

- From the log-likelihood, we have

$$\begin{aligned}
 & \text{for any } 1 \leq i \leq I, 1 \leq j \leq J, \quad \frac{\partial \underline{l}}{\partial \mu_{ij}} = \frac{1}{\sigma^2} \left[\left(\sum_{k=1}^K Y_{ijk} \right) - K \times \mu_{ij} \right] = 0 \\
 & \frac{\partial \underline{l}}{\partial \sigma^2} = -\frac{IJK}{2\sigma^2} + \frac{1}{2\sigma^2} \sum_{i=1}^I \sum_{j=1}^J \sum_{k=1}^K (Y_{ijk} - \mu_{ij})^2 = 0 \rightarrow \hat{\sigma}_{MLE}^2
 \end{aligned}$$

12/18

Theorem 14 (UMVUE and MLE of the parameters in the model (□) in LNp.45)

- Let $R_{ij} = \sum_k Y_{ijk}$ for $1 \leq i \leq I, 1 \leq j \leq J$, and $R_\sigma = \sum_i \sum_j \sum_k Y_{ijk}^2$. Then, $(R_{11}, \dots, R_{IJ}, R_\sigma)$

LNp.46

is sufficient and complete (Hint. $(IJ+1)$ -parameter exponential family)

- $\bar{Y}_{ij\cdot} = R_{ij}/K$ is the UMVUE (by Lehmann-Scheffe Thm) and MLE of μ_{ij}
- Note that $\hat{\mu}_{ij} \equiv \bar{Y}_{ij\cdot}$ is the sample mean of the (i, j) th sample Y_{ij1}, \dots, Y_{ijk}

- By the invariance property of MLE, we have

- The MLE of $\bar{\mu}$ is $\hat{\mu} = \frac{1}{IJ} (\sum_i \sum_j \hat{\mu}_{ij}) = \frac{1}{IJK} (\sum_i \sum_j \sum_k Y_{ijk}) \equiv \bar{Y}_{\dots}$
- The MLE of $\bar{\mu}_{ij\cdot}$ is $\hat{\mu}_{ij\cdot} = \frac{1}{J} (\sum_j \hat{\mu}_{ij}) = \frac{1}{JK} (\sum_j \sum_k Y_{ijk}) \equiv \bar{Y}_{i\dots}, i = 1, \dots, I$
- The MLE of α_i is $\hat{\alpha}_i = \hat{\mu}_{i\dots} - \hat{\mu} = \bar{Y}_{i\dots} - \bar{Y}_{\dots}, i = 1, \dots, I$

check LNp.40

check LN.CHI.II.P.10

$$\begin{aligned}
 \hat{\theta}_{MLE} & \xrightarrow{e} \theta \xrightarrow{g(\theta)} \\
 \Rightarrow \text{MLE of } g(\theta) & \text{ is } g(\hat{\theta}_{MLE})
 \end{aligned}$$

check tables in LNp.42 & 39

check table in LNp.42

- The MLE of $\bar{\mu}_{\cdot j}$ is $\hat{\mu}_{\cdot j} = \frac{1}{I} (\sum_i \hat{\mu}_{ij}) = \frac{1}{IK} (\sum_i \sum_k Y_{ijk}) \equiv \bar{Y}_{\cdot j\dots}, j = 1, \dots, J$

The MLE of β_j is $\hat{\beta}_j = \hat{\mu}_{\cdot j} - \hat{\mu} = \bar{Y}_{\cdot j\dots} - \bar{Y}_{\dots}, j = 1, \dots, J$

check tables in LNp.42 & 39

- The MLE of δ_{ij} is

$$\delta_{ij} = \hat{\mu}_{ij} - \hat{\mu} - \hat{\alpha}_i - \hat{\beta}_j = \bar{Y}_{ij\cdot} - \bar{Y}_{i\dots} - \bar{Y}_{\cdot j\dots} + \bar{Y}_{\dots}$$

for $i = 1, \dots, I, j = 1, \dots, J$

They are functions of $R_{ij\cdot}$'s ($\hat{\mu}_{ij\cdot}$'s)

Note. By Lehmann-Scheffe Thm, all these estimators are UMVUEs. (exercise)

- Connection between these estimators

table in LNp.39 & 42

unbiased

δ_{II}	A	1	2	\dots	J	$\bar{u}_{\cdot 1}$
$\hat{\delta}_{II} = \bar{Y}_{II\cdot}$		$\bar{Y}_{11\cdot}$	$\bar{Y}_{12\cdot}$	\dots	$\bar{Y}_{1J\cdot}$	$\bar{Y}_{1\dots} = \bar{Y}_{\dots} + \hat{\alpha}_1$
$-(\bar{\mu} + \hat{\alpha}_1)$		$\bar{Y}_{11\cdot}$	$\bar{Y}_{12\cdot}$	\dots	$\bar{Y}_{1J\cdot}$	$\bar{Y}_{1\dots} = \bar{Y}_{\dots} + \hat{\alpha}_1$
$+ \hat{\beta}_1$		$\bar{Y}_{11\cdot}$	$\bar{Y}_{12\cdot}$	\dots	$\bar{Y}_{1J\cdot}$	$\bar{Y}_{1\dots} = \bar{Y}_{\dots} + \hat{\alpha}_1$
$\text{prediction under MEM}$		$\bar{Y}_{11\cdot}$	$\bar{Y}_{12\cdot}$	\dots	$\bar{Y}_{1J\cdot}$	$\bar{Y}_{1\dots} = \bar{Y}_{\dots} + \hat{\alpha}_1$
$\hat{\alpha}_1$	A	1	2	\dots	J	$\bar{u}_{\cdot 1}$
$\hat{\beta}_1$		$\bar{Y}_{11\cdot}$	$\bar{Y}_{12\cdot}$	\dots	$\bar{Y}_{1J\cdot}$	$\bar{Y}_{1\dots} = \bar{Y}_{\dots} + \hat{\alpha}_1$
$\hat{\alpha}_1$		$\bar{Y}_{11\cdot}$	$\bar{Y}_{12\cdot}$	\dots	$\bar{Y}_{1J\cdot}$	$\bar{Y}_{1\dots} = \bar{Y}_{\dots} + \hat{\alpha}_1$
$\hat{\beta}_1$		$\bar{Y}_{11\cdot}$	$\bar{Y}_{12\cdot}$	\dots	$\bar{Y}_{1J\cdot}$	$\bar{Y}_{1\dots} = \bar{Y}_{\dots} + \hat{\alpha}_1$

- Let $s_{ij}^2 = \frac{1}{K-1} \sum_k (Y_{ijk} - \bar{Y}_{ij\cdot})^2$ be the sample variance of the (i, j) th sample
- (by Lehmann-Scheffe Thm) The pooled sample variance

Note 3
in LNp.11
& Def1
in LNp.11.
P.7

$$s_p^2 = \frac{\sum_i \sum_j (K-1) s_{ij}^2}{IJ(K-1)} \xrightarrow{\text{e.g. } 6^2} \text{weights} = \frac{1}{N-IJ} \left[\sum_i \sum_j \sum_k (Y_{ijk} - \bar{Y}_{ij.})^2 \right] \xrightarrow{\text{degree of freedom}}$$

is the UMVUE of σ^2 , since (i) s_p^2 is unbiased, and (ii)

$$(N-IJ) s_p^2 = \sum_i \sum_j \sum_k (Y_{ijk} - \bar{Y}_{ij.})^2 \xrightarrow{\text{E}(s_p^2) = \sigma^2} \forall i, j$$

$$= (\sum_i \sum_j \sum_k Y_{ijk}^2) - [\sum_i \sum_j (K \bar{Y}_{ij.})^2] = R_\sigma - \sum_i \sum_j (R_{ij}^2 / K)$$

check
LNp.47

mean 0
var σ^2
error E_{ijk}

The MLE of σ^2 is $\frac{N-IJ}{N} s_p^2 = \frac{1}{N} \left[\sum_i \sum_j \sum_k (Y_{ijk} - \bar{Y}_{ij.})^2 \right]$

Note. $\hat{e}_{ijk} \equiv Y_{ijk} - \bar{Y}_{ij.} = Y_{ijk} - \hat{\mu}_{ij}$ is called the residual of the (i, j, k) th observation.

$$\begin{aligned} Y_{ijk} &= \bar{Y}_{ij.} + E_{ijk} \\ &\xrightarrow{\text{cf.}} \hat{\mu}_{ij} + \hat{E}_{ijk} \end{aligned}$$

Question 9. \rightarrow check Q8 (LNp.39) & Def6 (LNp.44)

parameter
space Ω

$H_0^{(A)}$

$H_0^{(AB)}$

$H_0^{(B)}$

Under the model (□) in LNp.45, how to examine:

(i) whether the factor A has some effects on Y's, i.e.,

$$H_0^{(A)} : \alpha_1 = \dots = \alpha_I = 0 \quad \text{vs.} \quad H_A^{(A)} : \text{at least one of } \alpha_i \text{'s is not 0}$$

(ii) whether the factor B has some effects on Y's, i.e.,

$$H_0^{(B)} : \beta_1 = \dots = \beta_J = 0 \quad \text{vs.} \quad H_A^{(B)} : \text{at least one of } \beta_j \text{'s is not 0}$$

(iii) whether the factors A and B has some interactions on Y's, i.e.,

$$H_0^{(AB)} : \text{all } \delta_{ij} \text{'s are 0} \quad \text{vs.} \quad H_A^{(AB)} : \text{at least one of } \delta_{ij} \text{'s is not 0}$$

Theorem 15 (Sum of squares decomposition)

Ch 12, p. 50
 $\xrightarrow{\text{cf.}} \text{SS decomposition for 1-way layout}$
(LNp.7)

no dist. assumption
Consider the model (▽) in LNp.38. Define

$$SS_{TOT} = \sum_i \sum_j \sum_k (Y_{ijk} - \bar{Y}_{...})^2 = \sum_i \sum_j \sum_k (Y_{ijk} - \hat{\mu})^2$$

Then, the SS_{TOT} can be decomposed to

total
variation
in the data
 Y_{ijk} 's

$$\begin{aligned} \sum_i \sum_j \sum_k (Y_{ijk} - \bar{Y}_{...})^2 &= \underbrace{\sum_i \sum_j \sum_k (Y_{ijk} - \bar{Y}_{ij.})^2}_{SS_{TOT}} + \underbrace{\sum_i \sum_j \sum_k (\bar{Y}_{ij.} - \bar{Y}_{...})^2}_{SS_E} \left(= \sum_i \sum_j \sum_k \hat{e}_{ijk}^2 = (N-IJ) s_p^2 \right) \\ &+ \underbrace{JK \left[\sum_i (\bar{Y}_{i..} - \bar{Y}_{...})^2 \right]}_{SS_A} + \underbrace{IK \left[\sum_j (\bar{Y}_{.j.} - \bar{Y}_{...})^2 \right]}_{SS_B} \xrightarrow{\text{e.g. } \sigma^2} \end{aligned}$$

$\sum_i \sum_j \sum_k \hat{\alpha}_i^2$

$$+ K \left[\sum_i \sum_j (\bar{Y}_{ij.} - \bar{Y}_{i..} - \bar{Y}_{.j.} + \bar{Y}_{...})^2 \right]$$

$SS_{AB} \left(= K \left(\sum_i \sum_j \hat{\delta}_{ij}^2 \right) \right)$

$\sum_i \sum_j \sum_k \hat{\beta}_j^2$

check the
table in LNp.48

That is,

variation of 隨機
($\because E_{ijk}$'s are r.v.'s)

$$SS_{TOT} = \underbrace{SS_E}_{\text{I}} + \underbrace{SS_A}_{\text{II}} + \underbrace{SS_B}_{\text{III}} + \underbrace{SS_{AB}}_{\text{IV}}$$

Source of variation

variation
of 規律
($\because \alpha_i$'s, β_j 's,
 δ_{ij} 's parameters)

Proof. This proof is similar to that of one-way ANOVA (LNp.7). This SS identity can be proved by writing $\xleftarrow{\text{This proof requires no dist. assumption}}$