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Theorem 2.6 Suppose that the distribution of Y is multivariate normal, that E(Y ) =
T € Vr and that Cov(Y) is a scalar matrix. Then the following hold.
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Theorem 2.9 Suppose that the distribution of Y is multiv ariate yormal Let Wy and
W5 be sszspcaces of V with dimensions dy and d». Then the following hold.

(i) If) 0 then SS(W1)/0? has a y*-distribution with dy degrees of freedom.
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(ii) If W7 is orz‘hogonaf to W and Py T = Py T = 0 then MS(W1)/MS(W>) has

an F-distribution with dy and d, degrees of freedom.
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