

(Barley)

Section 2.4. orthogonal projection.

Q: What is orthogonal projection? (See the plot in LN. 2-6)

Q: Why is orthogonal projection important?

- many procedure of estimation & testing do nothing more than the decomposition of data vector into orthogonal pieces.
- orthogonality often corresponds to uncorrelated (become "independent" if more assumption, such as normality, is added)

Def: If W is a subspace of V , then the orthogonal complement of W is

$\{v \in V \mid v \text{ is orthogonal to all vectors in } W\}$
denoted by W^\perp

2-8

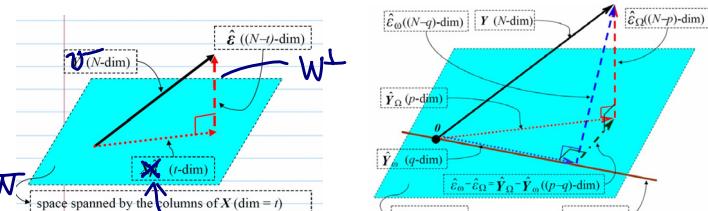
Theorem 2.3 Let W be a subspace of V . Then the following hold.

(i) W^\perp is also a subspace of V .

(ii) $(W^\perp)^\perp = W$.

(iii) $\dim(W^\perp) = \dim V - \dim W$.

(iv) V is the internal direct sum $W \oplus W^\perp$; this means that given any vector v in V there is a unique vector x in W and a unique vector z in W^\perp such that $v = x + z$. We call x the orthogonal projection of v onto W , and write $x = P_W v$. See Figure 2.2



(v) $P_{W^\perp} v = z = v - x = v - P_W v = (I - P_W) v$

(vi) For a fixed vector v in V and vector w in W , $\sum_{\omega \in \Omega} (v_\omega - w_\omega)^2 = \|v - w\|^2$. As w varies over W , this sum of squares of differences is minimized when $w = P_W v$. \Rightarrow least square estimator minimize $\|v - w\|^2$

(vii) If $\{u_1, \dots, u_n\}$ is an orthogonal basis for W then

different orthogonal effects.

$$P_W v = \left(\frac{v \cdot u_1}{u_1 \cdot u_1} \right) u_1 + \left(\frac{v \cdot u_2}{u_2 \cdot u_2} \right) u_2 + \dots + \left(\frac{v \cdot u_n}{u_n \cdot u_n} \right) u_n.$$

(Bailey) Section 2.5. Linear model.

A linear model for unstructured plots

$$Y_i = \underbrace{\mu}_{\text{from treatment}} + \underbrace{\zeta_i}_{\text{from plot structure}}$$

Q: how to describe the distribution of Z for unstructured

(i) $E(Z) = \underline{\underline{\mu}}$ (Q: What if $E(z) = \mu \cdot \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$ & $\mu \neq 0$?)

(ii) $\text{Var}(Z_w) = \sigma^2$, for $w \in \Omega$

(iii) $\text{cov}(Z_\alpha, Z_\beta) = 0$, for different plots $\alpha, \beta \in \Omega$

(iv) $\underline{\underline{\pi}} \in V_T$ (but unknown)

→ $E(Y) = \underline{\underline{\pi}}$, $\text{cov}(Y) = \sigma^2 I$, $Y = (\mu \underline{\underline{1}} + \underline{\underline{\pi}}) + \underline{\underline{(Z - \mu \underline{\underline{1}})}}$

• If normality assumption is added, $E(z') = 0 \Leftarrow z'$

$Y \sim N(\underline{\underline{\pi}}, \sigma^2 I) \Rightarrow$ independence

2-10

Theorem 2.4 Assume that $\mathbb{E}(\mathbf{Y}) = \boldsymbol{\tau}$ and that $\text{Cov}(\mathbf{Y}) = \boldsymbol{\sigma}^2 \mathbf{I}$. Let W be a d -dimensional subspace of V . Then

$$(ii) \mathbb{E}(\|P_W \mathbf{Y}\|^2) = \|P_W \tau\|^2 + d\sigma^2.$$

$$E[Y'AY] = \text{tr}[A\Sigma] + \theta' A \theta, \text{ where } \theta = E[Y] \text{ & } \Sigma = \text{cov}(Y).$$

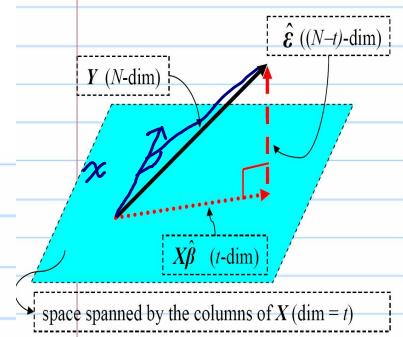
Theorem 2.5 Assume that $\mathbb{E}(\mathbf{Y}) = \boldsymbol{\tau} \in V_T$ and that $\text{Cov}(\mathbf{Y}) = \sigma^2 \mathbf{I}$. Let \mathbf{x} and \mathbf{z} be any vectors in V_T . Then BLUE

(i) the best (that is, minimum variance) linear unbiased estimator of the scalar $\mathbf{x} \cdot \boldsymbol{\tau}$ is $\mathbf{x} \cdot \mathbf{Y}$; \leftarrow Gauss-Markov Thm. $\rightarrow \text{Var}(\mathbf{x}^T \mathbf{Y} \mathbf{Y}^T \mathbf{x}) = \mathbf{x}^T \sigma^2 \mathbf{I} \mathbf{x} = \sigma^2 \mathbf{x}^T \mathbf{x}$

(ii) the variance of the estimator $\mathbf{x} \cdot \mathbf{Y}$ is $\|\mathbf{x}\|^2 \sigma^2$;

(iii) the covariance of $\mathbf{x} \cdot \mathbf{Y}$ and $\mathbf{z} \cdot \mathbf{Y}$ is $(\mathbf{x} \cdot \mathbf{z}) \sigma^2$.

$$X = \begin{bmatrix} 1/\tau_A \\ 1/\tau_B \\ -1/\tau_2 \\ -1/\tau_3 \\ 0 \end{bmatrix} \quad T = \begin{bmatrix} \tau_A \\ \tau_B \\ \tau_2 \\ \tau_3 \\ 1 \end{bmatrix} \Rightarrow X \cdot T = \tau_A - \tau_B$$



(Bailey) Section 2.5. Estimation.

• Some properties:

- Let $u_i = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ i \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ corresponds to the r_i plots with treatment i \Rightarrow
 - (i) $u_i \cdot u_i = r_i$
 - (ii) for $v \in V$, $u_i \cdot v = \text{sum of the values of } v \text{ on those plots with treatment } i$.

• Write

$$(i) u_i \cdot \bar{Y} = \text{SUM}_{T=i}$$

$$(ii) u_i \cdot \bar{Y} / r_i = \text{MEAN}_{T=i}$$

- Let $u_0 = \bar{Y}$, then (i) $u_0 = \sum_{i=1}^t u_i$

$$(ii) u_0 \cdot u_0 = N$$

$$(iii) \text{For } v \in V, u_0 \cdot v = \sum_{w \in v} v_w \Rightarrow \bar{v} = u_0 \cdot v / N$$

• Write

$$(i) \text{SUM} = u_0 \cdot \bar{Y} = N \cdot \bar{Y}$$

- To estimate τ_i : let $x_i = \frac{1}{r_i} u_i = \begin{bmatrix} 0 \\ \vdots \\ r_i \\ \vdots \\ r_i \\ \vdots \\ 0 \end{bmatrix} \Rightarrow x_i \cdot \tau = \tau_i$

$$\Rightarrow x_i \cdot \bar{Y} = \frac{1}{r_i} (u_i \cdot \bar{Y}) = \text{MEAN}_{T=i} \rightarrow \text{BLUE of } \tau_i$$

2-12

- To estimate $\sum_{i=1}^t \lambda_i \tau_i$: let $x = \sum_{i=1}^t \frac{\lambda_i}{r_i} u_i = \begin{bmatrix} \lambda_1 r_1 \\ \vdots \\ \lambda_t r_t \\ \vdots \\ \lambda_1 r_1 \\ \vdots \\ \lambda_t r_t \\ \vdots \\ 0 \end{bmatrix}$

$$\Rightarrow x \cdot \tau = \sum_{i=1}^t \frac{\lambda_i}{r_i} (u_i \cdot \tau) = \sum_{i=1}^t \frac{\lambda_i}{r_i} (r_i \cdot \tau_i)$$

\Rightarrow BLUE of $x \cdot \tau$ is

$$x \cdot \bar{Y} = \sum_{i=1}^t \lambda_i \cdot (\text{MEAN}_{T=i})$$

- To estimate $\bar{\tau} = \sum_{i=1}^t \frac{r_i}{N} \cdot \tau_i \Rightarrow \lambda_i = \frac{r_i}{N}$

$$x \cdot \bar{Y} = \sum_{i=1}^t \frac{r_i}{N} \cdot (\text{MEAN}_{T=i}) = \frac{\text{SUM}}{N} = \bar{Y}$$

- Now we look at Theorem 2.4 with $W = V_T$. Since $\tau \in V_T$, we have

$$P_{V_T} \tau = \tau = \sum_{i=1}^t \tau_i u_i \quad \{u_1, \dots, u_t\} \text{ is an orthogonal basis.}$$

Proposition 2.1 and Theorem 2.3(vii) show that

$$P_{V_T} \bar{Y} = \sum_{i=1}^t \left(\frac{\bar{Y} \cdot u_i}{u_i \cdot u_i} \right) u_i = \sum_{i=1}^t \frac{\text{SUM}_{T=i}}{r_i} u_i = \sum_{i=1}^t \text{MEAN}_{T=i} u_i.$$

Theorem 2.4(i) confirms that this is an unbiased estimator of τ .

2-13

(Bailey) Section 2.7. Sum of Square

Def: Let W be a subspace of V

- (i) For $\mathbf{Y} \in V$, the sum of square for W means $\|P_W \mathbf{Y}\|^2$
- (ii) the degree of freedom for W is $\dim(W)$
- (iii) the mean square for W is $\|P_W \mathbf{Y}\|^2 / \dim(W)$
- (iv) the expected mean square for W is $\text{EMS}(W) = E(\|P_W \mathbf{Y}\|^2 / \dim(W))$

First we apply these ideas with $W = V_T$. Since

$$P_{V_T} \mathbf{Y} = \sum_{i=1}^t \frac{\text{SUM}_{T=i}}{r_i} \mathbf{u}_i,$$

the sum of squares for V_T is equal to

$$(P_{V_T} \mathbf{Y})' = \left(\sum_{i=1}^t \frac{\text{SUM}_{T=i}}{r_i} \mathbf{u}_i \right) \cdot \left(\sum_{j=1}^t \frac{\text{SUM}_{T=j}}{r_j} \mathbf{u}_j \right) = (P_{V_T} \mathbf{Y})$$

Now, $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$, so this sum of squares

$$= \sum_{i=1}^t \frac{\text{SUM}_{T=i}^2}{r_i^2} \mathbf{u}_i \cdot \mathbf{u}_i = \sum_{i=1}^t \frac{\text{SUM}_{T=i}^2}{r_i}.$$

$\uparrow \mathbf{u}_i \in V_T$

The quantity $\sum_i (\text{sum}_{T=i}^2 / r_i)$ is called the *crude sum of squares for treatments*, which may be abbreviated to *CSS(treatments)*.

2-14

The number of degrees of freedom for V_T is simply the dimension of V_T , which is equal to t .

The mean square for V_T is equal to

$$\sum_{i=1}^t \frac{\text{SUM}_{T=i}^2}{r_i} / t.$$

Theorem 2.4(ii) shows that

$$\mathbb{E}(\|P_{V_T} \mathbf{Y}\|^2) = \underbrace{\|P_{V_T} \tau\|^2}_{\tau} + t\sigma^2 = \sum_{i=1}^t r_i \tau_i^2 + t\sigma^2,$$

because $P_{V_T} \tau = \sum_{i=1}^t \tau_i \mathbf{u}_i$. Hence the expected mean square for V_T is equal to $\sum r_i \tau_i^2 / t + \sigma^2$.

$$\hookrightarrow \mathbb{E}(\|P_{V_T} \mathbf{Y}\|^2 / t)$$

2-15

- Secondly we apply the ideas with $W = V_T^\perp$. By Theorem 2.3(v),

$$\begin{aligned}
 (I - P_{V_T}) P_{WY} &= \mathbf{y} - P_{V_T} \mathbf{y} \\
 &= \mathbf{y} - \sum_{i=1}^t \hat{\tau}_i \mathbf{u}_i \rightarrow \hat{\mathbf{y}} \\
 &= \text{data vector} - \text{vector of fitted values} \\
 &= \text{residual vector,}
 \end{aligned}$$

$\rightarrow \|P_W Y\|^2 = \text{sum of squares of the residuals}$

$$\sum_{\omega \in \Omega} (y_\omega - \bar{y})^2 \quad \sum_{\omega \in \Omega} y_\omega^2 = \|\mathbf{y}\|^2 = \|P_{V_T} \mathbf{y}\|^2 + \|P_W \mathbf{y}\|^2.$$

total sum of square

$\rightarrow \dim(V_T^\perp) = \dim V - \dim V_T = N - t$

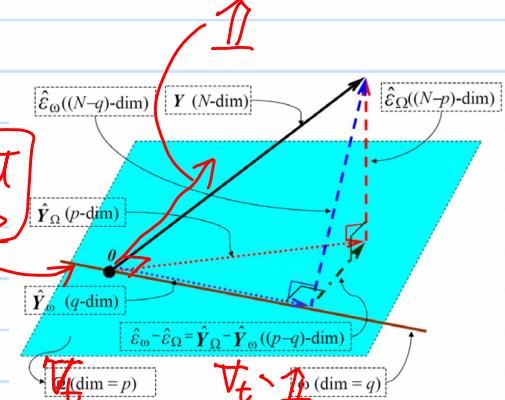
degree of freedom of residuals

mean square
an unbiased
estimator of σ^2

$$\text{MS(residual)} = \frac{\|P_W Y\|^2}{N - t}$$

$$\text{EMS(residual)} = \frac{\|P_W Y\|^2 + (N-t)\sigma^2}{N - t} = \sigma^2$$

treatment
contrasts



2-16

(Bailey) Section 2.8. Variance

- To estimate $\sum_{i=1}^t \lambda_i \tau_i$, $\mathbf{x} = \sum_{i=1}^t \frac{\lambda_i}{r_i} \mathbf{u}_i$

BLUE: $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^t \lambda_i \text{MEAM}_{T=i}$

$$\begin{aligned}
 \text{Var}(\mathbf{x} \cdot \mathbf{y}) &= \|\mathbf{x}\|^2 \sigma^2 = \left(\sum_{i=1}^t \frac{\lambda_i}{r_i} \mathbf{u}_i \right) \cdot \left(\sum_{j=1}^t \frac{\lambda_j}{r_j} \mathbf{u}_j \right) \sigma^2 \\
 &= \sum_{i=1}^t \frac{\lambda_i^2}{r_i^2} (\mathbf{u}_i \cdot \mathbf{u}_i) \sigma^2 \\
 &= \left(\sum_{i=1}^t \frac{\lambda_i^2}{r_i} \right) \sigma^2.
 \end{aligned}$$

For different λ_i 's, the "best" choice of r_i 's is different.
 \Rightarrow choice of r_i 's is corresponding to the choice of designs, i.e $T: \Omega \rightarrow \mathcal{J}$

- Two cases:

- To estimate $\tau_{i_0} \Rightarrow \lambda_{i_0} = 1$ and $\lambda_j = 0$ for $j \neq i_0$
 $\Rightarrow \left(\sum_{i=1}^t \frac{\lambda_i^2}{r_i} \right) \sigma^2 = \sigma^2 / r_{i_0}$

- To estimate $\tau_{i_0} - \tau_{i_1} \Rightarrow \lambda_{i_0} = 1, \lambda_{i_1} = -1$ and $\lambda_j = 0$ for $\begin{cases} j \neq i_0 \\ j \neq i_1 \end{cases}$
 $\Rightarrow \left(\sum_{i=1}^t \frac{\lambda_i^2}{r_i} \right) \sigma^2 = \sigma^2 \left(\frac{1}{r_{i_0}} + \frac{1}{r_{i_1}} \right)$

2-17