• Additional Sample Descriptive Measures

Matrices of Errors of Approximations

- Since \(\hat{U} = \hat{A}(1) \) and \(\hat{V} = \hat{B}(2) \) we can write
 \[
 \begin{align*}
 \mathbf{x}^{(1)} &= \hat{A}^{-1} \hat{U} \\
 \mathbf{x}^{(2)} &= \hat{B}^{-1} \hat{V}
 \end{align*}
 \]

Because sample \(\text{Cov}(\hat{U}, \hat{V}) = \hat{A} \hat{S}_{12} \hat{B}^\prime \), sample \(\text{Cov}(\hat{U}) = \hat{A} \hat{S}_{11} \hat{A}^\prime = I \), and sample \(\text{Cov}(\hat{V}) = \hat{B} \hat{S}_{22} \hat{B}^\prime = I \), the matrices of error of approximation may be interpreted as descriptive summaries of how well the first \(r \) sample canonical variates reproduce the sample covariance matrices. Patterns of large entries in the rows and/or columns of the error matrices indicate a poor “fit” to the corresponding variables.

If only the first \(r \) canonical pairs are used, so that for instance,

\[
\mathbf{x}^{(1)} = [\hat{a}^{(1)} | \hat{a}^{(2)} | \ldots | \hat{a}^{(r)}]
\]

and

\[
\mathbf{x}^{(2)} = [\hat{b}^{(1)} | \hat{b}^{(2)} | \ldots | \hat{b}^{(r)}]
\]

then \(S_{12} \) is approximated by sample \(\text{Cov}(\hat{x}^{(1)}, \hat{x}^{(2)}) \).

The matrices of error of approximation are

\[
\begin{align*}
S_{11} &= (\hat{a}^{(1)} \hat{a}^{(1)\prime} + \hat{a}^{(2)} \hat{a}^{(2)\prime} + \ldots + \hat{a}^{(r)} \hat{a}^{(r)\prime}) = \hat{a}^{(r+1)} \hat{a}^{(r+1)\prime} + \ldots + \hat{a}^{(p)} \hat{a}^{(p)\prime}, \\
S_{22} &= (\hat{b}^{(1)} \hat{b}^{(1)\prime} + \hat{b}^{(2)} \hat{b}^{(2)\prime} + \ldots + \hat{b}^{(r)} \hat{b}^{(r)\prime}) = \hat{b}^{(r+1)} \hat{b}^{(r+1)\prime} + \ldots + \hat{b}^{(q)} \hat{b}^{(q)\prime}, \\
S_{12} &= (\rho_1 \hat{a}^{(1)} \hat{b}^{(1)\prime} + \rho_2 \hat{a}^{(2)} \hat{b}^{(2)\prime} + \ldots + \rho_r \hat{a}^{(r)} \hat{b}^{(r)\prime})
\end{align*}
\]

The approximation error matrices may be interpreted as descriptive summaries of how well the first \(r \) sample canonical variates reproduce the sample covariance matrices. Patterns of large entries in the rows and/or columns of the error matrices indicate a poor “fit” to the corresponding variables.
ordinarily, the first \(r \) variates do a better job of reproducing the elements of \(S_{12} \) than the elements of \(S_{11} \) or \(S_{22} \) (Q: Why?)

Proportions of Explained Sample Variance

- When the observations are standardized, the sample covariance matrices \(S_{kl} \) are correlation matrices \(R_{kl} \). The canonical coefficient vectors are the rows of the matrices \(\hat{A}_z \) and \(\hat{B}_z \) and the columns of \(\hat{A}_z^{-1} \) and \(\hat{B}_z^{-1} \) are the sample correlations between the canonical variates and their component variables.

- sample \(\text{Cov}(z^{(1)}, \hat{U}) = \text{Cov}(\hat{A}_z^{-1}\hat{U}, \hat{U}) = \hat{A}_z^{-1} \)

- sample \(\text{Cov}(z^{(2)}, \hat{V}) = \text{Cov}(\hat{B}_z^{-1}\hat{V}, \hat{V}) = \hat{B}_z^{-1} \)

so,

\[
\hat{A}_z^{-1} = [\hat{a}_z^{(1)}, \hat{a}_z^{(2)}, \ldots, \hat{a}_z^{(p)}] = \begin{bmatrix}
 r_{\hat{U}_1, \hat{z}_1^{(1)}} & r_{\hat{U}_2, \hat{z}_1^{(1)}} & \cdots & r_{\hat{U}_p, \hat{z}_1^{(1)}} \\
 r_{\hat{U}_1, \hat{z}_1^{(2)}} & r_{\hat{U}_2, \hat{z}_1^{(2)}} & \cdots & r_{\hat{U}_p, \hat{z}_1^{(2)}} \\
 \vdots & \vdots & \ddots & \vdots \\
 r_{\hat{U}_1, \hat{z}_1^{(p)}} & r_{\hat{U}_2, \hat{z}_1^{(p)}} & \cdots & r_{\hat{U}_p, \hat{z}_1^{(p)}} \\
\end{bmatrix}
\]

\[
\hat{B}_z^{-1} = [\hat{b}_z^{(1)}, \hat{b}_z^{(2)}, \ldots, \hat{b}_z^{(q)}] = \begin{bmatrix}
 r_{\hat{V}_1, \hat{z}_1^{(2)}} & r_{\hat{V}_2, \hat{z}_1^{(2)}} & \cdots & r_{\hat{V}_q, \hat{z}_1^{(2)}} \\
 r_{\hat{V}_1, \hat{z}_1^{(3)}} & r_{\hat{V}_2, \hat{z}_1^{(3)}} & \cdots & r_{\hat{V}_q, \hat{z}_1^{(3)}} \\
 \vdots & \vdots & \ddots & \vdots \\
 r_{\hat{V}_1, \hat{z}_1^{(q)}} & r_{\hat{V}_2, \hat{z}_1^{(q)}} & \cdots & r_{\hat{V}_q, \hat{z}_1^{(q)}} \\
\end{bmatrix}
\]

where \(r_{\hat{U}_i, \hat{z}_i^{(j)}} \) and \(r_{\hat{V}_i, \hat{z}_i^{(j)}} \) are the sample correlation coefficients between the quantities with subscripts.

- Total (standardized) sample variance in first set

\[
= \text{tr}(R_{11}) = \text{tr}(\hat{a}_z^{(1)}\hat{a}_z^{(1)\prime} + \hat{a}_z^{(2)}\hat{a}_z^{(2)\prime} + \cdots + \hat{a}_z^{(p)}\hat{a}_z^{(p)\prime}) = p
\]

- Total (standardized) sample variance in second set

\[
= \text{tr}(R_{22}) = \text{tr}(\hat{b}_z^{(1)}\hat{b}_z^{(1)\prime} + \hat{b}_z^{(2)}\hat{b}_z^{(2)\prime} + \cdots + \hat{b}_z^{(q)}\hat{b}_z^{(q)\prime}) = q
\]

- the contribution of the first \(r \) canonical variates to the total sample variance:

\[
\text{tr}(\hat{a}_z^{(1)}\hat{a}_z^{(1)\prime} + \hat{a}_z^{(2)}\hat{a}_z^{(2)\prime} + \cdots + \hat{a}_z^{(r)}\hat{a}_z^{(r)\prime}) = \sum_{i=1}^{r} \sum_{k=1}^{p} r_{\hat{U}_i, \hat{z}_k^{(i)}}
\]

\[
\text{tr}(\hat{b}_z^{(1)}\hat{b}_z^{(1)\prime} + \hat{b}_z^{(2)}\hat{b}_z^{(2)\prime} + \cdots + \hat{b}_z^{(r)}\hat{b}_z^{(r)\prime}) = \sum_{i=1}^{r} \sum_{k=1}^{q} r_{\hat{V}_i, \hat{z}_k^{(i)}}
\]

- proportions of total sample variances explained by 1st \(r \) canonical variates:

\[
R^2_{U} = \frac{\text{tr}(\hat{a}_z^{(1)}\hat{a}_z^{(1)\prime} + \cdots + \hat{a}_z^{(r)}\hat{a}_z^{(r)\prime})}{\text{tr}(R_{11})} = \frac{\sum_{i=1}^{r} \sum_{k=1}^{p} r_{\hat{U}_i, \hat{z}_k^{(i)}}}{p}
\]

\[
R^2_{V} = \frac{\text{tr}(\hat{b}_z^{(1)}\hat{b}_z^{(1)\prime} + \cdots + \hat{b}_z^{(r)}\hat{b}_z^{(r)\prime})}{\text{tr}(R_{22})} = \frac{\sum_{i=1}^{r} \sum_{k=1}^{q} r_{\hat{V}_i, \hat{z}_k^{(i)}}}{q}
\]

- they provide some indication of how well the canonical variates represent their respective sets
• they also provide single-number descriptions of the matrices of errors, because
\[
\frac{1}{p} \text{tr} \left[\mathbf{R}_{11} - \mathbf{a}_1^{(1)} \mathbf{a}_1^{(1)\top} - \mathbf{a}_2^{(2)} \mathbf{a}_2^{(2)\top} - \cdots - \mathbf{a}_r^{(r)} \mathbf{a}_r^{(r)\top} \right] = 1 - R^2_{0} \hat{v}_1, \hat{v}_2, \ldots, \hat{v}_r,
\]
\[
\frac{1}{q} \text{tr} \left[\mathbf{R}_{22} - \mathbf{b}_1^{(1)} \mathbf{b}_1^{(1)\top} - \mathbf{b}_2^{(2)} \mathbf{b}_2^{(2)\top} - \cdots - \mathbf{b}_r^{(r)} \mathbf{b}_r^{(r)\top} \right] = 1 - R^2_{0} \hat{v}_1, \hat{v}_2, \ldots, \hat{v}_r,
\]

• Large Sample Inferences

➤ Note: $$\Sigma_{12} = 0 \Rightarrow$$ no point in pursuing a CCA. ➤ Q: how to test $$H_0: \Sigma_{12} = 0$$?

➤ Result 10.3. Let

$$\mathbf{X}_j = \begin{bmatrix} \mathbf{X}_j^{(1)} \\ \mathbf{X}_j^{(2)} \end{bmatrix}, \quad j = 1, 2, \ldots, n$$

be a random sample from an $$N_{p+q}(\mu, \Sigma)$$ population with $$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$

Recall: for normal density, maximum likelihood $$\sigma_{\mathbf{X}_j} = \frac{1}{\sqrt{|\Sigma|}}$$.

Then the likelihood ratio test of $$H_0: \Sigma_{12} = 0$$ versus $$H_1: \Sigma_{12} \neq 0$$ rejects $$H_0$$ for large values of

$$-2 \ln \Lambda = n \ln \left(\frac{|\mathbf{S}_{11}| |\mathbf{S}_{22}|}{|\mathbf{S}|} \right) = -n \ln \left(\prod_{i=1}^{pq} (1 - \hat{\rho}_i^2) \right) \sim \chi^2_{pq}$$

maximum likelihood under $$H_0$$

➤ when $$n$$ is large, under $$H_0$$, the likelihood ratio test statistic is approximately distributed as a chi-square random variable with $$pq$$ d.f.

➤ Bartlett (1939) suggests

Reject $$H_0: \Sigma_{12} = 0$$ ($$\rho_1 = \rho_2 = \cdots = \rho_p = 0$$) at significance level $$\alpha$$ if

$$-n (n - 1 - \frac{1}{2} (p + q + 1)) \ln \prod_{i=1}^{p} (1 - \hat{\rho}_i^2) > \chi^2_{pq}(\alpha)$$

➤ Q: What if $$H_0: \Sigma_{12} = 0$$ is rejected? Next step?

• $$H_0^{(k)}: \rho_1 \neq 0, \rho_2 \neq 0, \cdots, \rho_k \neq 0, \rho_{k+1} = \cdots = \rho_p = 0$$

• $$H_1^{(k)}: \rho_i \neq 0$$, for some $$i \geq k + 1$$

• Reject $$H_0^{(k)}$$ at significance level $$\alpha$$ if

$$-n (n - 1 - \frac{1}{2} (p + q + 1)) \ln \prod_{i=1}^{p} (1 - \hat{\rho}_i^2) > \chi^2_{(p-k)(q-k)}(\alpha)$$

• the issue of multiple testing should be taken into consideration

➤ Reading: Reference, 10.4, 10.5, 10.6