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Theorem 2.3 Let W be a subspace of V. Then the following hold.

(i) W is also a subspace of V.

i) (WHyLt=w. /

fiii) dim(W) = dim¥ — dim . Wi

(iv) V is the internal direct sum W & WL, this means 1

inV there is aector xin W and

v =X-+2 We call x the orthogonal projection of v onto W, and writ
See Figure 2.2

P wY.

v) Ppv=2=v—-xX=vV—Pypv. =<I—' va-> U

vi) For a fixed vector v in V and vector w in W, 3 pea(Ve — we)? = ||[v—w|°.
As w varies over W, this sum of squares of differences is minimized when

w=Dpv. S Mw alemidor  piwimize [y \|>

weEW

wii) If{uy,..., w,{ is an orthogonal basis for W_then

W
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Lo KS, Pyv = u)+ U+ -+ u,.
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Theorem 2.4 Assume that E(Y) =t and that Cov(Y) = 6°L Let W be a d-dimensional

subspace of V. Then E(\/’AY—J =tr [Ai:&+ @lA o, \AM
(i) E(PpY)=Py(E(Y))= Pw1; Q = E[Y] & 2:: (’OU(Y>

(i) E(|PrY || = ||Pwt|? +do>
i\

CRirey >rdited o ‘Sum of Sgua/l,z”

Theorem 2.5 Assume that E(Y) =t € Vr and that Cov(Y) = 6*L. Let x and z be

any vectors in V. Then BLUE
"

(i) the besf (that is, minimum variance) linear unbiased esz‘rmaz‘or% the scalar
xTis XY, < Gayss ~Moukov Tl . fvm(ﬂv\ﬁx) Ny @Ix.gzxr

(ii) the variance of the estimator x-Y is Hh”

(iii) the covariance of x-Y and z-Y is (x-z)0°.

Ta-T
W -

N

space spanned by the columns of X (dim =)
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(B \e@ Section 26 Estimation.
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Proposition 2l and Theorem 2.3(vi1) show that ’L—L

Theorem 2.4(1) confirms that this 1s an unbiased estimator of 1.
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( ﬁ?ley? Secton2”). Sum of 59%«)’2,
%  fot Whbe o 6@9}»(&
(f) ﬁr YeV, the sum of Square. o W~ maeans

(l((\)'H\Q, W SqUONe, Lor I 15 “ Rt %{m(-w“)
(iv) +he opeded mean Square for W TS

EMS ()= EQ Rl /drm(w))

First we apply these ideas with 177 :@SIIILG

Z SUMT_;

- uj,

the sum of squares for Iy

1s equal to

(Retf= () (;

ZSUMT:j

u; | =
J:]' i & (PV‘{Y)
<
Now, u; -u; — 0 whenever 7 ¢ j, so this sunl of squares t -ecut —% ‘1/(3*
; = l
Z €~—\7—~ _ Z SUMT 3 SUI\/I} i

The quantity Zf, (su mT ;/7i) 1s called the crude sum of squares for treatments, which
may be abbreviated to CSS(treatments)
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X
m? the degree of freadom for W 15 o ()

The number of degrees of freedom for /
1s equal t

1s simply the dimension of |

/r, which
The mean square for V7 1s equal to
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because Py, T — the expected mean square for J
PN /r+02
2
s EQ\M\\ )

Theorem 2.4(11) shows that

/T 1s equal to
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= Secondly we apply the ideas with W : By Theorem 2.3(v),

= y-ny
— A\
(I T3 = ¥ :f;ll; > g

]
data vector — vector of fitted values

= residual vector,

\2 = Svm of squaxes of +he vesiduals

= [ReY|
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