

Question 5.

cf.

In the materials taught before, we usually assume, in the statistical modeling, that the data follows a particular joint distribution which contains some unknown parameters of finite dimension. e.g., normal with 3 parameters μ_x, μ_y, σ^2

- The statistical inferences, estimation and testing, are then based on a formulation of these parameters. e.g., $\Delta = \mu_x - \mu_y$

Q: What if we do not have any knowledge about the particular form of the joint distribution of data?

Consider the problem of 2-sample comparison.

- Let Ω be the collection of all continuous distributions

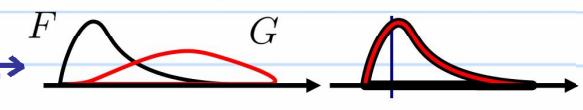
- Only assume that $F, G \in \Omega$

- Thus, the statistical model is:

parameter space/
model space

$$\left. \begin{array}{l} \text{1st sample: } X_1, \dots, X_n \sim \text{i.i.d. from } F \\ \text{2nd sample: } Y_1, \dots, Y_m \sim \text{i.i.d. from } G \end{array} \right\} \leftarrow \text{independent } (\square)$$

Recall.
LNp.2
case (a)



This model contains parameters of infinitely many dimension because

$$\dim(\Omega) = \infty$$

(why?)

pdf: $\int_{-\infty}^{\infty} f(x) dx = 1$
cdf: nondecreasing F
mgf: $M(t) \Rightarrow k\text{th moment} = M^{(k)}(0), k=1, 2, \dots$
(ch.f.)

check
LNp.5
case (a)

Under this model, a 2-sample comparison examines the null and alternative hypotheses:

$$H_0: F = G \quad \text{vs.} \quad H_A: F \neq G.$$

no difference

Definition 2 (nonparametric models and nonparametric methods)

such as normal, exponential, Poisson, ...

- Nonparametric models do not assume any particular distributional form.

Nonparametric models can be viewed as having infinitely many parameters.

(\leftrightarrow parametric models: parameters are of finite dimension)

- Statistical methods developed under nonparametric models are called nonparametric methods.

Q: What statistics (transformation) often appear in nonparametric method?

empirical
cdf
(TBp.378)

Let X_1, X_2, \dots, X_n be random variables. We sort the X_i 's and denote by $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$ the order statistics. Using the notation,

- TBp.105-107
- CHI-6.P34-37

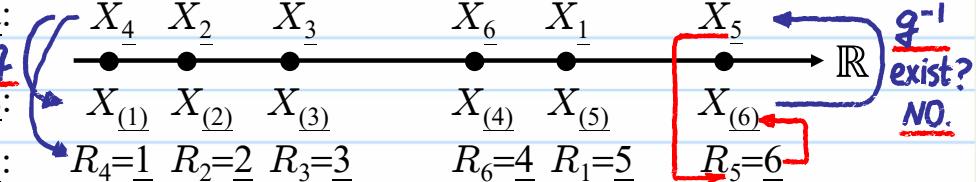
$$\begin{aligned} X_{(1)} &= \min(X_1, X_2, \dots, X_n) \text{ is the } \text{minimum,} \\ X_{(n)} &= \max(X_1, X_2, \dots, X_n) \text{ is the } \text{maximum.} \end{aligned}$$

- Let $R(X_1, X_2, \dots, X_n) = (R_1, R_2, \dots, R_n)$ such that $X_i = X_{(R_i)}$, $i = 1, \dots, n$. Then, (R_1, R_2, \dots, R_n) is called the ranks of X_1, X_2, \dots, X_n . Notice that

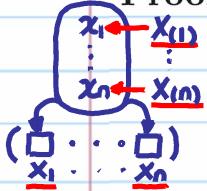
$$\# \text{ of observations} \leq X_i \rightarrow R_i = \sum_{j=1}^n \delta(X_i - X_j), \text{ where } \delta(t) = \begin{cases} 1, & \text{if } t \geq 0, \\ 0, & \text{if } t < 0. \end{cases}$$

complete
information
in X_1, \dots, X_n

data:
transformation g
order statistics:



1-sample data

Theorem 8 (sufficient and complete statistics for nonparametric models)Let X_1, \dots, X_n be i.i.d. from F , where $F \in \Omega$. $\dim = \infty$ Then, $(X_{(1)}, X_{(2)}, \dots, X_{(n)})$ is sufficient and complete. \rightarrow removing information in (R_1, \dots, R_n) (Why? \because i.i.d.) $(\leftarrow X_1, \dots, X_n \sim \text{i.i.d. } N(\mu, \sigma^2) \Rightarrow (\bar{X}, s_X^2) \text{ is sufficient and complete.})$ **Proof.** Denote the pdf of F by f . The joint pdf of $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ is

$$f_{X_{(1)}, X_{(2)}, \dots, X_{(n)}}(x_1, x_2, \dots, x_n) = n! \times f(x_1) f(x_2) \dots f(x_n),$$

for $x_1 < x_2 < \dots < x_n$ and zero, otherwise.joint pdf of X is of the form, but $(x_1, \dots, x_n) \in \mathbb{R}^n$
joint pdf of X
joint pdf of (x, T)
joint pdf of T
The proof of sufficiency follows from the fact that the conditional probability of X_1, \dots, X_n given $X_{(1)}, \dots, X_{(n)}$ is $\frac{1}{n!}$, which is irrelevant to F . \rightarrow TBp. 305

The proof of completeness is omitted (out of the scope of this course).

 $X_{(i)}$ **Note 7** (Some notes about order statistics and ranks)

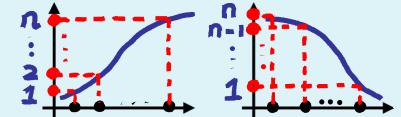
- Order statistics and ranks are defined precisely, i.e., no ties, under the condition $P(X_i = X_j) = 0$, $i \neq j$ (Note. this condition holds when $X_1, \dots, X_n \sim$ i.i.d. from F and F is a continuous distribution).
- Under Ω , the dimension of data (i.e., n) cannot be reduced without losing the information about F ($\in \Omega$). \rightarrow combine information
- Under 1-sample model, ranks + order statistics = complete data
- Order statistics are intuitive estimator of quantiles, e.g., median. \rightarrow 50% quantile

- Ranks are invariant under any monotonic transformation of data, i.e.,

$$R(X_1, \dots, X_n) = R(H(X_1), \dots, H(X_n)),$$

if H is a monotone increasing function and

$$R(X_1, \dots, X_n) = (n+1) - R(H(X_1), \dots, H(X_n)),$$

if H is a monotone decreasing function. (\leftarrow cf. z - or t -tests may change significantly under monotonic transformations of data).

- Replacing the data by their ranks also has the effect of moderating the influence of outliers.
- Many nonparametric methods are based on order statistics and/or ranks.
- Q: Why are many nonparametric methods based on replacement of the data by ranks? What information of data are contained in their ranks? \downarrow nondecreasing

TBp. 63

(exercise) – Recall. Let X_1, \dots, X_n be i.i.d. from a continuous cdf F , and let $U_i = F(X_i)$, $i = 1, \dots, n$. Then, U_1, \dots, U_n are i.i.d. from $U(0, 1)$.

TBp. 105

(exercise) – Recall. If $U_1, \dots, U_n \sim$ i.i.d. $U(0, 1)$, the pdf of the i th-order statistic $U_{(i)}$ is

 $U_{(i)}$

$$f_{U_{(i)}}(u) = \frac{n!}{(i-1)!(n-i)!} u^{i-1} (1-u)^{n-i},$$

for $0 < u < 1$ and zero, otherwise.Beta(i , $n-i+1$)Note that $E(U_{(i)}) = i/(n+1)$.