Matrix Algebra

- vector (向量)
 - An array \(\mathbf{x} \) of \(n \) real numbers \(x_1, x_2, \ldots, x_n \) is called a vector, and it is written as
 \[
 \mathbf{x} = \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
 \end{bmatrix}
 \]
 - Two basic operations:
 1. Scalar multiplication: \(c \mathbf{x} \) is the vector obtained by multiplying each element of \(\mathbf{x} \) by \(c \).
 2. Addition: \(\mathbf{x} + \mathbf{y} = \begin{bmatrix}
 x_1 + y_1 \\
 x_2 + y_2 \\
 \vdots \\
 x_n + y_n
 \end{bmatrix} \]
 - A vector has both length and direction:
 - \(L_{\mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} = \|\mathbf{x}\| \)
 - \(L_{c\mathbf{x}} = |c|L_{\mathbf{x}} \)
 - Multiplication by \(c \) does not change the direction of \(\mathbf{x} \).
 - Unit vectors on the direction of \(\mathbf{x} \):
 \[L_{\mathbf{x}}^{-1}\mathbf{x} \]
 Length of \(L_{\mathbf{x}}^2\mathbf{x} = 1 \).

- Vector space

Definition 2A.4. The space of all real \(m \)-tuples, with scalar multiplication and vector addition as just defined, is called a vector space.

Definition 2A.5. The vector \(\mathbf{y} = a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \cdots + a_k\mathbf{x}_k \) is a linear combination of the vectors \(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k \). The set of all linear combinations of \(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k \), is called their linear span.

Definition 2A.6. A set of vectors \(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k \) is said to be linearly dependent if there exist \(k \) numbers \((a_1, a_2, \ldots, a_k) \), not all zero, such that
\[
a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \cdots + a_k\mathbf{x}_k = \mathbf{0}
\]
Otherwise, the set of vectors is said to be linearly independent.

Definition 2A.7. Any set of \(m \) linearly independent vectors is called a basis for the vector space of all \(m \)-tuples of real numbers.

Result 2A.1. Every vector can be expressed as a unique linear combination of a fixed basis.

- Inner product (內積)
 \[\mathbf{x}' \mathbf{y} = x_1y_1 + x_2y_2 + \cdots + x_ny_n \]
 \[= L_{\mathbf{x}}L_{\mathbf{y}} \cos(\theta) \]
 - Length: \(L_{\mathbf{x}} = \text{length of } \mathbf{x} = \sqrt{x' \mathbf{x}} \)
angle between 2 vectors:
\[
\cos(\theta) = \frac{\mathbf{x}'\mathbf{y}}{L_x L_y} = \frac{\mathbf{x}'\mathbf{y}}{\sqrt{\mathbf{x}'\mathbf{x}} \sqrt{\mathbf{y}'\mathbf{y}}}
\]

projection of \(\mathbf{x} \) on \(\mathbf{y} \):
\[
\text{Projection of } \mathbf{x} \text{ on } \mathbf{y} = \left(\frac{\mathbf{x}'\mathbf{y}}{\mathbf{y}'\mathbf{y}} \right) \mathbf{y} = \left(\frac{\mathbf{x}'\mathbf{y}}{L_y} \right) \mathbf{y} = \mathbf{L}_x |\cos(\theta)|
\]

Length of projection
\[
\frac{|\mathbf{x}'\mathbf{y}|}{L_y} = \frac{\mathbf{x}'\mathbf{y}}{L_x L_y} = \mathbf{L}_x |\cos(\theta)|
\]

• matrix

Definition 2A.13. An \(m \times k \) matrix, generally denoted by a boldface uppercase letter such as \(\mathbf{A}, \mathbf{R}, \Sigma \), and so forth, is a rectangular array of elements having \(m \) rows and \(k \) columns.

\[
\mathbf{A} = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1k} \\
 a_{21} & a_{22} & \cdots & a_{2k} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mk}
\end{bmatrix}
\]

\[
\mathbf{A}_{(m \times k)} = \{a_{ij}\}
\]

\[
\mathbf{A} \times \mathbf{X} = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n \text{ where } a_i \text{ is the } i \text{th column of } \mathbf{A}
\]

Definition 2A.19. Consider the \(m \times k \) matrix \(\mathbf{A} \) with arbitrary elements \(a_{ij}, i = 1, 2, \ldots, m, j = 1, 2, \ldots, k \). The transpose of the matrix \(\mathbf{A} \), denoted by \(\mathbf{A}' \), is the \(k \times m \) matrix with elements \(a_{ij}, j = 1, 2, \ldots, k, i = 1, 2, \ldots, m \). That is, the transpose of the matrix \(\mathbf{A} \) is obtained from \(\mathbf{A} \) by interchanging the rows and columns.

\[\mathbf{A}' = \begin{bmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_m
\end{bmatrix}
\]

addition

Definition 2A.16 (Matrix addition). Let the matrices \(\mathbf{A} \) and \(\mathbf{B} \) both be of dimension \(m \times k \) with arbitrary elements \(a_{ij} \) and \(b_{ij} \), \(i = 1, 2, \ldots, m, j = 1, 2, \ldots, k \), respectively. The sum of the matrices \(\mathbf{A} \) and \(\mathbf{B} \) is an \(m \times k \) matrix \(\mathbf{C} \), written \(\mathbf{C} = \mathbf{A} + \mathbf{B} \), such that the arbitrary element of \(\mathbf{C} \) is given by

\[
c_{ij} = a_{ij} + b_{ij} \quad i = 1, 2, \ldots, m, j = 1, 2, \ldots, k
\]

scalar multiplication

Definition 2A.17 (Scalar multiplication). Let \(c \) be an arbitrary scalar and \(\mathbf{A} = \{a_{ij}\} \).

Then \(\mathbf{cA} = \mathbf{Ac} = \mathbf{B} = \{b_{ij}\}, \) where \(b_{ij} = ca_{ij} = a_{ij}c, \ i = 1, 2, \ldots, m, j = 1, 2, \ldots, k \).

matrix multiplication

Definition 2A.23 (Matrix multiplication). The product \(\mathbf{AB} \) of an \(m \times n \) matrix \(\mathbf{A} = \{a_{ij}\} \) and an \(n \times k \) matrix \(\mathbf{B} = \{b_{ij}\} \) is the \(m \times k \) matrix \(\mathbf{C} \) whose elements are

\[
c_{ij} = \sum_{\ell=1}^{n} a_{i\ell} b_{\ell j} \quad i = 1, 2, \ldots, m \quad j = 1, 2, \ldots, k
\]

\[
\mathbf{A} \times \mathbf{B} = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{m1} & a_{m2} & a_{m3} & a_{m4}
\end{bmatrix}
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & \cdots & b_{1p} \\
 b_{21} & b_{22} & b_{23} & \cdots & b_{2p} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 b_{n1} & b_{n2} & b_{n3} & \cdots & b_{np}
\end{bmatrix}
= \mathbf{Row}_i \left[\begin{array}{cccc}
 a_{11}b_{1j} + a_{12}b_{2j} + a_{13}b_{3j} + a_{14}b_{4j} \\
 \vdots \\
 a_{m1}b_{1j} + a_{m2}b_{2j} + a_{m3}b_{3j} + a_{m4}b_{4j}
\end{array} \right]
\]

\[
eq \mathbf{A} \times \mathbf{B} \neq \mathbf{B} \times \mathbf{A}
\]

\[
\text{in general, } \mathbf{AB} \neq \mathbf{BA}
\]
some properties of matrix operations

Result 2A.4. For all matrices \(A, B, \) and \(C \) (of equal dimension) and scalars \(c \) and \(d \), the following hold:

(a) \((A + B) + C = A + (B + C) \)

(b) \(A + B = B + A \)

(c) \(c(A + B) = cA + cB \)

(d) \((c + d)A = cA + dA \)

(e) \((A + B)' = A' + B' \)

(That is, the transpose of the sum is equal to the sum of the transposes.)

(f) \((cd)A = c(dA) \)

(g) \((cA)' = cA' \)

Result 2A.5. For all matrices \(A, B, \) and \(C \) (of dimensions such that the indicated products are defined) and a scalar \(c \),

(a) \(c(AB) = (cA)B \)

(b) \(A(BC) = (AB)C \)

(c) \(A(B + C) = AB + AC \)

(d) \((B + C)A = BA + CA \)

(e) \((AB)' = B'A' \)

More generally, for any \(x_j \) such that \(Ax_j \) is defined,

\[
(f) \quad \sum_{j=1}^{n} Ax_j = A \sum_{j=1}^{n} x_j
\]

\[
(g) \quad \sum_{j=1}^{n} (Ax_j)(A^t)' = A \left(\sum_{j=1}^{n} x_j x_j^t \right) A'
\]

Definition 2A.25. The row rank of a matrix is the maximum number of linearly independent rows, considered as vectors (that is, row vectors). The column rank of a matrix is the rank of its set of columns, considered as vectors.

Result 2A.6. The row rank and the column rank of a matrix are equal.

rank of a matrix is either the row rank or the column rank

- square matrix: \# of rows = \# of columns \((m = n)\)
 - a square matrix is said to be symmetric if \(a_{ij} = a_{ji} \) \((A' = A)\)
 - identity matrix \(I \): the square matrix with ones on the diagonal and zero elsewhere

\[
I = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

singularity

Definition 2A.26. A square matrix \(A \) is nonsingular if \(Ax = 0 \) implies that \(x = 0 \). If a matrix fails to be nonsingular, it is called singular. Equivalently, a square matrix is nonsingular if its rank is equal to the number of rows (or columns) it has.
inverse of a square matrix

Result 2A.7. Let \(A \) be a nonsingular square matrix of dimension \(k \times k \). Then there is a unique \(k \times k \) matrix \(B \) such that

\[
AB = BA = I
\]

where \(I \) is the \(k \times k \) identity matrix.

Definition 2A.27. The \(B \) such that \(AB = BA = I \) is called the inverse of \(A \) and is denoted by \(A^{-1} \). In fact, if \(BA = I \) or \(AB = I \), then \(B = A^{-1} \), and both products must equal \(I \).

Result 2A.9. For a square matrix \(A \) of dimension \(k \times k \), the following are equivalent:

(a) \[
A \cdot x = 0 \quad \text{implies} \quad x = 0 \quad (A \text{ is nonsingular}).
\]

(b) \[
|A| \neq 0.
\]

(c) There exists a matrix \(A^{-1} \) such that \(AA^{-1} = A^{-1}A = I \).

Result 2A.10. Let \(A \) and \(B \) be square matrices of the same dimension, and let the indicated inverses exist. Then the following hold:

(a) \[
(A^{-1})' = (A')^{-1}
\]

(b) \[
(AB)^{-1} = B^{-1}A^{-1}
\]

orthogonal square matrix

Definition 2A.29. A square matrix \(A \) is said to be orthogonal if its rows, considered as vectors, are mutually perpendicular and have unit lengths; that is, \(A'A = I \).

Result 2A.13. A matrix \(A \) is orthogonal if and only if \(A^{-1} = A' \). For an orthogonal matrix, \(AA' = A'A = I \), so the columns are also mutually perpendicular and have unit lengths.

Definition 2A.24. The determinant of the square \(k \times k \) matrix \(A = \{a_{ij}\} \), denoted by \(|A| \), is the scalar

\[
|A| = a_{11} \quad \text{if} \quad k = 1
\]

\[
|A| = \sum_{j=1}^{k} a_{1j} |A_{1j}| (-1)^{1+j} \quad \text{if} \quad k > 1
\]

where \(A_{1j} \) is the \((k-1) \times (k-1) \) matrix obtained by deleting the first row and \(j \)th column of \(A \). Also, \(|A| = \sum_{j=1}^{k} a_{ij} |A_{ij}| (-1)^{i+j} \), with the \(i \)th row in place of the first row.
Result 2A.11. Let A and B be $k \times k$ square matrices.

(a) $|A| = |A'|$

(b) If each element of a row (column) of A is zero, then $|A| = 0$

(c) If any two rows (columns) of A are identical, then $|A| = 0$

(d) If A is nonsingular, then $|A| = 1/|A^{-1}|$; that is, $|A||A^{-1}| = 1$.

(e) $|AB| = |A||B|$

(f) $|cA| = c^k|A|$, where c is a scalar.

- Eigenvalues and eigenvectors of a square matrix.

Definition 2A.30. Let A be a $k \times k$ square matrix and I be the $k \times k$ identity matrix. Then the scalars $\lambda_1, \lambda_2, \ldots, \lambda_k$ satisfying the polynomial equation $|A - \lambda I| = 0$ are called the eigenvalues (or characteristic roots) of a matrix A. The equation $|A - \lambda I| = 0$ (as a function of λ) is called the characteristic equation.

\[
A = \begin{bmatrix} 13 & -4 & 2 \\ -4 & 13 & -2 \\ 2 & -2 & 10 \end{bmatrix}
\]

Three roots: $\lambda_1 = 9$, $\lambda_2 = 9$, and $\lambda_3 = 18$

\[
|A - \lambda I| = \begin{vmatrix} 13 - \lambda & -4 & 2 \\ -4 & 13 - \lambda & -2 \\ 2 & -2 & 10 - \lambda \end{vmatrix} = -\lambda^3 + 36\lambda^2 - 405\lambda + 1458 = 0
\]

- For general A, eigenvalues could be real or complex values
- Every eigenvalue of symmetric matrix is real