




NTHU STAT 6681, 2007

Lecture Notes

X+ U+ = / + U+	$\frac{1}{n_2}/n_3 - \mathcal{N}(\mathcal{N}(n_1, n_2), n_3) = 1 + (\mathcal{N}(n_1, n_2) - 1) + n_1 + n_2 + n_1 + n_2 + n_2 + n_1 + n_2 + n_1 + n_2 + n_1 + n_2 + n_2 + n_1 + n_2 + n_2 + n_1 + n_2 + n_1 + n_2 + n_1 + n_2 + n_2 + n_1 + n_2 + n_2 + n_1 + n_2 + n_2 + n_2 + n_1 + n_2 +$	
$n_1($	there are four strata with degrees of freedom 1, $n_1 - 1$, $(n_2 - 1)$ and $n_1 n_2 (n_3 - 1)$.	
From	the d.f. identity, we can write down a yield	4
identi	ity which gives projections to all the strata.	Foi
	enience, we index each plot by multi-subso	
	as before, dot notation is used for averagin	g.
I ne to	ollowing is the rule given by Nelder:	
Expai	nd each term in the d.f. identity as a functi	on o
the n'	's; then to each term in the expansion	
	sponds a mean of the y's with the same si	gn
	averaged over the subscripts for which the	
CORRA	enonding his are absent	
corres	sponding n's are absent.	
Corres	sponding n's are absent.	
	sponding n's are absent.	
(n_1/n_2)	$)/n_3$: = 1 + (n_1 - 1) + n_1(n_2 - 1) + n_1n_2(n_2 - 1)	
(n_1/n_2)	$)/n_3$: = 1 + (n_1 - 1) + n_1(n_2 - 1) + n_1n_2(n_2 - 1)	ìdenti
(n_1/n_2) $n_1n_2n_3$	$)/n_{3}:$ $= 1 + (n_{1} - 1) + n_{1}(n_{2} - 1) + n_{1}n_{2}(n_{3} - 1)$ $= 1 + (n_{1} - 1) + (n_{1}n_{2} - n_{1}) + (n_{1}n_{2}n_{3} - n_{1}n_{2}) \leftarrow d.f.$	ìdentri
(n_1/n_2) $n_1n_2n_3$ This giv	$n)/n_3$: = 1 + (n_1 - 1) + n_1(n_2 - 1) + n_1n_2(n_3 - 1) = 1 + (n_1 - 1) + (n_1n_2 - n_1) + (n_1n_2n_3 - n_1n_2) \leftarrow d.f. wes the following yield identity:)dentri
(n_1/n_2) $n_1n_2n_3$ This giv	$n)/n_3$: = 1 + (n_1 - 1) + n_1(n_2 - 1) + n_1n_2(n_3 - 1) = 1 + (n_1 - 1) + (n_1n_2 - n_1) + (n_1n_2n_3 - n_1n_2) \leftarrow d.f. wes the following yield identity:	ìderti
(n_1/n_2) $n_1n_2n_3$ This giv $\sum_{i,j,k}$	$)/n_{3}:$ $= 1 + (n_{1} - 1) + n_{1}(n_{2} - 1) + n_{1}n_{2}(n_{3} - 1)$ $= 1 + (n_{1} - 1) + (n_{1}n_{2} - n_{1}) + (n_{1}n_{2}n_{3} - n_{1}n_{2}) \leftarrow d.f.$	ident i
(n_1/n_2) $n_1n_2n_3$ This giv $\sum_{\substack{i,j:k\\n_1n_2-i}}$	$ y_{ijk} = \frac{1}{1} + (n_1 - 1) + n_1(n_2 - 1) + n_1n_2(n_3 - 1) \\ = 1 + (n_1 - 1) + (n_1n_2 - n_1) + (n_1n_2n_3 - n_1n_2) \leftarrow d_1f $ we subtract the following yield identity: $ y_{ijk} = \frac{1}{1} y_{} + \frac{1}{1} (y_{i} - y_{}) + (y_{ij.} - y_{i}) + (y_{ijk} - y_{ij.}) \\ \qquad $	
(n_1/n_2) $n_1n_2n_3$ This giv $\sum_{\substack{i,j:k\\n_1n_2-i}}$	$ y_{ijk} = \frac{1}{1} + (n_1 - 1) + n_1(n_2 - 1) + n_1n_2(n_3 - 1) \\ = 1 + (n_1 - 1) + (n_1n_2 - n_1) + (n_1n_2n_3 - n_1n_2) \leftarrow d_1f $ we subtract the following yield identity: $ y_{ijk} = \frac{1}{1} y_{} + \frac{1}{1} (y_{i} - y_{}) + (y_{ij.} - y_{i}) + (y_{ijk} - y_{ij.}) \\ \qquad $	
(n_1/n_2) $n_1n_2n_3$ This giv $\sum_{\substack{i,j,k \in I}} \dots$ $n_1n_2 - m$ the null	$ \frac{1}{2} = 1 + (n_1 - 1) + n_1(n_2 - 1) + n_1n_2(n_3 - 1) \\ = 1 + (n_1 - 1) + (n_1n_2 - n_1) + (n_1n_2n_3 - n_1n_2) \not\leftarrow \notd.f. $ we sthe following yield identity: $ \frac{y_{ijk}}{y_{ik}} = \frac{1}{2} y_{} + \frac{1}{2} (y_{i} - y_{}) + (y_{ij.} - y_{i}) + (y_{ijk} - y_{ij.}) \\ from block factor. $ strata other than \mathcal{G} have degrees of freedom equal to $n_1 - 1$, n_1 and $n_1n_2n_3 - n_1n_2$. The corresponding sums of squares ANOVA are $\sum_{i=1}^{n_1} n_2n_3(y_{i} - y_{})^2$, $\sum_{i=1}^{n_1} \sum_{j=1}^{n_2} n_3(y_{ij.} - y_{i})^2$, and	
(n_1/n_2) $n_1n_2n_3$ This giv $\sum_{\substack{i,j,k \in I}} \dots$ $n_1n_2 - m$ the null	$ y_{ijk} = \frac{1}{1} + (n_1 - 1) + n_1(n_2 - 1) + n_1n_2(n_3 - 1) \\ = 1 + (n_1 - 1) + (n_1n_2 - n_1) + (n_1n_2n_3 - n_1n_2) \leftarrow d_1f $ we subtract the following yield identity: $ y_{ijk} = \frac{1}{1} y_{} + \frac{1}{1} (y_{i} - y_{}) + (y_{ij.} - y_{i}) + (y_{ijk} - y_{ij.}) \\ \qquad $	

5-14

$$\begin{split} & \text{Null ANOVA for } n_1/n_2/n_3 \\ & \sum_{i=1}^n \sum_{j=1,k=1}^{n_i} (y_{ijk} - y_{-.})^2 = \sum_{i=1}^n n_2n_3(y_{i..} - y_{...})^2 + \sum_{i=1,j=1}^n \sum_{i=1}^n n_3(y_{ij.} - y_{i..})^2 \\ & + \sum_{i=1,j=1}^n \sum_{k=1}^n (y_{ijk} - y_{ij.})^2 \\ & \text{If } \alpha_1 = \dots = \alpha_t, \text{ then} \\ & \text{E}[\frac{1}{n_1 - 1} \sum_{i=1}^n n_2n_3(y_{i..} - y_{...})^2] = \xi_1 : \text{between-block variance} \\ & \text{E}[\frac{1}{n_1(n_2 - 1)} \sum_{i=1,j=1}^n n_3(y_{ij.} - y_{i..})^2] = \xi_2 : \text{between-wholeplot variance} \\ & \text{E}[\frac{1}{n_1(n_2 - 1)} \sum_{i=1,j=1}^n n_3(y_{ij.} - y_{i..})^2] = \xi_2 : \text{between-wholeplot variance} \\ & \text{E}[\frac{1}{n_1(n_2 - 1)} \sum_{i=1,j=1}^n n_2 n_3(y_{ij.} - y_{ij.})^2] = \xi_3 : \text{within-wholeplot variance} \\ & \text{E}[\frac{1}{n_1n_2(n_3 - 1)} \sum_{i=1,j=1}^n n_2 n_3(y_{ij.} - y_{ij.})^2] = \xi_3 : \text{within-wholeplot variance} \\ & \text{Figs } (y_{ijk} - y_{ij.})^2 = \xi_3 : \text{within-wholeplot variance} \\ & \text{Figs } (y_{ijk} - y_{ij.})^2 = \xi_3 : \text{within-wholeplot variance} \\ & \text{Figs } (y_{ijk} - y_{ij.})^2 = \xi_3 : \text{within-wholeplot variance} \\ & \text{Figs } (y_{ijk} - y_{ij.})^2 = \xi_3 : \text{within-wholeplot variance} \\ & \text{Figs } (y_{ijk} - y_{ij.})^2 = \xi_3 : \text{within-wholeplot variance} \\ & \text{Figs } (y_{ijk} - y_{ij.}) = \xi_3 : \text{within-wholeplot variance} \\ & \text{Figs } (y_{ijk} - y_{ij.}) = \xi_3 : \text{within-wholeplot variance} \\ & \text{Figs } (y_{ijk} - y_{ij.}) = \xi_3 : \text{within-wholeplot variance} \\ & \text{Figs } (y_{ijk} - y_{ij.}) = \xi_3 : \text{within-wholeplot variance} \\ & \text{Figs } (y_{ijk} - y_{ij.}) = \xi_3 : \text{within-wholeplot variance} \\ & \text{Figs } (y_{ijk} - y_{ij.}) = \xi_3 : y_{ijk} = \xi_3 : y_{ijk} = \xi_3 : y_{ijk} = \xi_3 : \xi_3 :$$

We say that f and f satisfy the condition of
proportional frequencies if
block factor
treatment factor
$$n_{ij} = \frac{n + n_{ij}}{n_{i+i}}$$
 for all $i, j,$
where $n_{i+i} = \sum_{j=1}^{f_i} n_{ij} n_{ij} = n$ and $n_{+1} = \sum_{i=1}^{f_i} \sum_{j=1}^{f_i} n_{ij} = N$.
Theorem. Two factors F_i and F_2 satisfy the
condition of proportional frequencies
 $\Leftrightarrow \mathcal{F}_1 \oplus \mathcal{G} \perp \mathcal{F}_2 \oplus \mathcal{G}$.
Under a row-column design such that each treatment appears the
same number of times in each row and the same number of times in
each each column (such as a Latin square),
 $(T \oplus \mathcal{G}) \perp (\mathcal{R} \oplus \mathcal{G})$
 $(T \oplus \mathcal{G}) \perp (\mathcal{C} \oplus \mathcal{G})$
 $T \oplus \mathcal{G} \subset (\mathcal{R} + \mathcal{C})^{\perp} (=S_3)$
 $If T \oplus \mathcal{G} \subset S_i$ for some *i*, then
 $\|P_i \mathbf{y}\|^2 = \|(T - \mathcal{G})\mathbf{y}\|^2 + \|P_{S \oplus (T \oplus \mathcal{G})}\mathbf{y}\|^2$,
where r_j is the further of replications of the *j*th treatment and T_j
is the *j*th treatment mean.
treatment sum of squares + residual sum of squares
 $\mathcal{E}[\frac{1}{t_{i-1}\sum_{j=1}^{t}} r_j(T_j - \mathbf{y})^2] = \xi_i + \frac{1}{(\frac{1}{t_{i-1}\sum_{j=1}^{t} r_i(\Omega_i - \frac{1}{N_{i-1}\sum_{j=1}^{t} r_i(\Omega_i)]^2}}{E[\frac{1}{dm(S_i) - t + 1}] \|P_{S \oplus (T \oplus \mathcal{G})}\mathbf{y}\|^2] = \xi_i$

Sources	SS	df	MS	E(MS)	
\mathcal{S}_1	$\ \boldsymbol{P}_1\boldsymbol{y}\ ^2$	$\dim(\mathcal{S}_1)$	$rac{1}{dim(\mathcal{S}_1)} \left\ oldsymbol{P}_1 oldsymbol{y} ight\ ^2$	ξ1	
÷	:	÷	÷	÷	
$\overline{\mathcal{S}_i}$					
Treatmen	ıts	t-1		$\xi_i + \cdots$	
Residual		$\dim(\mathcal{S}_i) - t + 1$		ξ_i	
	:	÷	÷	:	
\mathcal{S}_s	$\ oldsymbol{P}_{s}oldsymbol{y}\ ^{2}$	$\dim(\mathcal{S}_s)$	$rac{1}{dim(\mathcal{S}_{s})} \ oldsymbol{P}_{s} oldsymbol{y} \ $	2 ξ_{s}	
Total	$\ oldsymbol{y}-oldsymbol{G}oldsymbol{y}\ ^2$	N-1			
	A table fo	or a Latin sa	uare design:		

	Sources of variation	SS	d.f.	MS		E(MS)	
	Rows $\sum_{i=1}^{t}$	$\sum_{i=1}^{n} t(y_{i.} - y_{})^2$	t-1			ξ1	
rata	\sim Columns $\sum_{j=1}^{t}$	$t(y_{.j} - y_{})^2$	t-1			ξ2	
	(freatments)	$\sum_{i=1}^{t} t[\overline{T}_i - y_{}]^2$	t-1		$\xi_3 + \frac{1}{t-1}$ [$\sum_{i=1}^{t} t(\alpha_i - \alpha_i)^2]$	
	Residual	By subtr	action			ξ3	
	Total $\sum_{i=1}^{t}$	$\sum_{j=1}^{t} (y_{ij} - y_{})^2$	$t^{2} - 1$				