_{i_1, i_2} \Leftrightarrow CI_{i_1, i_2} = (\bar{Y}_{i_1 \cdot} - \bar{Y}_{i_2 \cdot}) \pm \left(s_p \sqrt{\frac{1}{J_{i_1}} + \frac{1}{J_{i_2}}} \right) \times t_{N-I} (\alpha/[I(I-1)])$$

Example 5 (Maleate in tablet, Bonferroni method, cont. Ex.1, LNp.3)

- $K = \binom{7}{2} = 21$ pairwise comparisons among the 7 labs
- A set of 95% simultaneous confidence intervals for the 21 pairwise comparison is $\alpha=0.05$ $(\bar{Y}_{i_1 \cdot} - \bar{Y}_{i_2 \cdot}) \pm t_{63} \left(\frac{0.025}{21} \right) (s_p \sqrt{2/J}) = CI_{i_1, i_2}$ Δ_{i_1, i_2} 's

- Two labs would have been declared significantly different if their means has differed by more than $\Delta_{i_1, i_2} = 0 \notin CI_{i_1, i_2}$ $t_{63} \left(\frac{0.025}{21} \right) (s_p \sqrt{2/J}) = 0.085 \geq 0.082$ (≈ Tukey's method in this case!)
- We only conclude that Lab 1 produced significantly higher measurements than Labs 4, 5, 6. \Leftrightarrow Tukey's results in Ex.4 (LNp.34)

Note 7 (Some notes about multiple comparisons)

- A comparison of Tukey and Bonferroni methods studentized range dist.
 - Tukey's method requires the independent assumption (check (3) in LNp.31) while Bonferroni method does not.

- Bonferroni method is simple and versatile and, although crude, gives surprisingly good results if K is not too large. \therefore require no assumption (check LNp.30)
- When K is large, Bonferroni method is conservative, i.e., tends not to declare the treatment means are significantly different. It happens when

$$\alpha' \leq \alpha^* \ll K \alpha' = \alpha. \quad \text{e.g. } \alpha=0.05 \quad K=100 \Rightarrow \alpha'=5 \times 10^{-4}$$

- In general, for the critical values of the three methods, we have
 too sensitive $\text{not adjusted } T < \text{Tukey} < \text{Bonferroni (adjusted } T\text{)}$ conservative
- When the sample sizes J_i 's are different, the Tukey's procedure in Thm 11 (LNp.31-34) can be similarly applied. A modified procedure is called Tukey-Kramer procedure.
- Under the nonparametric model in LNp.23, Bonferroni method can be applied to all $K = \binom{I}{2}$ pairwise comparisons tested by Mann-Whitney tests. $\text{cf. not adjusted } T$ (under normality)
- See Muller (1981) for other parametric and nonparametric multiple comparison procedures.

If Kruskal-Wallis test is rejected

❖ Reading: textbook, 12.1, 12.2 (12.2.1, 12.2.2, 12.2.3)

- Two-way layout \rightarrow two factors $\xleftarrow{\text{cf.}}$ one factor \leftarrow one-way layout

- A two-way layout is an experimental design involving two factors, denoted by A and B , each at two or more levels (e.g., the factor A might be various drugs and the other factor B might be gender). \leftarrow cf. one-way layout

- Suppose that A has I levels and B has J levels
 \Rightarrow total $I \times J$ level combinations, i.e.,

$$(A, B) = (i, j), \quad 1 \leq i \leq I, 1 \leq j \leq J$$

$\Rightarrow I \times J$ samples, each of sample size K_{ij} , $1 \leq i \leq I, 1 \leq j \leq J$.

- Observed data: $I \times J$ populations $\xleftarrow{\text{cf.}} \text{J}_i$ in one-way layout

- let y_{ijk} be the k th observed value of the (i, j) th sample,
 where $i \leftarrow A, j \leftarrow B, k$: replicates

one-way layout (LNp.1)

cf.

y_{ijk} 's are continuous measurements and $y_{ijk} - y_{i'j'k'}$ is meaningful

- Statistical modeling: regard y_{ijk} as a realization of a random variable Y_{ijk}

(IJ) -sample model \Leftarrow (i, j) th sample: $Y_{ij1}, Y_{ij2}, \dots, Y_{ijk_{ij}}$ \sim i.i.d. F_{ij} (∇)

for $i = 1, \dots, I, j = 1, \dots, J$, and all Y_{ijk} 's are independent.

- Denote the means (or medians) of F_{11}, \dots, F_{IJ} by $\mu_{11}, \dots, \mu_{IJ}$

Simple random sampling
parameters

– Data table

crossing structure

cf. \downarrow nesting

a population distribution

F_{ij}

Total: $I \times J$ cells

a population

a cell
a sample

		<u>B</u>		
		<u>1</u>	<u>2</u>	<u>\dots</u>
<u>A</u>		<u>$(A, B) = (1, 1)$, $Y_{111}, \dots, Y_{11K_{11}}$</u>	<u>$(A, B) = (1, 2)$, $Y_{121}, \dots, Y_{12K_{12}}$</u>	<u>\dots</u>
	<u>i.i.d.</u>	<u>$F_{11} (\mu_{11})$</u>	<u>$F_{12} (\mu_{12})$</u>	<u>$F_{1J} (\mu_{1J})$</u>
	<u>\vdots</u>	<u>\vdots</u>	<u>\vdots</u>	<u>\vdots</u>
<u>I</u>		<u>$(A, B) = (I, 1)$, $Y_{I11}, \dots, Y_{I1K_{11}}$</u>	<u>$(A, B) = (I, 2)$, $Y_{I21}, \dots, Y_{I2K_{12}}$</u>	<u>\dots</u>
	<u>i.i.d.</u>	<u>$F_{I1} (\mu_{I1})$</u>	<u>$F_{I2} (\mu_{I2})$</u>	<u>$F_{IJ} (\mu_{IJ})$</u>

Question 8.

- In one-way ANOVA of I samples, we are primarily concerned with whether the means (or medians) of the I samples are equal or not.
- In two-way case, is it enough to only examine whether the means (or medians) of the IJ samples are equal or not? \rightarrow i.e., treat it as a one-way layout of IJ samples

In two-way case, we might be interested in knowing

- whether the level changes of factor A (or factor B) cause a systematic difference in μ_{ij} 's? \Rightarrow main effects of A (or B)
- whether the systematic difference caused by the level changes of factor A depends on the level changes of factor B ? \Rightarrow Interactions of A and B

Q: How to define these effects?

$B = \text{male}$ $A = \text{new drug}$ $A = \text{old drug}$ $B = \text{female}$ $A = \text{new drug}$ $A = \text{old drug}$

Data

Ch 12, p. 38

<u>A</u>	<u>B</u>	<u>V</u>
1	1	Y_{111}
1	1	$Y_{11K_{11}}$
\vdots	\vdots	\vdots
1	J	Y_{1J1}
1	J	$Y_{1JK_{1J}}$
\vdots	\vdots	\vdots
2	1	Y_{211}
2	1	$Y_{21K_{21}}$
\vdots	\vdots	\vdots
2	J	Y_{2J1}
2	J	$Y_{2JK_{2J}}$
\vdots	\vdots	\vdots
I	J	Y_{IJ1}
I	J	$Y_{IJK_{IJ}}$

Ch 12, p. 39