ANOVA Decomposition (Cont’d)

Table 26: Wood Experiment : Summarized data for whole plot analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>Rep 1</th>
<th>Rep 2</th>
<th>Rep 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>181.1</td>
<td>224.7</td>
<td>219.0</td>
<td>624.8</td>
</tr>
<tr>
<td>a_2</td>
<td>168.0</td>
<td>191.0</td>
<td>128.8</td>
<td>487.8</td>
</tr>
<tr>
<td>Total</td>
<td>349.1</td>
<td>415.7</td>
<td>347.8</td>
<td>1112.6</td>
</tr>
</tbody>
</table>

The SS_A can be calculated from the data in LNP_{48}.

\[
SS_A = \frac{(624.8^2 + 487.8^2) - 1112.6^2}{24} = 782.04.
\]

\[
SS_{Rep} = \frac{(349.1^2 + 415.7^2 + 347.8^2) - 1112.6^2}{24} = 376.99.
\]

\[
SS_{whole} = SS_{Rep \times A} = 398.37.
\]

\[
SS_{sub} = 927.88 - SS_{whole} - SS_{Rep} = 152.52.
\]

Expected Mean Squares in ANOVA

\[
\begin{align*}
W_0 \oplus T_i & \quad \text{(Replicate or block)} \\
S_i & \quad \text{dim}(S_i) = n_{R} \\
W_i & \quad \text{error} \\
S_2 & \quad \text{(Rep \times A)} \\
T_2 & \quad \text{Whole plot} \\
S_3 & \quad \text{(Rep \times B)} \times (Rep \times A \times B) \\
T_3 & \quad \text{Subplot} \\
\end{align*}
\]

- Proofs are similar but more tedious than in one-way random effects model ($LNP_{3,33-36}$).
Hypothesis Testing

\[F_A = \frac{MS_A}{MS_{\text{whole}}} \Rightarrow H_0^1: \alpha_1 = \cdots = \alpha_I, \]

Under \(H_0^2 \), \(\Delta \text{SS}_A \sim e_2^2 \chi_{2(d_m(w))}^2 \)

\[F_B = \frac{MS_B}{MS_{\text{sub}}} \Rightarrow H_0^2: \beta_1 = \cdots = \beta_I, \]

Under \(H_0^2 \), \(\Delta \text{SS}_B \sim e_2^2 \chi_{2(d_m(w))}^2 \)

Apply similar argument as for \(H_0^2 \)

\[F_{\Delta B} = \frac{MS_{\Delta B}}{MS_{\text{sub}}} \Rightarrow H_0^3: (\alpha \beta)_{ij} = \text{constant}, \]

\[F_{\text{Rep}} = \frac{MS_{\text{Rep}}}{MS_{\text{whole}}} \Rightarrow H_0^4: \sigma_R = 0. \]

Q: Why does \(A \) become insignificant?

Q: Why does \(B \) become significant?

Correct ANOVA Analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>Degrees of Freedom</th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>(F)</th>
<th>(p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_1)</td>
<td>3-1 = 2</td>
<td>376.99</td>
<td>188.50</td>
<td>0.95</td>
<td>0.513</td>
</tr>
<tr>
<td>(W_i)</td>
<td>2-1 = 1</td>
<td>782.04</td>
<td>782.04</td>
<td>3.93</td>
<td>0.186</td>
</tr>
<tr>
<td>(T_2)</td>
<td>3-1 = 2</td>
<td>398.37</td>
<td>199.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(W_2)</td>
<td>4-1 = 3</td>
<td>266.00</td>
<td>88.67</td>
<td>6.98</td>
<td>0.006</td>
</tr>
<tr>
<td>(W_3)</td>
<td>(4-1)(5-1) = 12</td>
<td>62.79</td>
<td>20.93</td>
<td>1.65</td>
<td>0.230</td>
</tr>
<tr>
<td>(S_3)</td>
<td>18-3-3 = 12</td>
<td>152.52</td>
<td>12.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Omega)</td>
<td>23</td>
<td>2038.72</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 \((n_w) \) blocks, size 2
6 \((n_R) \) whole plots, size 4
24 \((N) \) sub-plots

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replicate</td>
<td>2</td>
<td>376.99</td>
<td>188.50</td>
<td>0.95</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>782.04</td>
<td>782.04</td>
<td>3.93</td>
</tr>
<tr>
<td>Whole plot error</td>
<td>2</td>
<td>398.37</td>
<td>199.19</td>
<td></td>
</tr>
<tr>
<td>(B \times B)</td>
<td>3</td>
<td>266.00</td>
<td>88.67</td>
<td>6.98</td>
</tr>
<tr>
<td>Subplot error</td>
<td>12</td>
<td>152.52</td>
<td>12.71</td>
<td></td>
</tr>
</tbody>
</table>

Subtotal: 23 | 2038.72

Randomized Block Design

Analysis Results

- Only \(B \) is significant.
- Explanation for discrepancy:

\[
MS_{\text{whole}} = 199.19 \gg MS_{\text{Residual}} = 57.99 \gg MS_{\text{sub}} = 12.71.
\]

- To test \(H_0^B : \sigma_B = 0 \), use

\[
F_{2, 2} \overset{\text{null dist.}}{\sim} \frac{MS_{\text{Rep}}}{MS_{\text{whole}}} = \frac{188.5}{199.19} = 0.95. < 1 \Rightarrow \hat{\sigma}_B^2 = 0
\]

⇒ no significant difference between three replications.

- When does testing \(H_0^B \) make sense?

Reading: textbook, 3.9
A Brief Note on Strip-Plot Design
- Major distinction between strip-plot design and split-plot design
 - strip-plot design: crossing (EU) plot structure; nesting (SP nested in WP)
 - split-plot design: random factor
- An example: laundry experiment
 - A: 2 washing machines \(a_1, a_2 \); B: 3 dryers \(b_1, b_2, b_3 \); EUs: cloth samples
 - Completely randomized design
 - do washing \(k_l \) times
 - do drying \(k_l \) times
 - Split-plot design
 - A: WP factor, B: SP factor
 - do washing \(k \) times
 - do drying \(l \) times
 - Strip-plot design
 - A: row plot factor
 - B: column plot factor
 - do washing \(k \) times
 - do drying \(l \) times

Further Reading:
Cheng (2014), Theory of Factorial Design, Chapter 1, Sec. 7.11

Transformation of Response
- Transform \(y \) before fitting a regression model.
- Theory: Suppose in the model
 \[
 y_i = \mu + \varepsilon_i, \quad \sigma^2 = \frac{\text{Var}(y_i)}{\text{Var}(\varepsilon_i)} = \frac{\sigma^2}{\sigma^2} = \frac{1}{\sigma^2}
 \]
 This can be detected by plotting residuals
 \[
 r_{ij} = y_{ij} - \bar{y}_i \quad \text{(for replicated experiment)} \quad \text{or} \quad r_i = y_i - \hat{y}_i \quad \text{(for unreplicated experiment)}
 \]
 (What pattern to look for?)
- Error transmission formula:
 \[
 z_i = f(y_i) \approx f(\mu) + f'(\mu)(y_i - \mu)
 \]
 by (\#)
 \[
 \sigma^2 = \frac{\text{Var}(z_i)}{\text{Var}(y_i)} \approx \left(f'(\mu) \right)^2 \sigma^2 = \left(f'(\mu) \right)^2 \sigma^2
 \]
 \[
 f(u) = \int f'(u) \, du \propto \int u^{-\alpha} \, du = \left\{ \begin{array}{ll}
 u^{1-\alpha}, & \text{if } \alpha \neq 1, \\
 \frac{\ln(u)}{\ln(\alpha)}, & \text{if } \alpha = 1
 \end{array} \right.
 \]
 for \(\alpha > 0 \)
Power (Box-Cox) Transformation

Model (✓):

\[f_X(y) = \frac{y^\lambda - 1}{\lambda}, \quad \lambda \neq 0, \]

\[\ln y_X, \quad \lambda = 0, \]

\[z_X = f_X(y_X) = \begin{cases}
\frac{y^\lambda - 1}{\lambda}, & \lambda \neq 0, \\
\ln y_X, & \lambda = 0.
\end{cases} \]

\[f'_X(\mu_X) = \frac{\mu^\lambda - 1}{\lambda}, \]

\[\sqrt{\text{Var}(z_X)} \approx |f'_X(\mu_X)| \sigma_X = \frac{\mu^\lambda - 1}{\lambda} \sigma_X \propto \mu^\lambda \mu_X = \mu^{\lambda + 1}. \]

- Choosing \(\lambda = 1 - \alpha \) would make \(\text{Var}(z_X) \) nearly constant over \(x \).
- Since \(\alpha \) is unknown, \(\lambda \) can be chosen by some statistical criterion (e.g., maximum likelihood). A simpler method is to try a few selected values of \(\lambda \) (see Table 28 in LNP.4-70). In each transform, analyze the \(z_X \) data and choose the transformation (i.e., \(\lambda \) value) such that
 - (a) it gives a parsimonious model, "few" very significant effects
 - (b) no unusual pattern in the residual plots,
 - (c) good interpretation of the transformation.

Example of (c):

\[\bar{y}_X = \text{survival time}, \quad \bar{y}_X^{-1} = \text{rate of dying} \]

in the example of Box-Cox(1964).

Variance Stabilizing Transformations

Their relationship may be identified from:

(i) residual plot of \(\hat{e}_i \) vs. \(\hat{y}_i \) \(\Rightarrow \alpha (= 1 - \lambda) \)

(ii) MLE (or confidence interval) of \(\lambda \)

Table 28: Variance Stabilizing Transformations

<table>
<thead>
<tr>
<th>(\sigma_X \propto \mu_X^\alpha)</th>
<th>(\alpha)</th>
<th>(\lambda (= 1 - \alpha))</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_X \propto \mu_X^3)</td>
<td>3</td>
<td>-2</td>
<td>reciprocal squared</td>
</tr>
<tr>
<td>(\sigma_X \propto \mu_X^2)</td>
<td>2</td>
<td>-1</td>
<td>reciprocal</td>
</tr>
<tr>
<td>(\sigma_X \propto \mu_X^{3/2})</td>
<td>3/2</td>
<td>-1/2</td>
<td>reciprocal square root</td>
</tr>
<tr>
<td>(\sigma_X \propto \mu_X)</td>
<td>1</td>
<td>0</td>
<td>log</td>
</tr>
<tr>
<td>(\sigma_X \propto \mu_X^{1/2})</td>
<td>1/2</td>
<td>1/2</td>
<td>square root</td>
</tr>
<tr>
<td>(\sigma_X \propto \text{constant})</td>
<td>0</td>
<td>1</td>
<td>original scale</td>
</tr>
<tr>
<td>(\sigma_X \propto \mu_X^{-1/2})</td>
<td>-1/2</td>
<td>3/2</td>
<td>3/2 power</td>
</tr>
<tr>
<td>(\sigma_X \propto \mu_X^{-1})</td>
<td>-1</td>
<td>2</td>
<td>square</td>
</tr>
</tbody>
</table>

- no transformation

- transformations with good interpretation
Analysis of Drill Experiment

- Data in Table 3.40 of textbook (p.135).
 - four factors A, B, C and D, each at two levels
 - use a 2^4 design \rightarrow full factorial design
 - fit a model with 4 main effects and 6 two-factor interactions (2^4's)

The t-vs-\hat{y} plot shows an increasing pattern.

![Graph showing the pattern between σ and μ](image)

$\sigma_{\hat{y}} \propto \mu_{\hat{y}}$

$\Rightarrow \alpha = 1$

$\Rightarrow \lambda = 1 - \alpha = 0$

\Rightarrow suggest log-transformation of $y_{\hat{y}}$

Figure 2: r_I vs. \hat{y}_I, Drill Experiment

Scaled lambda plot

- For each of the eight transformations λ values in Table 28 (Lnp.4-70), a model of main effects and 2^4's is fitted to the transformed $z_{\hat{y}} = f_\lambda (y_{\hat{y}})$. The t-statistic values for the 10 effects are displayed in Figure 3 (Lnp.4-73).

- Comments on the plot.
 - For the log transformation ($\lambda = 0$), the largest t statistics (C, B, and D) stand out.
 - The next best is $\lambda = -1/2$, but not as good as log transformation (Why? It has a $2^4 BC$, but the log transform removes the term BC.)
 - On the original scale ($\lambda = 1$), the four main effects do not separate apart.

- Conclusion: Use log transformation.

Q: Why not draw $\hat{\beta}_\lambda$?

Q: Why use t-statistic?

1. Eliminate unit
 (Note, $z_{\hat{y}}$ has different units for different λ's)

2. For different λ's, can use same critical value to declare significance
Scaled lambda plot: Drill Experiment

(exercise) use the Box-Cox transformation method to obtain the MLE and confidence interval of \(\lambda \).

Note 1. Observe how effect significance changes with \(\lambda \).

Note 2. The plot does not show how good the fitting is (say, \(R^2 = ? \)).

![Figure 3: Scaled \(\lambda \) Plot](image)

- can use a simpler model to explain the response

Reading: textbook, 3.11