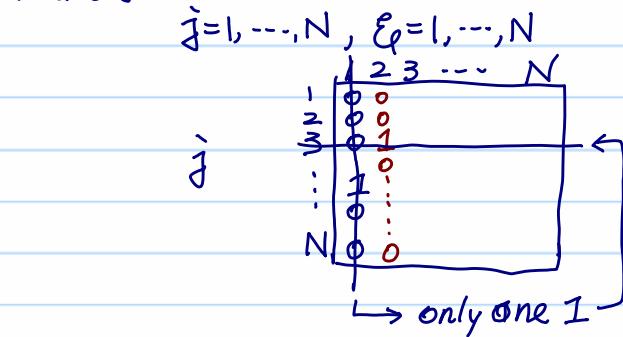


(Reading Material 02) Sec. 1.2. A Randomization model for Completely Randomized Design (c.f. the linear model in LNp.2-1)

- N plots: labels by $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_N$
- Randomization: choose a random permutation of $\{1, 2, \dots, N\}$ (LNp.2-1)
- Once a permutation is selected, the plots are renumbered with $\tilde{j} = 1, \dots, N$
- Let $f_{\tilde{j}\varepsilon_i} = \begin{cases} 1, & \text{if plot originally labelled by } \varepsilon_i \text{ receives} \\ & \text{by the randomization the label } \tilde{j} \\ 0, & \text{o.w.} \end{cases}$



$$\begin{array}{c} \varepsilon_i = 1 \ 2 \ \dots \ N \\ \hline \tilde{j} = 10 \ 8 \ 5 \end{array}$$

$$\sum_{j=1}^N f_{\tilde{j}\varepsilon_i} = 1$$

$$\sum_{\varepsilon_i=1}^N f_{\tilde{j}\varepsilon_i} = 1$$

2-29

- $E(f_{\tilde{j}\varepsilon_i}) = P(f_{\tilde{j}\varepsilon_i} = 1) = \frac{(N-1)!}{N!} = \frac{1}{N}$

$$E(f_{\tilde{j}\varepsilon_i} f_{\tilde{j}'\varepsilon_i'}) = P(f_{\tilde{j}\varepsilon_i} = 1, f_{\tilde{j}'\varepsilon_i'} = 1) = \begin{cases} \frac{1}{N}, & \tilde{j} = \tilde{j}', \varepsilon_i = \varepsilon_i' \\ 0, & \tilde{j} = \tilde{j}', \varepsilon_i \neq \varepsilon_i' \\ 0, & \tilde{j} \neq \tilde{j}', \varepsilon_i = \varepsilon_i' \\ \frac{(N-2)!}{N!} = \frac{1}{N(N-1)}, & \tilde{j} \neq \tilde{j}', \varepsilon_i \neq \varepsilon_i' \end{cases}$$

- Let the response contributed by the plot originally labelled by ε_i be denoted by μ_{ε_i} , and let the plot receive the label \tilde{j} , then define

$$m_{\tilde{j}} = \sum_{\varepsilon_i=1}^N f_{\tilde{j}\varepsilon_i} \mu_{\varepsilon_i}$$

- Let $\bar{\mu} = \frac{1}{N} \sum_{\varepsilon_i=1}^N \mu_{\varepsilon_i}$, $\mu_{\varepsilon_i} = \bar{\mu} + (\mu_{\varepsilon_i} - \bar{\mu})$, then

$$m_{\tilde{j}} = \sum_{\varepsilon_i=1}^N f_{\tilde{j}\varepsilon_i} [\bar{\mu} + (\mu_{\varepsilon_i} - \bar{\mu})] = \bar{\mu} + \sum_{\varepsilon_i=1}^N f_{\tilde{j}\varepsilon_i} (\mu_{\varepsilon_i} - \bar{\mu})$$

- $E(\gamma_{\tilde{j}}) = \sum_{\varepsilon_i=1}^N (\mu_{\varepsilon_i} - \bar{\mu}) E(f_{\tilde{j}\varepsilon_i}) = 0$

$$E(\gamma_{\tilde{j}} \gamma_{\tilde{j}'}) =$$

a random variable $\gamma_{\tilde{j}}$ → called "unit error" or "plot error"
It's the error represents the variation caused by randomization

2-30

$$E(\bar{Y}_j \bar{Y}_{j'}) = \sum_{\epsilon_i=1}^N \sum_{\epsilon_i'=1}^N (\mu_{\epsilon_i} - \bar{\mu})(\mu_{\epsilon_i'} - \bar{\mu}) E(f_{j\epsilon_i} f_{j'\epsilon_i'}')$$

$$\text{Var}(\bar{Y}_j) = \frac{1}{N} \sum_{\epsilon_i=1}^N (\mu_{\epsilon_i} - \bar{\mu})^2 = \frac{N-1}{N} \cdot \sigma_e^2 = (1 - \frac{1}{N}) \sigma_e^2$$

$$\text{cov}(\bar{Y}_j, \bar{Y}_{j'}) = - \frac{1}{N(N-1)} \sum_{\epsilon_i=1}^N (\mu_{\epsilon_i} - \bar{\mu})^2 = - \frac{1}{N} \sigma_e^2$$

- $m_j = \bar{\mu} + \bar{r}_j$

$$E(m_j) = \bar{\mu}$$

$$\text{cov}(m_j, m_{j'}) = (\bar{\sigma}_{jj'}^2 - \frac{1}{N}) \sigma_e^2$$

- It should be noted that when observing the response, any observation (i.e. Y 's) may be affected by a "technical error". Denote the error by e_j . Assume that $E(e_j) = 0$, $\text{Var}(e_j) = \sigma_e^2$, $\text{cov}(e_j, e_{j'}) = 0$ if $j \neq j'$

- Then, write the linear model

$$Y_j = \bar{\tau}_{T(j)} + m_j + e_j$$

fixed but
unkown
constants

design. ↑ caused by plan
 = $\boxed{\bar{\tau}_{T(j)} + \bar{\mu}} + \boxed{\bar{r}_j + e_j}$ random variable

c.f. the linear
model in LNp.2-10

2-31

$$(\star) \cdots \begin{cases} E(Y) = \bar{\tau} + \bar{\mu} \\ \text{cov}(Y_j, Y_{j'}) = \begin{cases} \frac{1}{N} \sigma_e^2 + \sigma_e^2 & \text{if } j = j' \\ -\frac{1}{N} \sigma_e^2 & \text{if } j \neq j' \end{cases} \end{cases}$$

σ^2
 $\bar{\sigma}^2$
 σ_e^2

- An alternative to get the model (\star)

Recall: LNp2-10, $Y = (\mu \bar{Y} + \bar{\tau}) + (Z - \mu \bar{Y})$

- If μ is regarded as a random effect

$$Y = \bar{\tau} + (\mu + Z) = Z''$$

$$E(Z'') = 0$$

$$\text{Var}(\mu + Z) = \text{Var}(\mu) + \text{Var}(Z)$$

$$\text{cov}(\mu + Z, \mu + Z) = \text{Var}(\mu)$$

$$\begin{aligned} Z' &\Rightarrow E(Z') = 0 \\ &\text{Var}(Z') = \sigma^2 I \end{aligned}$$

- Recall: when μ is regarded as fixed effect

$\Rightarrow \mu$ confounded with $\bar{\tau}$

\Rightarrow the reason why we are often not interested in $\bar{\tau}_0$ and separate it from $\bar{\tau}_T$ as in LNp.2-21

(Bailey) Sec. 2-13. A more general model (randomization model)
random effect model

$$\mathbb{Y} = \mathbb{I} + \mathbb{Z} \quad (N_{p,2-10}, \text{cov}(\mathbb{Z}) = \sigma^2 \mathbb{I})$$

- Here, we change the assumption to

$$\text{cov}(Z_\alpha, Z_\beta) = \begin{cases} \sigma^2 & \text{if } \alpha = \beta \\ \rho \sigma^2 & \text{if } \alpha \neq \beta \end{cases}$$

$\hookrightarrow \text{cor}(Z_\alpha, Z_\beta)$

where ρ may not be zero ($\Rightarrow \sigma^2 \mathbb{I}$ is a special case)

- model: $E(\mathbb{Y}) = \mathbb{I}$

$$\begin{aligned} \text{cov}(\mathbb{Y}) &= \rho \sigma^2 \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} + (1-\rho) \sigma^2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ &= \rho \sigma^2 \cdot \mathbb{J} + (1-\rho) \sigma^2 \cdot \mathbb{I} \\ &= \sigma^2 [\rho \mathbb{J} + (1-\rho) \mathbb{I}] \end{aligned}$$

- eigenvalue, eigenvector, eigenspace of $\text{cov}(\mathbb{Y})$

- $\because \mathbb{I} \mathbb{U}_0 = \mathbb{U}_0, \mathbb{J} \mathbb{U}_0 = N \mathbb{U}_0$

$$\therefore \text{cov}(\mathbb{Y}) \cdot \mathbb{U}_0 = \underbrace{\sigma^2 [(1-\rho) + N\rho]}_{\text{eigenvalue}} \cdot \mathbb{U}_0$$

$\Rightarrow \mathbb{U}_0$ is an eigenvector of $\text{cov}(\mathbb{Y})$ with eigenvalue

2-33

- Let $x \in \mathbb{V}_0^\perp$ (i.e. $x \in \mathbb{V}$ and $x \cdot \mathbb{U}_0 = 0$)

Then $\mathbb{J} \cdot x = 0, \therefore \text{cov}(\mathbb{Y}) \cdot x = \underbrace{\sigma^2 (1-\rho)}_{\text{eigenvalue}} \cdot x$

$\Rightarrow x$ is an eigenvector of $\text{cov}(\mathbb{Y})$ with eigenvalue

- \mathbb{V}_0 is the eigenspace corresponding to eigenvalue $\sigma^2 (1-\rho) + \rho N$

$$\mathbb{V}_0^\perp = \mathbb{V} = \mathbb{V}_0 \oplus \mathbb{V}_0^\perp$$

$$\dim = 1 \quad \dim = N-1$$

- changing $\text{cov}(\mathbb{Y})$ from $\sigma^2 \mathbb{I}$ to $\sigma^2 [(1-\rho) \mathbb{I} + \rho \mathbb{J}]$,

(i) make no difference to $E[x \cdot \mathbb{Y}] \leftarrow$ no change in the 1st moment of

(ii) but, it changes the expectation of quadratic function of \mathbb{Y} . $\mathbb{Y}^\top \mathbb{Y}$
such as $\text{Tr}(x \cdot \mathbb{Y})$, SS, MS,

Q: How does it change?

- if $\text{cov}(\mathbb{Y}) = \sigma^2 \mathbb{I}$, \Rightarrow For any $x \in \mathbb{V}$, $\text{cov}(\mathbb{Y}) \cdot x = \sigma^2 \mathbb{I} \cdot x$

- if x is an eigenvector of $\text{cov}(\mathbb{Y})$ with eigenvalue σ^2

$$\text{cov}(\mathbb{Y}) \cdot x = \sigma^2 x$$

- careful replacement of σ^2 by σ^2 give the correct
generalized results of Thm 2.4, 2.5, 2.6, 2.9.

- one possible difficult, $x_1 \in \mathbb{V}_0^\perp, x_2 \in \mathbb{V}_0$

2-34

Theorem 2.10 Suppose that $\mathbb{E}(\mathbf{Y}) = \boldsymbol{\tau} \in V_T$ and $\text{Cov}(\mathbf{Y}) = \mathbf{C}$. Then the following hold.

c.f. Thm 2.4(i)

(i) If W is any subspace of V then $\mathbb{E}(P_W(\mathbf{Y})) = P_W\boldsymbol{\tau}$.

\rightarrow a linear transformation
may not be $\sigma^2 \mathbf{I}$.

c.f. Thm 2.4(ii)

(ii) If W consists entirely of eigenvectors of \mathbf{C} with eigenvalue ξ , and if $\dim W = d$,

same eigenvalue

$$\mathbb{E}(\|P_W(\mathbf{Y})\|^2) = \|P_W(\boldsymbol{\tau})\|^2 + d\xi \Leftrightarrow \sigma^2 \text{ in Thm 2.4(ii)}$$

c.f. Thm 2.4(ii)

(iii) If $\mathbf{x} \in V_T$ and \mathbf{x} is an eigenvector of \mathbf{C} then the best linear unbiased estimator of $\mathbf{x} \cdot \boldsymbol{\tau}$ is $\mathbf{x} \cdot \mathbf{Y}$.

c.f. Thm 2.5(ii)

(iv) If \mathbf{x} is an eigenvector of \mathbf{C} with eigenvalue ξ then the variance of $\mathbf{x} \cdot \mathbf{Y}$ is $\|\mathbf{x}\|^2 \xi$.

$\Leftrightarrow \sigma^2 \text{ in Thm 2.5(ii)}$

(v) Suppose that \mathbf{x} and \mathbf{z} are eigenvectors of \mathbf{C} with eigenvalues ξ and η respectively. If $\xi = \eta$ then $\text{cov}(\mathbf{x} \cdot \mathbf{Y}, \mathbf{z} \cdot \mathbf{Y}) = (\mathbf{x} \cdot \mathbf{z})\xi$; if $\xi \neq \eta$ then $\text{cov}(\mathbf{x} \cdot \mathbf{Y}, \mathbf{z} \cdot \mathbf{Y}) = 0$.

c.f. Thm 2.5(iii)

$\because \mathbf{x} \cdot \mathbf{z} = 0$ if they belong to different eigenspaces

2-35

(vi) Suppose that \mathbf{x} is an eigenvector of \mathbf{C} with eigenvalue ξ , that $\mathbf{x} = \sum_i (\lambda_i/r_i) \mathbf{u}_i$, that W is a d -dimensional subspace consisting of eigenvectors of \mathbf{C} orthogonal to V_T . If \mathbf{Y} has a multivariate normal distribution then

c.f. Thm 2.6(i)

residual space

$$\frac{\mathbf{x} \cdot \mathbf{Y} - \sum \lambda_i \tau_i}{\sqrt{\left(\sum \frac{\lambda_i^2}{r_i}\right) \times \text{MS}(W)}} \sim \mathcal{N}(0, \sigma^2)$$

$$\mathbf{x} \cdot \boldsymbol{\tau} = \sum_{i=1}^t \lambda_i \tau_i$$

has a t-distribution on d degrees of freedom and $\text{SS}(W)/\xi$ has a χ^2 -distribution on d degrees of freedom.

$\sigma^2 \text{ in Thm 2.6(i)}$

(vii) If W_1 and W_2 are subspaces with dimensions d_1 and d_2 , both consisting of eigenvectors of \mathbf{C} with eigenvalue ξ , orthogonal to each other, with $P_{W_1}\boldsymbol{\tau} = P_{W_2}\boldsymbol{\tau} = \mathbf{0}$, and if \mathbf{Y} has a multivariate normal distribution then $\text{MS}(W_1)/\text{MS}(W_2)$ has an F-distribution on d_1 and d_2 degrees of freedom.

in same stratum.

null hypothesis

within stratum comparison

Definition A stratum is an eigenspace of $\text{Cov}(\mathbf{Y})$ (note that this is not the same as a stratum in sampling).

2-36

• ANOVA table

cannot test
 $\bar{\tau} = 0$

stratum	source	df	EMS
$\dim = 1$ eigenvalue $= \sigma^2[(1-\rho) + N\rho]$	V_0 'mean'	mean	1
$\dim = N-1$ eigenvalue $= \sigma^2(1-\rho)$	V_0^\perp 'plots'	treatments	$t-1$
		residual	$N-t$
Total			N

