

6-1

## Factorial experiments

$n$  two-level factors

$$x_i = 1, -1, i = 1, 2, \dots, n$$

$$f(x_1, x_2, \dots, x_n) = \mu + \sum_{i=1}^n \beta_i x_i + \sum_{1 \leq i < j \leq n} \beta_{ij} x_i x_j + \sum_{1 \leq i < j < k \leq n} \beta_{ijk} x_i x_j x_k + \dots + \beta_{12\dots n} x_1 \dots x_n$$

$\mu$ : mean,  $\beta_i$ : main effect,  $\beta_{ij}$ : two-factor interaction, ...

full factorial: run size =  $2^n$

## Fractional factorial designs

$2^{n-p}$  **regular** fractional factorial designs

$n = \# \text{ of factors}$

$N = 2^{n-p} = \text{run size}$

$\frac{1}{2^p}$ -fraction of  $2^n$  complete factorial

6-2

## Fractional Factorial Designs (FFD)

|   | A  | B  | C  | a  | b  | c  | ab | ac | bc | abc |
|---|----|----|----|----|----|----|----|----|----|-----|
| 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1  | 1  | 1  | -1  |
| 2 | -1 | -1 | 1  | -1 | -1 | 1  | 1  | -1 | -1 | 1   |
| 3 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | 1  | -1 | 1   |
| 4 | -1 | 1  | 1  | -1 | 1  | 1  | -1 | -1 | 1  | -1  |
| 5 | 1  | -1 | -1 | 1  | -1 | -1 | -1 | -1 | 1  | 1   |
| 6 | 1  | -1 | 1  | 1  | -1 | 1  | -1 | 1  | -1 | -1  |
| 7 | 1  | 1  | -1 | 1  | 1  | -1 | 1  | -1 | -1 | -1  |
| 8 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   |

|   | A  | B  | C  | a  | b  | c  | ab | ac | bc | abc |
|---|----|----|----|----|----|----|----|----|----|-----|
| 2 | -1 | -1 | 1  | -1 | -1 | 1  | 1  | -1 | -1 | 1   |
| 3 | -1 | 1  | -1 | -1 | 1  | -1 | -1 | 1  | -1 | 1   |
| 5 | 1  | -1 | -1 | 1  | -1 | -1 | -1 | -1 | 1  | 1   |
| 8 | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1   |

- $\text{effect}^2 = I$

$$a^2 = b^2 = c^2 = (ab)^2 = (ac)^2$$

$$= (bc)^2 = (abc)^2 = I$$

- defining relation

$$I = abc$$

- effect aliasing

$$a = bc$$

$$b = ac$$

$$c = ab$$

- un-aliased effects are orthogonal

6-3

- A design of size  $N$  can accommodate at most  $N - 1$  two-level factors
- A **saturated design** of size  $N = 2^k$  can be constructed by writing all possible combinations of  $k$  factors in a  $2^k \times k$  array, and then completing all possible component-wise products of the columns.
- A **regular** design with  $n$  factors is obtained by choosing  $n$  columns from the saturated design.

6-4

If we use capital letters to denote the factors, then we also use combinations of these letters to denote interactions

A: main effect of factor A

AB: interaction of factors A and B

BCE: interaction of factors B, C and E

etc.

$$x_4 = x_1 x_2, x_5 = x_1 x_3$$

$$1 = x_1 x_2 x_4 = x_1 x_3 x_5 = x_2 x_3 x_4 x_5 \quad \text{Defining relation}$$

$$I = ABD = ACE = BCDE$$

Defining words

Defining contrasts, Defining effects

6-5

$$1 = x_1 x_2 x_4 = x_1 x_3 x_5 = x_2 x_3 x_4 x_5$$

$$x_1 = x_2 x_4 = x_3 x_5 = x_1 x_2 x_3 x_4 x_5$$

$$A = BD = CE = ABCDE$$

In the model matrix for the full model, the columns corresponding to the main effect A and interactions BD, CE, ABCDE are identical. Therefore they are completely mixed up. We say they are **aliases** of one another.

$\{A, BD, CE, ABCDE\}$ : alias set

One can estimate only one effect in each alias set, assuming that all the other effects in the same alias set are negligible.

6-6

7 alias sets

if  $E$  is a plot factor, we would  
 - remove interaction between plot & treatment  
 -  $E = AC = BCD$  is called confounding.

$$\boxed{A} = BD = \cancel{CE} = \cancel{ABCDE}$$

$$\boxed{B} = AD = \cancel{ACE} = \cancel{CDE}$$

$$\boxed{C} = ABCD = \cancel{AE} = \cancel{BDE}$$

$$D = \boxed{AB} = \cancel{ACDE} = \cancel{BCE}$$

$$\boxed{E} = \cancel{ABDE} = \boxed{AC} = BCD$$

$$\boxed{BC} = ACD = \cancel{ABE} = \cancel{DE}$$

$$CD = \boxed{ABC} = \cancel{ADE} = \cancel{BE}$$

In general, among the  $2^n - 1$  factorial effects,  $2^p - 1$  appear in the defining relation. The rest are divided into  $2^{n-p} - 1$  alias sets, each of size  $2^p$ .

6-7

Regular fractional factorial designs have simple alias structures: any two factorial effects are either orthogonal or completely aliased.

Nonregular designs have complex alias structures that are difficult to disentangle.

Under the design defined by  $I = ABD = ACE = BCDE$ , the usual estimate of the main effect of  $A$  actually estimates

$A + BD + CE + ABCDE$ . This is an unbiased estimate of  $A$  if all its aliases are negligible.

→ joint effect.

When some contrasts are found significant but cannot be attributed to specific effects, one has to perform follow-up experiments to resolve the ambiguity. This is called **de-aliasing**.

6-8

Which of the following two  $2^{7-2}$  resolution IV designs is better?

$d_1: I = DEFG = ABCDF = ABCEG$

$d_2: I = ABCF = ADEG = BCDEFG$

*Minimum aberration* (Fries and Hunter, 1980): *Technometrics*

Sequentially minimize  $A_1, A_2, \dots$ , where

$A_i$  = number of words of length  $i$  in the defining relation

*Word length pattern*  $(A_1, A_2, \dots)$

6-9

## Design Key

- Patterson (1965) *J. Agric. Sci.*
- Patterson (1976) *JRSS, Ser. B*
- Bailey, Gilchrist and Patterson (1977) *Biometrika*
- Bailey (1977) *Biometrika*
- Patterson and Bailey (1978) *Applied Statistics*

**Factorial design construction, identification of effect aliasing and confounding with block factors**

## ① notation & definition

$T_1, \dots, T_m$ :  $m$  treatment factors, each has  $t_i$  levels

$P_1, \dots, P_n$ :  $n$  plot factors (block factor, row/column factor  
nested factor)

each has  $P_j$  levels.

- pseudo-factor: for a factor with  $R_1^{U_1} R_2^{U_2} \dots R_r^{U_r}$  levels,  
where  $R_1, \dots, R_r$  are <sup>different</sup> prime numbers, we can use

$U_1$   $R_1$ -level,  $U_2$   $R_2$ -level, ...,  $U_r$   $R_r$ -level pseudo-factors  
to represent it. e.g.

|              |                  |       |       |                            |
|--------------|------------------|-------|-------|----------------------------|
| 4-level      | $X$              | $X_1$ | $X_2$ | $X: 3\text{-main effects}$ |
| "<br>2-level | $0 \leftarrow 0$ | $0$   |       |                            |
|              | $1 \leftarrow 0$ | $1$   |       |                            |
|              | $2 \leftarrow 1$ | $0$   |       |                            |
|              | $3 \leftarrow 1$ | $1$   |       |                            |

$\boxed{X_1, X_2, X_1 X_2}$

- When a particular treatment effect is confounded with a plot effect, the plot effect is called plot alias.
- A design key specifies the plot aliases of the treatment main effects

6-11

Situation 1: Symmetric  $\Rightarrow$  # of levels for factors are  $p^{m_i}$ ,  $p$ : a prime number.

a. single replicate (i.e.,  $N=t$ )

(i) full factorial design for treatment

(ii) fractional factorial design for treatment

b. multiple replicates (i.e.  $N=2t, 3t, \dots$ )

(i) full factorial for treatment

(ii) fractional factorial for treatment

Situation 2: asymmetric  $\Rightarrow$  # of levels =  $R_1^{m_1} \cdot \dots \cdot R_r^{m_r}$

Q: how to find  $W_T^{(i)}$  in which stratum?

Step 1. identify strata

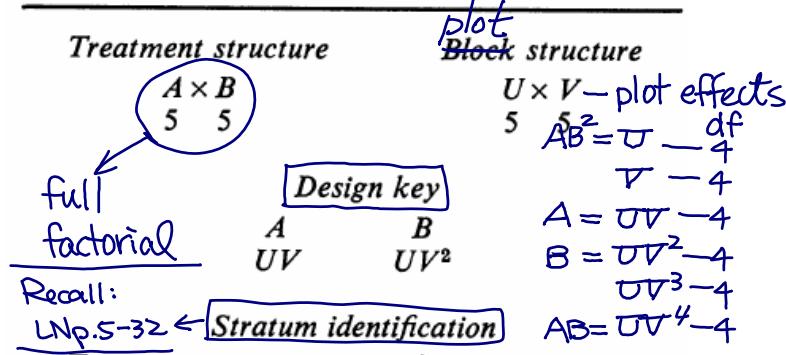
Step 2. use pseudo-factors to represent true factors

Step 3. decompose each stratum into plot effects represented by the plot pseudo-factors.

Step 4. choose a design key for the plot aliases of treatment main effects represented by pseudo-factors

Step 5. use design key to find the plot aliases of other treatment effects.

6-12

$N=t$  A Graeco-Latin squareInverse key

|           |         |
|-----------|---------|
| $U$       | $V$     |
| $A^2 B^4$ | $A^4 B$ |

Rules of construction

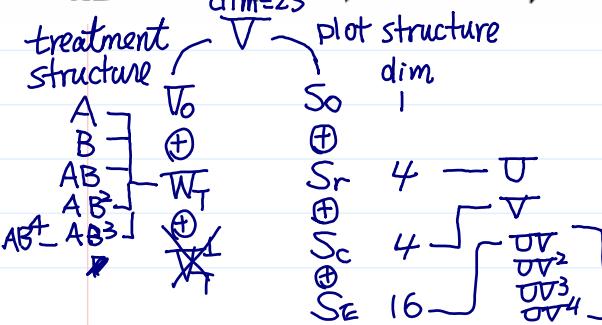
$$q(A) = q(U) + q(V) \pmod{5}$$

$$q(B) = q(U) + 2q(V) \pmod{5}$$

Construction of designColumn (level of  $V$ )

|                     | 0  | 1  | 2  | 3  | 4  |
|---------------------|----|----|----|----|----|
| Row (level of $U$ ) | 00 | 12 | 24 | 31 | 43 |
| 1                   | 11 | 23 | 30 | 42 | 04 |
| 2                   | 22 | 34 | 41 | 03 | 10 |
| 3                   | 33 | 40 | 02 | 14 | 21 |
| 4                   | 44 | 01 | 13 | 20 | 32 |

| Treatment effect | d.f. | Plot alias | Stratum |
|------------------|------|------------|---------|
| $A$              | 4    | $UV$       | $UV$    |
| $B$              | 4    | $UV^2$     | $UV$    |
| $AB$             | 4    | $U^2 V^3$  | $UV$    |
| $AB^2$           | 4    | $U^3$      | $U$     |
| $AB^3$           | 4    | $U^4 V^2$  | $UV$    |
| $AB^4$           | 4    | $V^4$      | $V$     |

 $\dim=25$ 

$$AB = (UV)(UV^2) = U^2 V^3 \approx UV^4$$

$$AB^2 = UV \cdot U^2 V^4 \quad \leftarrow U^6 V^9 \pmod{5}$$

$$= U^3 V^5 = U^3 \approx U$$

$$AB^3 = \dots$$

$$AB^4 = \dots$$

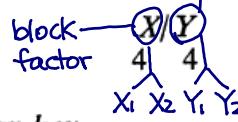
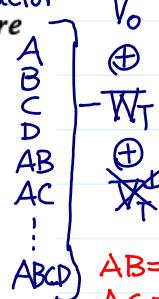
6-13

 $N=t$  A single replicate block designTreatment structure

|                                |
|--------------------------------|
| $A \times B \times C \times D$ |
| 2 2 2 2                        |

full factorialDesign key

| $A$   | $B$   | $C$                       | $D$                       |
|-------|-------|---------------------------|---------------------------|
| $Y_1$ | $Y_2$ | $X_1 \quad Y_1 \quad Y_2$ | $X_2 \quad Y_1 \quad Y_2$ |

plot Block structure nested factor

$$AB = Y_1 Y_2$$

$$AC = X_1 Y_2$$

$$ABC = Y_1 Y_2 X_1 Y_1 Y_2 = X_1$$

$$ABD = X_2$$

$$CD = X_1 X_2$$

\*assume some higher-order interactions are negligible, some df. are left for testing

Stratum $X \quad XY$ Inverse key $X_1 \quad ABC$  $X_2 \quad ABD$  $Y_1 \quad A$  $Y_2 \quad B$ Stratum contentsd.f.

3

Treatment effects

ABC, ABD, CD

The rest

Partial inverse key $X_1 \quad ABC$  $X_2 \quad ABD$ Rules of construction

$$q(A) = q(Y_1) \pmod{2}$$

$$q(B) = q(Y_2) \pmod{2}$$

$$q(C) = q(X_1) + q(Y_1) + q(Y_2) \pmod{2}$$

$$q(D) = q(X_2) + q(Y_1) + q(Y_2) \pmod{2}$$

main effects AB  
confounded  
with plot  
main effects

| $A \quad B \quad C \quad D$ | $X_1$ | $X_2$ | $\rightarrow X$ |
|-----------------------------|-------|-------|-----------------|
| 0 0 0 0                     | 0     | 0     | 0               |
| 0 0 0 1                     | 0     | 1     | 1               |
| 0 0 1 0                     | 1     | 0     | 2               |
| 0 0 1 1                     | 1     | 1     | 3               |
| 0 1 0 0                     | 0     | 0     | 0               |
| 0 1 0 1                     | 0     | 1     | 2               |
| 0 1 1 0                     | 1     | 0     | 3               |
| 0 1 1 1                     | 1     | 1     | 1               |
| 1 0 0 0                     | 0     | 0     | 0               |
| 1 0 0 1                     | 0     | 1     | 2               |
| 1 0 1 0                     | 1     | 0     | 3               |
| 1 0 1 1                     | 1     | 1     | 1               |
| 1 1 0 0                     | 0     | 0     | 0               |
| 1 1 0 1                     | 0     | 1     | 2               |
| 1 1 1 0                     | 1     | 0     | 3               |
| 1 1 1 1                     | 1     | 1     | 1               |

a list of treatment effects whose plot aliases are plot main effects

6-14

